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Abstract

We present the results of a study comparing three directed-edge representations in node-link diagrams. Node-link diagrams are
probably the most popular type of graph representations; nodes are depicted as dots and links as straight or curved lines connecting
the nodes. An arrowhead placed at the end point of a link is traditionally used to indicate edge direction. However, Holten and
Van Wijk [13] showed that this arrow representation was not optimal. Their user study compared the performance (in terms of
reading time and correctness) of various directed-edge representations. A tapered representation — wide at the start and narrow at
the end — showed the best performance. This paper presents the results of a follow-up study comparing the performance of the
tapered representation with two other representations: one using biased curvature and the other using animation to indicate edge
direction. We tested the three representations using a more realistic setting than the original article. We used random small-world
graphs generated with the Barabdsi-Albert model, we used the Fruchterman-Reingold algorithm to lay out the graphs, and we varied
graph density and link length to measure their influences. Overall, our study shows that the tapered and animated representations
perform significantly better than the biased-curvature representation, with no significant differences between tapered and animated
except for medium-length representations where tapered was faster. The article presents detailed results and provides practical

recommendations on the use of directed-edge representations.

1 Introduction

Graph-based data, which is used to represent a collection of
elements (vertices) as well as the connections (edges) between
these elements, has become ubiquitous these days, not least
due to the increasing popularity of social networking sites on
the Internet. Apart from social network graphs (or social net-
works), where vertices represent individuals and edges repre-
sent acquaintance, the following lists some additional exam-
ples of common graph-based data sources:

* Traffic networks, where vertices and edges are used to
represent locations and traffic routes, respectively;

» Computer networks, where vertices and edges are used to
represent PCs and network connections, respectively;

* Scientific citation networks, where vertices and edges are
used to represent papers and citations between papers, re-
spectively.

Edges often have an associated weight and direction. Edge
weight might be used to indicate the strength, importance, or
cost of an edge. Edge direction can be used to signify the
directionality of what an edge represents, e.g., which paper
holds a citation and which paper is being cited in case of a
citation network graph.

When visualizing a graph, an often-used and intuitive vi-
sual representation is the node-link diagram (node-link graph),
in which vertices are generally represented as circular nodes
and edges as straight or curved links (lines). Edge weight is
commonly depicted by varying the width of a link, while edge
direction is generally depicted using an arrow representation,
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i.e., a line with an arrowhead at Node B in case of a directed
edge running from Node A to Node B.

Holten and Van Wijk noted that the use of an arrow repre-
sentation can lead to visual clutter because of arrowhead over-
lap, which can significantly hinder effortless and correct ob-
servation of edge direction [13]. Various approaches can be
used to overcome this, such as adding user interaction, using
a matrix instead of a node-link representation, improving the
node-link layout, or improving the directed-edge representa-
tion. However, user interaction is not suited for statically de-
picted, e.g., printed, graphs; matrix representations have been
shown to be less intuitive than node-link graphs [11, 15]; and
node-link-layout improvement is generally tackled by node-
placement optimization, while the arrowhead-clutter problem
actually stems from a sub-optimal edge representation.

For this reason, we contend that focusing on the use of im-
proved directed-edge representations is warranted. This was
also done by Holten and Van Wijk [13], who performed a user
study (henceforth called “the initial study”) in which partici-
pants performed various tasks on a collection of graphs using
different directed-edge representations (including the standard
arrow) to investigate which of these representations lead to the
best accuracy and reading times. They concluded that a ta-
pered representation clearly outperformed the other represen-
tations. This representation generalizes the notion of an arrow-
head by gradually varying the width of a link along its length,
1.e., wide at the start and narrow at the end.

This paper presents a follow-up study that was inspired by
the choices, experiments, and future work suggestions that
were part of the initial study [13]. Among other things, the
evaluation of animated directed-edge representations is sug-
gested. Furthermore, one of the directed-edge representa-
tions that was evaluated uses clockwise curvature to indicate
edge direction, which showed poor performance. We therefore
chose to evaluate the performance of 1) tapered, the best rep-
resentation according to the initial study, 2) an animated rep-



resentation, and 3) a representation that uses biased clockwise
curvature — high curvature at the start, low curvature at the
end — as proposed by Fekete ef al. [9]. This curvature-based
representation is regularly used and might perform better than
the non-biased curvature-based representation evaluated in the
initial study.

We furthermore evaluated how performance in terms of
reading time and correctness is affected by three levels of
graph density (sparse, medium density, and dense) as well as
three different link-length classes (short, medium length, and
long).

Finally, we used a class of graphs that is more representative
of real-world graphs such as social networks, i.e., scale-free
(small-world) graphs in which the degree distribution follows
apower law [25, 3]; the graph model used in the initial study to
generate the graphs was a non-scale-free model [22, 23]. We
used the well-known Fruchterman-Reingold algorithm [10] to
generate the graph layouts.

To evaluate the actual performance of the directed-edge rep-
resentations in terms of reading time and correctness, we de-
signed and ran an experiment in which participants performed
path-readability trials, i.e., they had to answer whether or not
there was a directed connection between a pair of nodes. We
provide initial hypotheses regarding the performance of the
evaluated directed-edge representations with respect to vary-
ing graph densities and link lengths, and subsequently com-
pare these with the outcome of a statistical analysis of par-
ticipants’ reading times and correctness. Based on the results
of this analysis, we provide practical recommendations on the
use of directed-edge representations in the context of node-
link graphs.

The remainder of the paper is organized as follows. Sec-
tion 2 describes previous work on directed-edge visualization,
the evaluation thereof, and the use of static, animated, and
curvature-based representations to show direction. Section 3
gives an overview of graph generation and layout, the eval-
uated representations, and the selection of node pairs during
trials. The experiment design and hypotheses are presented in
Section 4, followed by Section 5, which presents the statistical
analysis. Practical recommendations on directed-edge usage
are provided in Section 6. Finally, Section 7 presents our con-
clusions and suggestions for future work.

2 Related Work

The following presents an overview of various directed-edge
representations that have been proposed in the past, the major-
ity of which are straight, static representations that have been
used in the context of node-link graphs to depict directed con-
nectivity. The use of edge representations that rely on curva-
ture and animation is treated separately in Sections 2.2 and
2.3, respectively.

2.1 Straight, Static Directed-Edge Representa-
tions

Half-lines are used by Becker et al. [5] to depict directed
edges; a half-line from Node A to B is a straight-line connec-
tion in which only the first half of the line is drawn. Although
half-lines reduce the amount of display space used to show
links, they unfortunately make it hard to determine where links
end. Wong et al. [27] present their GreenArrow technique as

a solution to the problem of how to balance the appearance of
both a graph and its labels. The text label pertaining to a link
(or one of its nodes) is drawn such that the text itself forms a
tapered link between two nodes. This removes the need to ex-
plicitly visualize the edge using a line-based representation. A
color-coded representation is used by Holten [12] to indicate
edge direction. Direction is indicated as running from Node
A to Node B by gradually changing the color from green (A)
to red (B3) along the length of a link, although different colors
can be used as well.

The directed-edge representations that were evaluated (and
partially designed) in the initial study [13] are the standard ar-
row, tapered, curved (non-biased, clockwise direction), green-
to-red, light-to-dark, and dark-to-light. The following combi-
nations were furthermore evaluated: tapered + curved, tapered
+ dark-to-light, curved + dark-to-light, and tapered + dark-to-
light + curved. Apart from the recommendation of using a
tapered representation in general because of its performance,
is was also found that combining representations (at least the
ones that were evaluated) did not result in significant perfor-
mance gains. Nielsen et al. [18] note that they were partially
inspired by these recommendations. For their ABySS-Explorer
they use tapered, leaf-like shapes to visually depict the orien-
tation of contigs, i.e., genome assemblies consisting of long
contiguous sequences.

2.2 Curvature-Based Directed-Edge Represen-
tations

Edge representations based on curvature have been used be-
fore in the context of Arc Diagrams by Wattenberg [24] and
ArcTrees by Neumann et al. Arcs, i.e., curved links, were
used in Arc Diagrams to represent complex repetition patterns
in string data and in ArcTrees to visualize hierarchical as well
as non-hierarchical data relations. In case of such symmetric
arcs, a curve’s clockwise orientation is generally used to in-
dicate direction. The aforementioned GreenArrow [27] tech-
nique by Wong et al. also uses curvature — albeit counter-
clockwise — in addition to tapering and label-text orientation
to indicate direction.

Instead of only using (counter-)clockwise orientation to in-
dicate direction, Fekete et al. [9] add curvature bias to this.
Their curved links are drawn as quadratic Bézier curves that
vary the amount of curvature — high at the start and low at the
end — to indicate direction (see Figure 2b). This is one of the
representations that we evaluated since it is regularly used and
we hypothesized that it might be a better alternative than the
simple, non-biased clockwise-curvature-based representation
evaluated in the initial study.

2.3 Animated Directed-Edge Representations

Most animated edge representations indicate edge direction
based on the idea of having a dash pattern move in the direc-
tion of the link along the length of a link. An example is the ef-
fective use of animated dash-pattern textures by Wegenkittl ez
al. [26] to show the flow motion of trajectories within analyti-
cal dynamical systems.

To address node and link clutter in large and dense node-
link graphs, Ware et al. [21] evaluated motion-based high-
lighting techniques to provide effective access to such graphs.
One of the evaluated techniques was an edge representation



Figure 1: From left to right: a sparse (60 nodes), medium-density (90 nodes), and dense (135 nodes) graph as used during the experimental
trials. The graphs were generated using the Barabdsi-Albert [3] scale-free model and laid out using the Fruchterman-Reingold [10] algorithm.

that uses animated sawtooth dash patterns radiating out from
the source (start) node. For the path-readability and node-
reachability tasks that participants performed, reading time
and error rate were generally significantly lower when using
animated-link highlighting than when using no highlighting.
Ware et al. therefore argue that motion-based highlighting can
be valuable in applications that require users to understand
large graphs.

Bartram et al. [4] showed the potential of using animated
causal overlays, e.g., animated links, on top of causality-
depicting visualizations such as causal graphs. The idea was
inspired by the fact that perceptual psychology showed that
causality perception is a low-level visual event derived from
certain types of motion.

Blaas et al. [6] present a spline-based way to smoothly visu-
alize higher-order state transitions for the exploration of state
sequences in large time-series. As noted by Blaas et al., ar-
rowheads distort the perception of a continuous spline. They
therefore opted for a texture-based approach that uses ani-
mated dash patterns to visualize edge direction. They are fur-
thermore planning to continue their investigation into the vi-
sualization of directed edges using animated textures.

Animated links have also recently been added to the well-
known Tulip graph visualization library [2]. The dash patterns
used by Tulip move along a straight line from start to end and
are made up of repeating “greater than” (*)””) symbols depicted
using alternating colors.

2.4 Evaluation

Apart from the initial study [13] that inspired our work,
only few user studies have been performed to quantify how
directed-edge representations perform in the context of node-
link graphs. One of these is the user study performed by
Wong et al. for their GreenArrow approach. However, their
focus was on how to balance the appearance of a graph and
its labels, not on determining how well their approach works
as a technique for depicting directed edges in comparison with
other directed-edge representations.

An additional motivation for our follow-up evaluation of the
performance of directed-edge representations is the remark of
Kosara et al. [16], who note that visualization as currently
practiced is mostly a craft and evaluation is often only per-
formed informally. Because of this, user studies in visual-

ization should be encouraged. This is further supported by
North [19], who also states that there are too many informal
usability studies that only indicate whether or not a small num-
ber of users like a certain visualization technique. Visualiza-
tion evaluation should seek to quantifiably determine how well
visualizations perform, and one way of doing this is to perform
controlled user studies.

3 Graphs and Directed-Edge Repre-
sentations

This section provides details on the choices that were made
with regard to the generative graph model, the graph layout,
the directed-edge representations, and the way in which node
pairs were chosen during trials to ensure controlled testing of
different link lengths.

3.1 Graph Model

To ensure the availability of enough different graphs with sim-
ilar statistical properties for all of the participants and for all
of the combinations of graph density, edge representation, and
link length, we chose to generate random graphs using a graph
generation model.

The graph model used in the initial study was proposed by
Ware et al. [22, 23]. It generates graphs as follows: “For each
graph node, form a directed edge to one or two other nodes,
randomly selected, so that a single connection occurs p% of
the time and two connections occur (100 — p%) of the time,”
where p controls the density. This model is more suited for
real-world graphs than the model by Erdds et al. [8], who de-
fine a random graph as G(n, p) in which each of the (%) possi-
ble edges occurs with probability p. However, the node-degree
distribution of the Ware-et-al.-graphs does not follow a power
law (is not scale-free), i.e., the fraction P(k) of nodes having
k connections to other nodes is not modeled by P(k) ~ k™7,
typically with 2 < v < 3. Many empirically observed net-
works, however, do appear to be scale-free, including social,
citation, and protein networks.

We therefore chose a graph generation model that produces
scale-free (small-world) graphs, i.e., graphs with a power law
distribution, such as the Barabasi-Albert (BA) [3] or the Watts-
Strogatz [25] model. We used the Network Workbench [20], a
network analysis, modeling, and visualization toolkit, to auto-



Figure 2: The directed-edge representations that were evaluated: (a)
tapered from wide (start) to narrow (end), (b) biased clockwise cur-
vature from high (start) to low (end) curvature, and (c) animated, in
which a pattern moves from start to end along a straight line.

matically generate a set of random graphs with varying densi-
ties according to the BA model. After initial pilot runs that col-
loquially assessed the difficulty experienced by people when
deciding if there is a connection between a pair of nodes, we
settled for sparse, medium-density, and dense graphs, with 60,
90 and 135 nodes, respectively (60 x 1.5 = 90 x 1.5 = 135).
A couple of representative example graphs are shown in Fig-
ure 1.

3.2 Graph Layout

There are many node-link-graph layout models available, the
majority of which make use of force-directed node placement
algorithms (or adaptations thereof), such as Eades’ spring-
embedder model [7], the Kamada-Kawai [14] model, or the
Fruchterman-Reingold [10] model.

Due to its real-world popularity, ease of implementation,
and overall good results for graphs up to a couple hundred
nodes, we chose the Fruchterman-Reingold (FR) algorithm to
lay out our graphs. All layouts were generated by a JUNG-
based [17] FR implementation as provided by the GUESS
graph exploration system [1] from within the Network Work-
bench (see Figure 1).

3.3 Directed-Edge Representations

Many feasible directed-edge representations remain to be
comparatively evaluated. We chose to evaluate the per-
formance of three representations that seemed particularly
promising based on previous work. Specifically we evalu-
ated 1) tapered, the best representation according to the initial
study, 2) an animated representation, and 3) a representation
that uses biased clockwise curvature as proposed by Fekete et
al. [9]. This biased-curvature-based representation might be a
better alternative than the non-biased representation evaluated
in the initial study. Based on information directly provided
by Holten, Van Wijk, and Fekete, we modeled all representa-
tions to adhere to their original design and to be similar to the
representations used in the initial study.

We used a 23” LCD display with a 16:10 width:height ra-
tio and a native resolution of 1680x1050 pixels to represent
all of our graphs at 4x anti-aliasing on a white background.
All visualizations were generated within our OpenGL-based
evaluation tool, which was written in Borland Delphi. Given
the display diagonal and the resolution, our display provided
approximately 86 DPI.

The tapered representation was similar to the one used in the
initial study: 4.31px (0.05’) wide at the start, 0.43px (0.005”)

Figure 3: Identical regions of a medium-density graph shown using
a (a) tapered, (b) biased, and (c) animated representation.

wide at the end, and drawn in black at an opacity of 35% (see
Figure 2a).

Based on information directly provided by Fekete, we mod-
eled the biased-curvature representation as a quadratic Bézier
curve defined by the points A, B, and C as shown in Figure 2b;
Point B is generated by 90° counterclockwise rotation of the
midpoint of A and C around A. The curve is drawn at 1.29px
(0.015”) wide in black at an opacity of 40%. We used a higher
opacity than tapered to compensate for the fact that — due to
its thinner design — it covers less display area.

Finally, the animated representation used a moving dash
pattern with a cycle length of 30px (0.35”), 90% of which,
i.e., 27px (0.31”), was occupied by a line, and 10% of which,
i.e., 3px (0.04”), was occupied by a gap (see Figure 2c). The
pattern moved along a straight line from start to end at a speed
of 15px (0.17”) per second. Each animated link used a differ-
ent, randomly assigned phase to prevent distracting “bursts”
of activity caused by multiple incoming/outgoing links around
a node. The animated links were also drawn in black at an
opacity of 40% using a line width of 1.29px (0.015”).

Although our texture-based animation model is capable of
generating more complex animated links using gradient-based
patterns with smoothly varying colors and opacity, we chose
the aforementioned settings to prevent the animated represen-
tation from claiming visual attributes such as (varying) color,
opacity, and line width that can be used to encode other at-
tributes in addition to directionality. The exact settings for our
candidate representation were determined using pilot runs that
assessed the length, density, and speed of the dash patterns that
the majority of the participants felt comfortable with. Figure 3
shows an identical region of a medium-density graph using
each of the three directed-edge representations.

3.4 Link-Length Selection

For each path-readability trial (see Section 4.4 for a detailed
task description), a pair of start and end nodes A and B was
selected between which a directed link L might be present.
Since difficulties caused by visual clutter and overlap occur
more often in the central region of a force-directed graph lay-
out, we ensured the selection of node pairs from the central
part of the graph layout. This was done by calculating a
bounding circle for each graph layout and adding a normal-
ized, cut-off 2D Gaussian on top of this with a value of 1
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Figure 4: A medium-density, undirected graph in which representa-
tive links for each link-length class are highlighted using red (short),
green (medium length), and blue (long).

at the center and a value of O (at 30) at the circular graph
boundary. This value, denoted as Peepner (A, B) € [0, 1], rep-
resents the probability of a randomly chosen node pair con-
sisting of nodes A and B getting accepted based on the po-
sition of the node-pair midpoint within the bounding circle.
More specifically, we implemented this by randomly picking a
node pair with node positions A, and B, until a node pair
was accepted. The probability of acceptance Peepter (A, B)
depended on d = % — C, where C is the center of the
graph bounding circle.

To select a short, medium-length, or long link for a trial
(see Figure 4 for examples), the minimum- and maximum-
length links L,,;, and L,,q, were first determined. Based
on the range D = L4 — Lmin, the links were sorted
from short to long and divided into three bins, i.e., Bsport =
[Lmin7 Loin + %D>, Briedium = [Lmzn + %Da Loin + §D>,
and Biong = [Limin + 2D, Limaz). To determine the proba-
bility of a randomly chosen link from Bin B (a certain length
class) getting accepted, a 1D normalized, cut-off Gaussian was
centered on the median-length link in B, having a value of 1
at the center and O (at 30) at the bin boundaries. The proba-
bility of a randomly chosen link in Bin B getting accepted is
Pgp(L) € [0,1].

Taking the position of a link with respect to the graph
center into account, the combined probability of a ran-
domly chosen link in Bin B getting accepted now becomes
Poonter(La, Lp)-Pp(L) = P(L) € [0,1], where L4 and L
are the start and end nodes of Link L, respectively.

4 Experiment — Comparing Directed-
Edge Representations

As previously stated, the goal of our experiment was to ex-
tend previous work on the readability of directed edges. We
chose to evaluate tapered, the best directed-edge representa-

tion based on the results of an initial study [13], and added
two new ones: animation and biased curvature (henceforth
called “biased”). In addition, we tested three graph densities
and three link lengths.

4.1 Hypotheses

Based on the results of previous work, we hypothesized that
overall, tapered links would outperform the other two in this
experiment as well (HI). However, we hypothesized that in-
teraction effects would be present for the different graph den-
sities and link lengths (H2). In terms of interaction effects we
specifically had the following hypotheses:

H3: For sparse graphs, tapered will outperform the other two
representations due to minimal overlap and its strong in-
dication of direction;

H4: For dense graphs, tapered will perform worse than the
other two representations due to its increased use of “ink”
(display area);

H5: For long links, biased will perform significantly worse
than the other two representations due to increased edge
overlap.

We were unsure how the animated links would perform.
Animation has a strong perceptual focus and may lead to in-
creased visual clutter of the graph. On the other hand, the
strong perceptual cues provided by animation may lead to an
increased ability to follow links. We were further unsure how
tapered and animated links would compare for long edges.

4.2 Design

We used a repeated-measures design with the following
within-subjects independent variables: edge representation
(tapered, biased, animated), graph density (sparse, medium
density, dense), and link length (short, medium length, long).
Each participant performed 10 repetitions of trials, each repe-
tition containing 27 trials. The order of combinations of graph
density, link length, and edge representation was randomized
per repetition of trials. Before each repetition of trials, par-
ticipants were allowed to rest and could continue to the next
repetition whenever they were ready. Experimental sessions
lasted about 30 minutes including training. In summary, the
design included:

3 edge representations X

3 graph densities X

3 link lengths =

27  trials per repetition X

10  repetitions per participant =
270 trials per participant

I X

27  participants
7,290 trials in total

The dependent variables that we measured are reading time
and correctness on a per-trial basis. In addition, we analyzed
qualitative feedback from the post-study questionnaire.

4.3 Participants and Procedure

Twenty-seven participants (15 male, 12 female) were recruited
from two research institutions. They ranged in age from 22
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ENTERfor yes, 0 for no A

Figure 5: Example view of a trial as presented to participants. Task
instructions resided in the top-left corner (1), the graph in the screen
center (2), and a legend on how to read the directed-edge representa-
tion in the lower-left corner (5). Test nodes were highlighted in green
for the start node (3) and orange for the end node (4).

to 58 years (median 30 years). All participants had nor-
mal or corrected-to-normal vision and were tested for color-
blindness. Seven participants reported looking at node-link
graphs at least weekly, 13 participants reported monthly or
yearly exposure, and six reported to be unfamiliar with node-
link-graph representations. Eleven participants were students
and 16 were non-students with varying technical as well as
non-technical occupations, e.g., nurse, administrator, or re-
searcher. Participants were not paid for their involvement in
the study.

Participants were seated in front of a Dell LCD display at
a viewing distance of approximately 50cm; subsection 3.3 in-
cludes further details on the display settings. Participants were
first given a short introduction to node-link graphs and the dif-
ferent types of edge representations used in the study. The
experimenter then described the task, how to step through the
trials, and how to record an answer. Participants answered by
pressing the “0” (no directed connection present) and “Enter”
(directed connection present) keys on the keyboard and they
pressed the “Space” key to start a new repetition of trials. Par-
ticipants first conducted 50 practice trials to ensure that they
were familiar with how to read the edge representations and
with the experimental setup and procedure. After the practice
trials, participants were asked if they had any further ques-
tions. If not, they continued to the experiment. After the ex-
periment, participants filled out a post-session questionnaire to
elicit qualitative feedback and demographic information.

4.4 Tasks

We used a path-readability task in which participants had to
answer the following question throughout the study: “Is it pos-
sible to go from the green node to the orange node in exactly
one step?” This task was chosen as it tests local readability of
node connections and gives an indication of how well the cho-
sen edge representation allows participants to infer direction-
ality. Participants were instructed to be both as accurate and

fast as possible. The correctness of their answer was shown
to participants only during practice trials (immediately after a
trial) and not during the actual experiment.

Each trial was shown to participants full-screen in three
stages. During the first stage participants saw an empty white
screen for 400ms. During the second stage we showed two
randomly selected nodes A (green) and B (orange) to the par-
ticipants for 600ms. This stage was introduced to ensure that
participants did not spend time finding the two nodes in the
graph. Finally, in stage three the complete graph (with A and
B in the same positions) was displayed and timing for the trial
was started.

A legend for the currently used edge representation was dis-
played in the lower-left corner of the screen (see Figure 5).
Participants were presented with a new graph for each trial and
Nodes A and B were chosen such that there was a 50% chance
of a connection being present; in 50% of the cases in which a
connection was present, the connection also had the correct di-
rection, i.e., there was a 25% overall chance of a connection
being present and having the correct direction (from A to B).
The chance of a bidirectional connection being present was not
explicitly controlled for. The randomly selected graphs were
generated and laid out as discussed in Sections 3.1 and 3.2 and
link lengths were selected as discussed in Section 3.4.

5 Results

The completion times collected during the experiment were
first log-transformed to comply with the normality assump-
tion of the data analysis. Then time was analyzed using a
repeated-measures ANOVA. Timing data was recorded and
analyzed at millisecond scale; average task times are reported
here at second scale. The error data was analyzed using the
non-parametric Friedman analysis of variance by ranks and
Wilcoxon signed rank tests as the error data did not conform
to the normality assumption.

5.1 Overall Effect of Edge Representation

There was a significant effect of edge representation on overall
task completion time (F'(2,52) = 75.315;p < .001) with
mean times diminishing from 1.81s (SD = 1.48) for tapered,
to 1.92s (SD = 1.2) for animated, and 2.72s (SD = 2.25)
for biased (see Figure 6). Post-hoc pairwise comparisons only
showed a significant difference between biased and the two
other representation with p < .001 in both cases.

Overall, participants made errors in only 6% of the trials.
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Figure 6: Average completion time per representation.
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Figure 7: Number of (in)correct trials per representation.

However, a Friedman analysis showed a significant effect of
edge representation on the correctness of the trials (x?(2) =
29.16;p < .001) with errors increasing from 101 for tapered,
to 102 for animated, and 248 for biased links out of 2,430 trials
per edge representation (see Figure 7). Wilcoxon signed rank
tests again only showed a significant effect between biased and
the two other representations, with Z = —4.12 for compari-
son to animated, Z = —4.05 for comparison to tapered, and
p < .001 in both cases. We, thus, confirmed our first hypoth-
esis (H1), that tapered would perform well overall, but found
animated to be a competitive alternative.

5.2 Effects of Graph Density

Tests showed a significant effect of graph density on task com-
pletion time (F'(2,52) = 54.56;p < .001) with average times
of 1.97s (SD = 1.24) for sparse graphs, 2.13s (SD = 1.39)
for medium-density graphs, and 2.34s (SD = 1.59) for dense
graphs. Post-hoc pairwise comparisons showed a significant
effect between all graph densities with p < .001 each. Error
analysis showed a significant effect between the three densi-
ties (x2(2) = 10.65;p < .005). Post-hoc pairwise compar-
isons showed a significant difference for medium-density and
dense p < .002 as well as sparse and dense graphs p < .001.
Although the difference between sparse and medium-density
graphs was not significant, the other differences indicate that
there is a monotonic increase in error. This analysis confirms
that we chose an appropriate increase in density for the graphs.

Next, we looked at the effect of graph density with re-
spect to the three different edge representations. The anal-
ysis of task completion time showed a significant effect
for edge representation x graph density (F(4,104) =
3.535;p < .002). Post-hoc comparisons showed a signif-
icant difference between biased and tapered as well as bi-
ased and animated representations for all three graph densi-
ties (p < .001 in each case). No significant difference was
observed between tapered and animated links for any of the
graph densities. Figure 8 gives an overview of the average trial
times observed for each edge representation and graph density.

During the analysis of trial errors we observed the
same pattern. An overall significant difference for
edge representation x graph density (x*(8) = 46.76;p <
.001) emerged. Further cross-comparisons per type of graph
density showed significant differences between the biased rep-
resentation and the two other ones. Similar to the analysis of
trial time, no significant difference was observed between ta-
pered and animated links. Table 1 gives an overview of the
respective significance values.
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Figure 8: Average trial time per representation by graph density.

‘ Sparse ‘ Medium Density ‘ Dense

| AB TB | AB TB | AB T-B
zZ -3.0 —2.61 —3.06 —3.05 —-3.67 —3.36
p| <.003 <.009 | <.002 <.002 | <.001 <.001

Table 1: Significant differences for cross comparisons according to
trial error for animated (A), biased (B), and tapered (T) links in
sparse, medium-density, and dense graphs.

Thus, we partially confirmed our third hypothesis (H3). Ta-
pered performed well in sparse graphs but there was no signif-
icant difference in trial time or error to animated links. We did
not, however, confirm H4. Against our initial hypothesis, ta-
pered links performed well for dense graphs as well, and again
we did not show a difference to animated links. Biased links
performed the worst according to both time and error.

5.3 Effects of Link Length

Tests showed a significant effect of link length on task com-
pletion time (F(2,52) = 105.26;p < .001) with average task
completion times of 1.95s (SD = 1.37) for short links, 2.09s
(SD = 1.4) for medium-length links, and 2.4s (SD = 1.43)
for long links. Post-hoc pairwise comparisons showed a sig-
nificant effect between each of the three lengths with p < .001
in each case. No significant effect was observed between link
lengths in terms of correctness. Participants were 94.2% cor-
rect with short links, 94.4% correct for medium-length links,
and 92.9% correct with long links. Although the differences
in error rate were not significant for the different link lengths,
the timing information shows that participants spent signifi-
cantly longer for trials with longer links indicating an increase
in difficulty.

Next  we analyzed interaction  effects for
edge representation x link length. The analysis of task
time showed a significant difference between the three lengths
and representation types (F'(4,104) = 4.48;p < .002). Post-
hoc comparisons showed significant differences between the
biased representation and the two other ones with p < .001 in
each case. For short and long links the data exhibited no sig-
nificant difference between tapered and animated links. Only
for medium-length links, a significant difference (p < .022)
occurred for those two representations with tapered being
significantly faster at 1.69s on average than animated at 1.86s
on average. Figure 9 gives an overview of the average trial
time for each edge representation separated by the three link
lengths.

The Friedman analysis of variance showed a significant ef-
fect of error rate for edge representation x link length
(x*(8) = 57.46;p < .001). Cross-comparisons by link
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Figure 9: Average trial time per representation by link length.

| Medium Length | Long

| A-B TB | AB T-B
Z | —397 —359 | —4.08 —3.89
p | <.001 <.001 | <.001 <.001

Table 2: Significant differences for cross comparisons according to
trial error for animated (A), biased (B), and tapered (T) links with
medium-length and long links.

lengths showed no significant difference in errors among the
three representations for short links. For medium-length and
long links, the data exhibited a significant effect between the
animated and biased as well as biased and tapered representa-
tions, but not between tapered and animated. Table 2 gives an
overview of the relevant significance scores for these tests.

In summary, we saw interaction effects for edge represen-
tation for both density and length, confirming our second hy-
pothesis (H2). We could confirm H5 as biased links performed
significantly worse than the others for long links. However, it
should be noted that it in fact performed significantly worse
than the other two techniques for all link lengths.

5.4 Qualitative Feedback

The post-session questionnaire elicited feedback from partici-
pants on their subjective preferences and ratings for the three
edge representations.

5.4.1 General Preference

Two participants chose the biased representation as their over-
all favorite, eleven chose the animated type, and the remain-
ing fourteen participants preferred the tapered representation.
Figure 10 gives an overview of participants’ preferences. The
reasons participants gave for choosing animated or tapered as
opposed to the biased representation were fairly similar. Par-
ticipants found them to be “intuitive” (two responses each for
tapered (2-T) and animated (2-A)), preferred the direct con-
nection in comparison to the biased representation (3-T; 5-A),
named them “easier to follow” (4-T, 1-A), faster (1-T, 1-A),
and thought that those two representations produced minimal
clutter (2-T, 3-A). Not all participants produced an answer to
why they preferred a specific representation and some named
several reasons, therefore the answer numbers to this question
do not represent the total number of participants. Some par-
ticipants further explained why they preferred a specific rep-
resentation. Participants saw an advantage of the tapered links
in that the varying width allowed them to more easily infer
whether a node intersecting a link was a start or end node. Par-
ticipants also reported that biased links were difficult to follow
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Figure 10: Participant-preferred representation type.

in dense situations as the angle of the curve was hard to guess
and had to be searched for. Participants further stated that
whether a connection was present or not was easy to see for
both tapered and animated but not for biased links. One par-
ticipant was also concerned that animated links would imply
variations or flow over time (such as the movement of people
between cities), which may not always properly represent the
semantics of a link in a graph.

5.4.2 Preference by Graph Density and Link Length

Participants were further asked to rank the techniques for each
graph density they encountered. Overall, biased was the first
choice for each graph density only five times or less. Animated
and tapered links were chosen equally often for dense graphs.
For medium-density graphs, animated links were the number
one choice of most participants: they were chosen fourteen
times compared to ten times for tapered links. Participants
showed a clear preference for tapered links for sparse graphs,
however: they were ranked first sixteen times compared to
7 times for animated links. Figure 11 gives an overview
of which edge representation participants rated first for each
graph density.

Furthermore, participants were asked to rank the edge rep-
resentations for the two extreme link lengths: short and long
links. As the experiment randomly presented participants with
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Figure 11: Participants’ first choice of technique by graph density.
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Figure 12: Participants’ first choice of technique by link length.



The technique allowed me to be. ..
...correct ‘ ... fast

‘ Mean Median ‘ Mean Median

Biased 3.96 4 (no opinion) 2.93 2 (disagree)
Tapered 5.67 6 (agree) 5.52 6 (agree)
Animated 53 5 (somewhat agree) 541 6 (agree)

Table 3: Results of the Likert-scale questions: “The technique al-
lowed me to be (fast/correct).”

different link lengths, medium-length links were excluded
from this question. For short links, the tapered representa-
tion was the most preferred, while animated links were the
most preferred technique for long links (Figure 12). Together
with the analysis of graph density, participants tended to pre-
fer tapered links for sparse graphs and short, animated links
for longer links and medium-density graphs; they were equally
effective with both in the quantitative evaluation.

5.4.3 Self-Rated Speed and Correctness per Representa-
tion

To capture possible differences in actual and perceived effi-
ciency and effectiveness with a given edge representation, par-
ticipants were asked to rank their perceived correctness and
speed on a 7-point Likert scale. The scale ranged from 1:
strongly disagree to 7: strongly agree. Table 3 summarizes
the answers to these questions. Reflecting the results of the
quantitative measurements, participants were least sure about
their performance with the biased representation. The answers
to perceived speed and correctness for both animated and ta-
pered were again significantly different to the biased represen-
tation (p < .001 for speed and p < .007 for correctness) but
not significantly different between animated and tapered.

5.4.4 Aesthetics

Participants were further asked to rate the three representations
on their ability to produce “nice-looking graphs.” Participants
rated the biased representation with a median of 4 (no opinion,
mean = 4.15), tapered with a median of 5 (somewhat agree,
mean = 5.22), and animated also with a median of 5 (mean =
5.15). While the difference in rank of the biased link to the two
other representations was smaller for this question compared
to previous ones, there was still a significant difference to the
two other techniques with p < .022; 7 = —2.29 compared
to tapered and p < .034; Z = —2.12 compared to animated.
No significant difference between the ratings for tapered and
animated links was observed.

6 Discussion

The quantitative results are consistent with the self-rated per-
ception of the participants. From the experiment, the biased
representation is always less effective than the two others and
is also the least preferred. Therefore, it should probably not be
used if any of the two others is an option.

The animated representation is effective, even competing
with the tapered representation on almost all the conditions
except for medium-length links. The reason why this condi-
tion is different from the others needs further study; so far, we
have no explanation. Since tapered links were more effective
than all the others tested in the initial study [13], we expect
animated links to also be more effective.

We can now choose the link representation of a node-link
diagram in a more rational way than before. There are still
tradeoffs to keep in mind. One tradeoff concerns the visual at-
tributes that can be used along with the representation. For ex-
ample, tapered links require transparency and a varying thick-
ness to be readable. If changing the link thickness or trans-
parency according to an edge attribute is important, tapered
links cannot be used or could become less effective. Animated
links, on the other hand, can support varying thickness and
variation of transparency but cannot be used on paper or any
static medium. Further research is also required to test differ-
ent types of animation patterns for screen use. We proposed
one that tested very well in comparison to tapered but many
different patterns are possible and may not support path read-
ability in the same way (they may be better or worse).

As another tradeoff, animated links are more complex to
program and require more graphics performance to work
smoothly on large graphs. Finally, edge routing or bundling
cannot be used with biased links because the shape of the curve
is constrained by the routing itself.

To summarize: tapered links were always good and should
be preferred by default, unless link thickness or transparency
should vary. Animated links can be used in that case. Finally,
tapered and animated links can likely be combined or used
to differentiate categorical attributes of links with up to three
values: tapered, animated and tapered-animated.

7 Conclusion

In this article, we have reported on a controlled experiment
comparing the readability of three directed-edge representa-
tions for node-link diagrams: tapered, biased, and animated.
The study used graphs randomly generated using the Barabasi-
Albert model and laid out using the Fruchterman-Reingold al-
gorithm. The factors were the three edge representations, the
density of the graphs (sparse, medium density, and dense) and
the link lengths (short, medium length, and long). We tested
one low-level connectivity task: showing two nodes, asking if
the first node was connected to the second. We collected the
time to complete and the number of errors, as well as a user
questionnaire eliciting subjective feedback from participants.

The study showed that tapered and animated links were al-
ways faster to read and more accurate than the biased-link rep-
resentation. Tapered was significantly faster than animated for
only one condition: medium-length links. The questionnaire
reported consistent conclusions regarding user preferences and
self-assessment.

From this study and the initial one, we can conclude that
the best directed-edge representation for the readability task is
tapered, followed by animated. We also provide advice and
recommendations in the discussion section for choosing a rep-
resentation according to various constraints and tradeoffs.

This study revealed that animated links were effective at de-
picting directed edges, matching the best technique in most
conditions. The participants provided interesting reasons ex-
plaining why tapered links are still better in some cases: when
a link crosses a node but does not end, the thickness of the ta-
pered link allows one to resolve the ambiguity while animated
links remain ambiguous.



7.1 Future Work

The design space of animated links is large and we have only
tried a very simples design so far. Given the user feedback, we
need to improve the design of animated links to disambiguate
between crossings and end points. We should also try to find
the optimal parameters in terms of dash sizes and speed, or
vary the shape of the moving part using glyphs or other pat-
terns.

Now that we have evaluation results from several types of
link representations, we can also study how to combine them
either as visual attributes for categorical attributes or to visual-
ize overlapping edges that have identical start and end points.
Another possibility is to combine different representations in
dense or sparse graph regions or to differentiate short and long
links.

We have only tested edge representations for one task.
There are, or course, several other tasks involved in graph visu-
alization and the results of the representations we have tested
are likely to be different for some of them. For example, ta-
pered and biased links provide an easy assessment of the over-
all link length (the thickness variation of the tapered link, the
derivative of the curve of the biased link). Higher-level tasks
could also benefit from different edge representations but have
not yet been formally tested.
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