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Abstract / Zusammenfassung

Over the recent years, visualization has become increasingly important in electronic
and interactive media. This thesis introduces a new interactive visualization technique
tailored to emphasize relations between data elements in a hierarchical data structure.
The display of relations between data items in tree structures is commonly solved by
grouping items according to color, shape, proximity, size, etc. The approach presented
in this thesis, however, represents relations using direct connections. These have been
shown to be a stronger grouping principle than proximity, color, size, or shape. The
presented visualization technique involves filter and zoom mechanisms to explore the
data structures. Automation mechanisms for these operations are introduced through
focus+context navigation in the tree. A particular quality of the presented techniques
is the consideration of relations in focus+context interaction and presentation which
is a novel aspect for tree visualizations.

Die visuelle Darstellung von Datensätzen und darin enthaltenen Informationen in in-
teraktiven digitalen Medien erhält seit einigen Jahren eine immer größere Bedeutung.
Diese Diplomarbeit stellt eine neue interaktive Visualisierungstechnik vor, die in beson-
derer Weise die Darstellung von Relationen zwischen Datenelementen in hierarchis-
chen Datensätzen ermöglicht. Typischerweise werden Relationen zwischen Datenele-
menten in solchen Datensätzen durch Farbcodierung, Verwendung von ähnlichen For-
men oder Texturen realisiert. Die Visualisierung, die hier vorgestellt wird, benutzt im
Gegensatz dazu eine direkte visuelle Verbindung als Codierungstechnik. Dies basiert
auf Untersuchungen, die ergeben haben, dass solche direkten visuellen Verbindun-
gen Relationen besser darstellen können als Farbe oder Form. Die vorgestellte Visu-
alisierungstechnik beinhaltet außerdem Zoom- und Filtermechanismen um die Daten
interaktiv untersuchen zu können. Als ein Automatisierungsmechanismus für diese
Interaktionsmöglichkeiten wird Focus+Context Navigation in den Daten vorgestellt.
Besonders hervorzuheben ist in diesem Zusammenhang die Beachtung von Relationen
in der Focus+Context Navigation und Präsentation, die neuartig für die Visualisierung
von Baumstrukturen ist.
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CHAPTER 1

Introduction

Over the recent years, the combination of visualizations and digital media has become
increasingly important. Much of today’s communication involves visualizations in dig-
ital form. Aiding users with different tasks by making the underlying data visual is one
important research area in computer science. Such research in the area of visualization
is largely based on a characteristic of the human visual system: visual information can
be processed in parallel and with a high bandwidth into the human cognitive centers
(WARE, 2000). This is also the reason why an effective information display can often
lead to insight quicker and more memorably than a few pages of written text. This
thesis is concerned with the creation of such an effective information display. As one
of the most common data types, hierarchical data structures will be visualized with an
emphasis on the display of relations between data items. Motivation for the research
presented here will be discussed in this chapter. The discussion will give insight into
the inherent problems in the development of the visualization and briefly summarize
the further development process discussed in subsequent chapters.

1.1 Motivation

Knowledge obtained from visualizations often comes from insight gained by recog-
nizing that data items are related in some way. In graphs, for example, edges can
represent any conceivable kind of relation including those of temporal, causal, or func-
tional nature. The display of relations is, therefore, one of the most essential tasks in
information visualization. Understanding relations between items in a visualization
helps the viewer to build a mental model of the underlying data. This mental model is
needed to understand the scheme or situation to which the presented data refers. For
making decisions based on the visualization of data the interpretation of this internal
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Chapter 1 Introduction

model is essential. This thesis will introduce a new visualization technique specifically
tailored to recognize relations between data elements in a hierarchical data structure.

1.2 Problem Statement

In traditional displays of tree structures, edges represent parent-child relations. If
more than the inherent parent-child relations needs to be visualized for nodes in a
tree, different encoding techniques are necessary. Figure 1.1 affirms this proposition.
The figure displays a tree structure in a traditional node-link diagram. Additional
links are introduced to represent binary relations between nodes in the tree. From the
display parent-child relations and the additional relations cannot be distinguished. In
addition, edge-edge intersections are introduced that lead to a cluttered display.

Figure 1.1: Additional relations introduced in a traditional tree layout. Different types of relations
cannot be distinguished and edge intersections are introduced.

Typical encoding techniques to circumvent misinterpretations include using color, tex-
ture, size, or different node shapes to emphasize additional relations instead of direct
links. However, psychological research has found that connectedness can be a more
powerful grouping principle than proximity, color, size, or shape (PALMER and ROCK,
1994). The development of a visualization for relations in hierarchical data draws
from these findings. This thesis introduces an attempt to solve the mentioned prob-
lems of a typical display of direct links on tree structures.

One of the most severe problems in visualizing tree structures is the limited screen
space offered by common desktop displays. Trees easily require large aspect ratios
which force parts of the tree to be cut from the display. The field of focus+context
presentation deals with the display of large information spaces by taking the interest
of viewers in parts of the data into account. Research from this field will be inte-
grated into the visualization presented in this thesis to alleviate the display of large
hierarchical data structures.

2



1.3 Results

1.3 Results

This thesis introduces a novel visualization for the display of relations in hierarchical
data structures. The chosen tree and relation layout solve the mentioned problems
of displaying direct links between two data items in a tree structure. A particularly
novel aspect is the consideration of relations in the development of focus+context
navigation and presentation.

A nested tree layout was chosen for the visualization of tree structures to be able to re-
strict the visualization in space. An effective use of screen real estate is also achieved
through the visualization of relations as arc shaped glyphs that can be adapted in
height and shape. Zoom and filter mechanisms help to interactively explore tree con-
tent. Focus+context navigation offers a user-centered automation for interaction on
the tree. Encodings for attributes of the data and affordances of displayed data items
were carefully chosen. An example of the developed arc tree visualization can be seen
in Figure 1.2.

Figure 1.2: An overview of the developed arc tree visualization.

The work presented in this thesis was implemented as a JAVA3D application. JAVA3D
is a high level, scene graph based API which offers sophisticated graphics rendering
utilities. The underlying tree structure was implemented using the composite design
pattern as introduced by COOPER (1998). The composite pattern allows the definition
of a class hierarchy of simple objects and more complex composite objects so that they
appear to be the same to the client program. All screenshots which serve as examples
for the developed visualization were taken from the implemented application.

1.4 Thesis Organization

The following sections briefly introduce the contents of subsequent chapters.
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Chapter 1 Introduction

Chapter 2

An overview of the research field that forms the framework for this thesis is presented
in Chapter 2. It introduces the field of visualization with particular emphasis on infor-
mation visualization. Further research presented in this thesis is influenced by several
research areas in the information visualization community. These areas are concerned
with the presentation of different data sets: linearly ordered data, hierarchical data,
and graphs. The discussion of visualization techniques from these areas particularly
emphasizes the presentation of relations within the data.

Chapter 3

Chapter 3 begins with the introduction of the specific challenges for the development
of a visualization. In subsequent sections a layout for linearly ordered hierarchical
data structures is developed. Emphasis is placed on the display of additional rela-
tional information between nodes in the tree. As a prerequisite to the development of
the visualization a set of definitions for the underlying data structure including the re-
lational information as well as the drawing and visualization of the data are discussed.

Chapter 4

Interaction and navigation are two important aspects of an information visualization.
This chapter is concerned with the development of interaction techniques for the visu-
alization developed in the previous chapter. First, general operations on the data set
are described. Focus+context techniques extend these operations to aid navigation
in the visualization. The presented techniques act as a filter mechanism to eliminate
unwanted information and avoid information overload.

Chapter 5

Case Studies introduce possible application domains for the developed visualization. It
is shown how the requirements specified for the visualization task were implemented
in context to a particular application. The remainder of the chapter establishes how
an evaluation of the visualization can be carried out without being restricted to a
specific application domain. In addition, aspects for which an evaluation would be
most appropriate at this stage of the development of the visualization are highlighted.

Chapter 6

This chapter concludes the thesis and summarizes the key contributions of the pre-
sented work. Areas for future work are highlighted in the remainder of the chapter.

4



CHAPTER 2

Related Work

The following chapter gives an introduction to the research field that forms the frame-
work for this thesis. It begins with an introduction to the field of visualization, in
particular information visualization and its visualization techniques in Section 2.1.
Subsequent sections give an overview of previous research in information visualiza-
tion with respect to the visualization technique developed in this thesis. Emphasis is
placed on assessing the visualization of relations in presented techniques. Section 2.2
addresses visualizations of linearly structured data. Representations for hierarchical
data are introduced in Section 2.3 followed by a short overview of graph drawing
techniques in Section 2.4. Finally, Section 2.5 attends to visualization techniques that
were specifically developed to emphasize relations in data.

2.1 Visualization Field

Visualization, in general, refers to the graphical representation of data or concepts. It
involves the building of a mental model of data typically with the goal of supporting
decision making. WARE defines five advantages of visualization (WARE, 2000):

1. Comprehension: Visualization supports the comprehension of huge amounts of
data.

2. Pattern Perception: Previously unnoticed properties of data may emerge in vi-
sualizations.

3. Problem Analysis: Problems within the data may become immediately appar-
ent.
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Chapter 2 Related Work

4. Adaptability: Visualization facilitates understanding of large- and small-scale
features of data.

5. Interpretation: Hypothesis formulation is facilitated by visualization.

Of course, these advantages only apply to good visualization design. The design crite-
ria for such visualizations will be the subject of Section 3.2.

Two main areas of visualization have evolved in the computer science community:
scientific visualization and information visualization. Scientific visualization is primar-
ily concerned with displaying real or simulated scientific data. Basic visualization
techniques for this area include surface rendering, volume rendering, and animation
(SCHUMANN and MÜLLER, 2000). Typical examples include processing of satellite pho-
tographs or medical data.

The work in this thesis is not concerned with scientific visualization since the data
basis for the presented visualization is not primarily scientific. The following section
is, therefore, devoted to the latter area of information visualization.

2.1.1 Information Visualization

The field of information visualization is influenced by many different research domains
including computer science, psychology, semiotics, graphic design, and art. In the
field of computer science, computer graphics and human-computer interaction (HCI)
are the most relevant areas. Computer graphics constitutes the basis for the practical
implementation of visualization ideas and concepts while HCI is involved through its
study of how people work with computers and how interfaces and programs can be
designed to help people to effectively use them. Different areas of psychology offer
guidance for visualization tool designers on how humans perceive and process visual
information. Semiotics is a related subject in the humanities. It involves the study of
symbols and how they convey meaning. Design is integrated through its knowledge
about the process of creating visual artifacts and arrangements to satisfy a specific
purpose. Finally, fine art has developed many styles and aesthetics for conveying visual
meaning in sub-disciplines ranging from drawing to cinematography.

Information visualization deals with creating visual or graphical aids to access, dis-
tribute or explain data. CARD et al. give a general definition for information visualiza-
tion as

“the use of computer-supported, interactive, visual representations of abstract
data to amplify cognition.” (CARD et al., 1999)

Taking this definition, information visualization is a means of creating visual aids that
lead to insight in the underlying data sets. In this sense it is not about producing
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2.1 Visualization Field

nice pictures but about making data understandable and explorable so that the vi-
sualization helps us gain knowledge about the data. It is the process of forming a
mental model for the acquired data and so helping the viewer to understand underly-
ing concepts, patterns, and connections within the data (SPENCE, 2000). Data sets in
information visualization typically come from large information spaces or information
systems that need to be made accessible and understandable to the user. For the pro-
duction of good visual representations of data several visualization techniques have
been developed which are discussed in the following.

2.1.2 Visualization Techniques

The evolution of computers has lead to many new means of producing visualizations
for collected information. Much of the work in this field focuses on creating graphical
interfaces for complex datasets stored in databases. Often, such visualizations are
combined with means for interactive exploration as mentioned in the definition given
for information visualization. Visualization techniques include concealment of data,
using a three-dimensional space, layering data, scaling techniques to provide more
space for certain information (e. g., focus+context), overview+detail techniques, and
taking advantage of psychological principles of layout such as proximity, alignment,
and shared visual properties (e. g., color). These techniques all take advantage of
the properties of the graphics system. BERTIN introduces these as visual or graphical
variables (BERTIN, 1983). These will be the topic of the following discussion.

Graphical Variables

The notion of graphical variables was introduced as early as 1918 in the work “Semiol-
ogy of Graphics” (BERTIN, 1983, Translation of: Sémiologie graphique, 1918). Graphi-
cal or retinal variables1 form the scope of each graphics system. The 2D plane receives
a central position as the canvas on which all graphical representations are assigned a
position (cf. Figure 2.1). Graphical variables are factors for depth perception and can
help designers to add a third dimension in a visualization on a two-dimensional plane.
BERTIN identifies the following variables:

Size: Height, width, or length of objects on the plane,

Value: Various shades of gray of objects on the plane,

Texture: Variations of fineness and coarseness of a texture on an object,

Color: The hue of an object,

1 The variables are called retinal since the eye is sensitive to them.
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Chapter 2 Related Work

Orientation: Orientation of objects or patterns, and

Shape: Categories of shapes for objects.

Figure 2.1: Graphical variables according to BERTIN (1983).

Any of these graphical variables can be used in building representations for objects.
However, not every variable is necessarily well suited for encoding non-visual proper-
ties of data. According to BERTIN, next to the described retinal properties, information
is encoded using positional (1D, 2D, and 3D) or temporal (animation) variables. The
tools for encoding information are graphical marks such as points, lines, and area.

An area of human cognitive psychology attends to preattentive processing of visual
properties. A limited set of visual properties or features has been identified to be pro-
cessed automatically by the human vision without the need for focused attention. It
has been shown, for example, that numerical information encoded using hue or ori-
entation can be rapidly processed and estimated by humans (HEALEY et al., 1996).
Table 2.1 presents an overview of features which are known to be processed automat-
ically by the human visual system. These features are also candidates for encoding
information visually (CARD et al., 1999).

Gestalt Laws

Gestalt laws have been introduced by the Gestalt School of Psychology founded by
Max Wertheimer in 1912. The basis of Gestalt psychology is the insight that we often
perceive things that are not part of our simple sensations. Although much of the
research in Gestalt psychology has been refuted, the Gestalt laws offer an enduring
value for visualization. These laws are concerned with pattern perception and offer
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2.1 Visualization Field

Line orientation Length Width
Size Curvature Number
Terminators Intersection Closure
Color Intensity Flicker
Direction of Motion Binocular Luster Stereoscopic Depth
3D Depth Cues Lighting Direction

Table 2.1: Visual features that can be preattentively processed. Table adapted from (HEALEY et al.,
1996). For further reference to authors who describe preattentive tasks using the given
feature please refer to the cited article.

valuable advice for encoding information. Eight Gestalt laws are introduced as design
principles:2

Proximity: Objects near one another are grouped together into a perceptual unit. In
a visualization, relations between items can be emphasized by placing them in
close proximity.

Similarity: If more than one object type is presented there is a tendency to group
similar items together. In a visualization, related visual elements should look
similar. Similarity can be created on the basis of shape, value, color, orientation,
texture, size, etc.

Continuity: Objects are grouped together if they form some type of continuous pat-
tern. This implies that neighboring elements are perceived as a group if they are
connected by straight or smoothly curved lines. In a visualization, relations can
be encoded using connection.

Symmetry: Shapes are perceived as figures made up of combined symmetrical forms
rather than individual asymmetric parts. In a visualization, symmetry can be
used to relate visual entities.

Closure: Objects tend to be recognized by closed contours. Contours are also united
when they are very close to each other and a single object is formed. In a visual-
ization, closed frames can be used to segment display space and group elements.

Relative Size: Smaller components of objects tend to be perceived as objects. The
biggest part is often perceived as background.

Common Fate: Elements moving in the same direction form a visual group. In a
visualization, relations can be encoded using a uniform animation of objects.

2 For further information on Gestalt laws as design principles refer to (WARE, 2000) and (CARD et al.,
1999).
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Chapter 2 Related Work

Familiarity: Elements are more likely to form groups if the groups have a familiar
shape or appear meaningful. In a visualization, elements can be related by plac-
ing them in a familiar or meaningful shape.

Once the basic visualization techniques and the graphical variables for building a visu-
alization are known, a certain sequence of actions is required to build a final presen-
tation. This sequence is known as the information visualization pipeline.

Information Visualization Pipeline

The goal of the visualization process is to present abstract data in one of many possible
ways. In the creation of visualizations several steps are traversed which are arranged
in a visualization pipeline. CARD et al. (1999) introduce such a pipeline or reference
model for visualization which is shown in Figure 2.2. The visualization process begins
with the acquisition of raw data that is to be accessed, distributed, or explained. This
data can be collected in any given format. A data transformation process then turns
the raw data into a data table format and augments it with relational information and
other metadata. Raw data might, for example, be turned into a hierarchical data struc-
ture with additional relational information or a network graph structure. At this step,
a preselection or filtering action for unwanted data may also be performed. This is the
most important step for the visualization tool designer since here his or her knowledge
about visualization techniques and graphical properties is required. Visual mappings
can also be performed on raw data, however, it often lacks a direct spatial component.
Visual structures utilize such a spatial component for layout and add visible marks
and graphical properties to encode information. The final view transformation creates
a view on the visual structures by defining parameters of the graphics system like view-
point position, clipping parameters, or distortion effects. Parameters for all steps in the
visualization process can be influenced by humans, being either the visualization tool
designer or the user of a visualization system. Users can, for example, directly manip-
ulate data trough the interaction with visual structures or perform dynamic queries on
the data and so further filter and select relevant subcategories of the data. The follow-
ing section will now introduce SHNEIDERMAN’s visual information seeking mantra as a
basic design guideline for the creation of an interactive visualization. Visual mappings
turn data tables into visual structures.

Visual Information Seeking Mantra

The visual information seeking mantra proposed by SHNEIDERMAN (1996) summarizes
many design guidelines for creating an interactive visualization. A three-step design is
recommended: Overview first, zoom & filter, and detail-on-demand. These three steps
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2.1 Visualization Field

Figure 2.2: Visualization pipeline adapted from (CARD et al., 1999).

are the basic principles for browsing and searching in a visualization. An effective
information visualization, therefore, works on a macro and micro level.

A visualization needs to provide an overview of the entire data set for the user to gain a
good understanding of the data. The two main visualization techniques for providing
such an overview are: overview+detail and focus+context, according to a definition
by SCHUMANN (2003).3 In an overview+detail display two images are provided, one
detailed view and an overview image that shows the location of the detailed view in
the relation to the entire data set. Both images are usually shown in parallel or se-
quentially. In the overview image the user can usually specify which region to show
in the detailed view. Focus+context display of data, on the other hand, is a common
characteristic of many visualizations. In a focus+context display the most important
data lies in a focal region at large size and detail. Objects in the context outside the
focal region help the viewer to relate the focus to the entire data structure. Both focus
and context regions are integrated into one single view. Regions far from the focal
region are usually displayed smaller or selectively omitted. Distortion of data repre-
sentations is a common characteristic of focus+context displays. For full functionality
of focus+context displays the focal region and magnification factors can usually be
specified by the viewer. In the second step of the visual information-seeking mantra,
zoom and filter operations are provided. The user has to be able to specify points of in-
terest and selectively zoom in to explore the data. On the other hand, filter operations
are necessary to leave out uninteresting data items and by this simplify the display of
the data set. When the user has specified points of interest, detail should be provided
on demand, e. g., by displaying tooltips or labels after the user has clicked on an item
of interest.

The following sections will now be concerned with visualization processes. They will
introduce visualization problems that relate to the task addressed in this thesis.

3 Overview+detail is sometimes also called detail+context, while focus+context might also be called
fisheye views, distortion-oriented presentation techniques, elastic presentation space, etc.
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2.2 Visualization of Linearly Structured Data

Data in today’s work environments is often organized as linear structures according
to some metric, e.g., chronologically (timetables, project records, etc.) or alphabet-
ically (directories). Much of the time during a work day is used for managing data,
locating information in data, or analyzing collections of data. In information retrieval,
the position of an object along such a metric is used as a retrieval cue. It is set either
directly by specifying the exact position of an item or by referring to a known land-
mark along the metric and continuing the search from this point. The visualization
techniques presented in this section all aim at helping the user with the basic tasks
involved in dealing with linear data: searching in the data and analyzing it. According
to MACKLINAY et al. (1991), the principal obstacles for visualizing linear data lie in the
presentation of large information spaces and the display of the extreme aspect ratio
of linear data on the screen. This is the reason why focus+context presentations are
often involved in these visualizations. This section presents landmarks in visualiza-
tions of linearly structured data and analyzes the work with respect to the research
presented in this thesis. In particular, the presented relational techniques require at-
tention in this context. Linear data already presents underlying relational attributes
through the sorting order given by the applied metric. This type of relation is almost
exclusively visualized through position. Other relational attributes in the data often
need to be identified by the user through recognizing and mentally connecting color
patterns, size ratios, textural attributes, etc. Table 2.2 gives an overview of techniques
described in the following. The techniques are grouped into three categories. The first
two describe general visualization techniques that are applicable to any linearly orga-
nized data. Three techniques for visualizing chronological data are followed by three
particularly interesting techniques for the visualization of line-oriented or text-based
data.

Technique / Dim Linear Data Primary Visual Focus +
Attributes Category Attributes Context
Perspective Wall 3D general perspective,ordered layout x
Table Lens 2D general graphical & symbolic represen-

tations, cell size
x

Gantt Chart 2D chronological ordered layout -
LifeLines 2D chronological ordered layout, color -
Lifestreams 3D chronological perspective -
TileBars 2D line-oriented color -
SeeSoft 2D line-oriented color, (size) -
Value Bars 2D line-oriented size -

Table 2.2: Comparison of techniques for visualizing linear data.
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2.2 Visualization of Linearly Structured Data

2.2.1 The Perspective Wall

The Perspective Wall for visualizing linear information by integrating detailed and con-
textual views was presented by MACKLINAY et al. (1991). Two-dimensional layouts
with wide aspect ratios are turned into three-dimensional visualizations by applying
a folding metaphor. The visualization contains three panels a center panel for view-
ing detail and two side panels for viewing contextual information. The side panels
are attached to the center panel and folded away from the viewer to form the three-
dimensional visualization as shown in Figure 2.3(a). By applying a perspective pro-
jection, the information on the far ends of the side panels is automatically distorted
and reduced in size. For typical values of the parameters for the wall, detail on the
center panel is at least three times larger than detail on a flat wall that would fit in-
side the current field of view. Therefore, the Perspective Wall displays three times as
much information since it provides contextual information which would otherwise be
hidden outside the field of view in a flat wall display. However, some screen space is
wasted above and below the side panels of the display. Linear information on the wall
is displayed from left to right while the vertical dimension can be used for layering
information. The visualization does not originally provide means to identify relations
and references between data items except for the underlying relations given through
the sequential ordering and layering. Other relations can be encoded through coloring
or texturing, for example.

(a) Schematic overview of the Perspective Wall. (b) Implementation of the TimeWall
by Inxight R© Software, 2004.

Figure 2.3: Schematic overview and implementation of the Perspective Wall.

2.2.2 Table Lens

Tables can help to present linear data by highlighting the underlying logical structure
through the use of a special visual structure. The visual structure of a table usually com-
prises many equally-sized and consecutive blocks. These blocks contain information of
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various kinds. An ordering scheme controls the arrangement of consecutive blocks ac-
cording to their information content. Typical one-dimensional tables are lists, outlines,
or one-dimensional arrays or vectors such as a to-do list or table of contents. Multi-
dimensional tables, on the other hand, store information in more than one row or col-
umn of blocks and, therefore, consist of several interrelated one-dimensional tables.
Multi-dimensional tables are the underlying data structure of the Table Lens visualiza-
tion technique presented by RAO and CARD (1994). Table Lens uses a focus+context
technique to support the user in fluidly exploring detail in table data without losing
its framing context. A degree of interest function controls mapping of interest levels in
different cells to the respective cell addresses while a transfer function maps these cell
addresses to physical locations. Data in table cells is visually encoded depending on
several factors: the value to be displayed (e. g., using bar charts to encode quantity),
the value type to be displayed (e. g., using different types of charts), the region type
(e. g., different presentation styles for data in or outside the focal area), user choices
(e. g., number of colors), and finally spotlighting (e. g., for highlighting cells by val-
ues). A set of interactive operations is defined on the table to enable focus changes,
sorting, and zoom operations. An implementation of the Table Lens is shown in Fig-
ure 2.4. References between data items are encoded in the underlying tabular layout.
However, relations between data elements in unconnected cells have to be identified
by the user interactively. Cells can be compared by placing focus regions on the cells
of interest and analyzing the cells’ contents according to the graphical representation
provided for these cells.

(a) Table of the top 100 movies sorted by cumula-
tive gross.

(b) The same table as in 2.4(a) with focus on the
top five and last two movies.

Figure 2.4: Table Lens implementation by Inxight R© Software.

Tables are also a tool frequently used for the display of data in chronological order. The
following section, therefore, describes different techniques used in the visualization of
chronological data.

2.2.3 Visualizations for Chronological Data

Timelines are the most common and simplest technique for visualizing chronologi-
cal data. Common chronological data sets include project management records or
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personal history records such as medical records. Gantt charts have emerged as a
graphical representation of the duration of tasks against the progression of time. They
are used mainly for planning and scheduling projects and are included in many com-
mercial project management packages like MS PROJECT.

The LifeLines approach presents a visualization tool for personal history records such as
medical or legal data (PLAISANT et al., 1996). This visualization tool is capable of dis-
playing several different aspects of a personal record in one overview while providing
more detailed information through operations like rescaling, regrouping, highlight-
ing, etc. The visualization of relations between aspects of a person’s record is given
through an ordered layout, highlighting as a response to user interaction, coloring of
related record entries, and the design of graphical items representing time periods or
events.

LifeStreams presented by FREEMAN and FERTIG (1995) are an organizational metaphor
for time ordered streams of documents. This technique is aimed primarily at visual-
izing a diary of a user’s electronic life, e. g., his or her personal data files, electronic
mail, or schedules. The LifeStream visualization consists of a three-dimensional rep-
resentation of an ordered list of data. The tail represents the oldest data files and is
virtually placed the furthest away from the viewer, the head of the list includes future
data files, like reminders, schedules, to-do lists, etc. (cf. Figure 2.5). Relational at-
tributes in lifestreams are encoded through the border color of the represented items
and the thickness of the lines.

Figure 2.5: Schematic overview of LifeStreams.

A sophisticated use of graphical representations for qualitative and quantitative at-
tributes of time-oriented data is presented by BADE et al. (2004). Different levels of
abstraction are introduced to present timelines or segments of timelines at different
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levels of detail. Encoding techniques such as color and/or height as well as icons
are used to represent qualitative and quantitative attributes. For the display of high
frequency data an adapted Information Mural and a variation of the TUKEY box plot
are introduced. With additional interaction techniques this visualization is capable to
support exploration of data for users with different research tasks.

Chronological relations are commonly visualized through sequential ordering. Items
placed in time are typically arranged by displaying the oldest items on the left and
the newest items on the right. Through this ordering, “before” and “after” relations
are easily identified. Further indications of relations in time have to be derived from
additional information such as labels indicating exact time or distance between items
indicating how far apart these items have been placed in time. In the visualization
of line oriented data such conventions are less obvious leading to seemingly different
visual representations as can be seen in the following.

2.2.4 Document Visualization

The visualizations presented in this section are primarily concerned with displaying at-
tributes of textual documents. If these attributes are presented in an intuitive way the
user may be supported in document retrieval through gaining a general understanding
of the document’s overall contents. Visualization of textual attributes may, therefore,
be important for several reasons: to give the user an understanding of the general
assembly of a document in terms of structure or the occurrence of search terms and by
providing an overview aiding the user in finding suitable documents, helping him or
her to edit documents, or by merely helping in reading the document. The following
visualization techniques demonstrate how some of these goals can be accomplished.

TileBars

The TileBars approach aims at visualizing text structure to ease information retrieval
from document collections (HEARST, 1995). Text structure is visualized according
to term distribution. Term distribution is measured by determining the frequency of
search terms from a boolean-type query in document segments. Relative document
length, query term frequency, and query term distribution are considered. For each
document in the collection a diagram similar to the one in Figure 2.6 is created. Each
row in the diagram displays the distribution of one search term while each column
represents a segment in the document such as pages, paragraphs, or chapters. The
wider the diagram the more sections are contained in the text. In this visualization,
relations between documents and keywords are displayed in a compact and coherent
way. Bars for each set of query terms are lined up next to each other and diagrams
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for each document are usually visualized in a linear ordering to ease comparison.
Therefore, relations are encoded by position and saturation.

Figure 2.6: A typical TileBars diagram for three search terms.

Seesoft

Providing statistical information on lines of code in a compact and interactive visual-
ization is the goal of the Seesoft system (EICK et al., 1992). A schematic overview of
the visualization is shown in Figure 2.7. Four key ideas are presented:

◦ A reduced representation is created by organizing the data in columns of one
column per file to be analyzed. Longer columns represent larger files. Lines of
code are represented by thin rows in the columns, either indented according to
line length or non-indented (see File1 and File2, respectively, in Figure 2.7).

◦ A color scale encodes statistical information on the lines of code such as age, date
of last modification, etc. The rows are, therefore, represented through coloring
by statistic.

◦ Direct manipulation on the data in the visualization is performed by selecting or
deselecting files and lines of code in the files or by selecting color regions on the
color scale.

◦ The capability to read actual code is given through an overview+detail technique.
A small lens can be moved across the columns to select areas of interest. A
reading window then displays the actual code represented by these lines.

Seesoft is a visualization technique for linear or line-oriented data which has under-
lying statistical information to be displayed. Relations between lines are encoded by
color. The viewer has to identify patterns to make visual comparisons between related
line blocks.

An extension of the SeeSoft system was proposed by JERDING and STASKO (1998). The
Information Mural technique is introduced for displaying large information spaces in
a single-display window. The goal is accomplished by mapping data to the available
pixels on the screen and through using color to encode the number of pixel, objects,
or points mapped to a single pixel.
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Color
Scale

File1 File2 Reading Window

TEXT TEXT TEXT TEXT
TEXT TEXT TEXT TEXT
TEXT TEXT TEXT TEXT
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Figure 2.7: Schematic overview of the SeeSoft visualization.

Value Bars

Value Bars were developed to visualize line-oriented data with quantifiable attributes
(CHIMERA, 1992). The visualization concentrates on displaying “important” items dis-
cerned by item values or weights. Value Bars is a technique resembling the Seesoft
visualization in its layout design. However, a different algorithm and a weighting
function are introduced for the visualized items of text. In the layout, thin, vertical
columns are attached to the window, usually a text display, containing the underlying
data. The items in this data are represented as heights in the value bar in a linear
ordering. The height of the item is deduced from the item’s weight or value relative to
the total weight of all items. Once calculated for a document, the value bar remains
unrevised. Therefore, the visualization presents an overview of items where relations
are recognized from comparing heights in the value bar. Navigating the value bar
requires low cognitive load.

Having introduced visualizations for linearly ordered data, the following section will
be concerned with data that can be stored hierarchically in tree structures. The deepest
level in the hierarchy may sometimes require or inherently present a given linear order
of the data items. Therefore, the reader might be reminded of some of the techniques
presented in this section when advancing to Section 2.3.

2.3 Visualization of Hierarchical Data

Hierarchical data, commonly saved in tree structures, has a long visual history. From
very early paintings of family trees in Figure 2.8(a) to genealogical trees in early bi-
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ological textbooks in Figure 2.8(b), new forms of family trees in Figure 2.8(c), or a
fairly recent painting with different levels of emphasis in Figure 2.8(d), the general
problem has remained the same: how to fit a tree and its accompanying information
in the available display space. The following visualization techniques will introduce
innovative ways in which this basic layout problem has been approached.

2.3.1 General tree layout

Tree layouts are commonly encoded using either connection or containment. Tradi-
tional tree diagrams, also called node-link diagrams, are created using connection in
that nodes are directly linked with edges. Containment is used to create nested tree
visualizations. In a traditional layout child nodes are positioned below a common an-
cestor. The best known algorithm for such layouts was presented by REINGOLD and
TILFORD (1981). Disadvantages of the traditional tree representation lie in the poor
use of the available display space due to the large amount of empty space included.
Also, traditional tree layouts can easily grow very large and require extreme aspect ra-
tios to be displayed. The traditional layout algorithm is acceptable for displaying small
trees where nodes can still be shown in a size that allows the encoding of additional
information such as labels, color, or size.

An in-depth analysis on connection and containment as encoding techniques for trees
was conducted by CARD et al. (1999). Please refer to Section A.1 in the Appendix for
examples of common tree representation.

Typical data sets stored in tree structures include the already mentioned genealogical
trees, organizational charts, mathematical formulas, tables of contents, library cata-
logues, file systems, and many more. The following section will introduce attempts to
solve tree layout problems using computational assistance. Table 2.3 gives an overview
of the presented techniques. Visualizations are categorized according to three different
layout techniques:

Simple Tree Layout: Aesthetic criteria are met such as minimal line crossings or plac-
ing nodes of the same tree depth at the same level. Space is not an issue.

Compressed Tree Layout: This layout resembles the simple tree layout but spatial
compactness is adhered to.

Containment Tree Layout: This layout encodes the tree structure using containment
creating a nested tree layout.

These layout techniques can have additional attributes, in particular interaction and
focus+context display. Interaction allows users to change the view of the tree, e. g.,
by expanding and collapsing subtrees. The tree does not necessarily have to fit into
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(a) Genealogical tree, 13th century (PUHLE, 2001). (b) Genealogical tree (HAECKEL, 1868).

(c) Goodyear family tree (GOODYEAR, 1950). (d) Family tree of Greek Gods and Godesses
(CARTHY, 1997).

Figure 2.8: Early visualizations of tree structures.
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the view. In a focus+context display the view of the data can be adjusted to provide a
large display of nodes in the focus area and scaled or clustered nodes or branches in
the context area to make the tree fit the view area.

In the following, a number of examples for these tree layout techniques will be dis-
cussed. Visualization techniques with a containment tree layout are the topic of Sec-
tion 2.3.2 and Section 2.3.3. These are followed by a description of approaches pri-
marily using a compressed layout technique including focus+context display of tree
structures.

Layout / Simple Com- Contain- Inter- Focus+
Attributes pressed ment action Context
Traditional Layout x - - - -
Tree-Map - - x x -
Information Slices - - x x x
WebTOC - x - x -
Cone Tree - x - x x
Hyperbolic Browser - x - x x
H3 - x - x x
Cheops - x - x x
Generalized Fisheyes - x - x x
TreeJuxtaposer - x - x x
DOITree - x - x x
SpaceTree - x - x x

Table 2.3: Comparison of techniques for visualizing hierarchical data.

2.3.2 Tree-Maps

The Tree-Map visualization published by JOHNSON and SHNEIDERMAN (1991) and
SHNEIDERMAN (1992) has received considerable attention over the past years. The
original idea intends to present tree structures in a two-dimensional space-filling ap-
proach with a nested representation similar to Venn diagrams. Each node in the Tree-
Map is drawn as a rectangle with a given size. The size of each node is chosen with
respect to an inherent node attribute such as the node size. For drawing a Tree-Map,
the available screenspace is partitioned into rectangular sections. The first rectangle
forms the root of the tree. The tree layout algorithm partitions the root rectangle into
n parts with n being the number of the root’s children. The algorithm is recursive,
however, nodes are partitioned vertically at even levels and horizontally at odd levels.
Several new layouts have been proposed over the past years some of which are pre-
sented in Figure 2.9. The images show the same file structure using different display
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algorithms. The original slice-and-dice approach is seen in Figure 2.9(a). The squarified
tree-map method seen in Figure 2.9(b) supports low aspect ratios. Cushion tree-maps
in Figure 2.9(c) visualize structure by shading. Relations between data items in the
tree are encoded trough a containment hierarchy, size of nodes, or additional shading.
Data parameters are usually encoded using color. A technique for direct visualization
of relational information on Tree-Maps will be discussed in Section 2.5.3.

(a) Original Tree-Map by SHNEI-
DERMAN (1992).

(b) Squarified Tree-Map by BRULS

et al. (2000).
(c) Cushion Tree-Map by VAN

WIJK and VAN DE WETERING

(1999).

Figure 2.9: Tree-Map Visualizations.

2.3.3 Information Slices

A version of the tree ring (cf. Appendix A.1) representation was introduced by AN-
DREWS and HEIDEGGER (1998). Large hierarchies are visualized as a series of one or
more semi-circular discs. Each disc represents approximately five to ten tree levels.
Larger trees are visualized using cascades. Child nodes are fanned out according to
their total size. Figure 2.10(a) shows levels 5–10 of a tree with levels 1–4 iconified at
the top left of the visualization. Similar techniques using a full circle to display hierar-
chies have been introduced by CHUAH (1998) as well as STASKO and ZHANG (2000).
An example is displayed in Figure 2.10(b). Relations in these visualizations are shown
through the placement and size of nodes and coloring by node parameters. The Infor-
mation Slices project shows a focus+context technique in that it displays only a certain
number of levels in the hierarchy and iconifies the context nodes.

2.3.4 WebTOC

An example for the visualization of websites with a hierarchical table of contents was
presented by NATION (1998) where a typical tree visualization is overlaid with statisti-
cal information. A graphical representation is placed next to the textual representation
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(a) Information Slices Image adapted
from (ANDREWS and HEIDEGGER,
1998).

(b) Sunburst. Image adapted
from (STASKO and
ZHANG, 2000).

Figure 2.10: Radial tree visualizations.

of a node in the tree. It consists of a colored line where the size of the line represents
the file size and its color stands for the file type (cf. Figure 2.11). For non-leaf nodes
lines for linked documents are collapsed into a thicker “size bar”. The size of the shad-
ows under these size bars represents the number of items subordinate to the document.
Textual representations for nodes can be removed to allow for easier comparison of
line sizes and the identification of patterns. Relations between nodes are, therefore,
not simply displayed through the linked representation but also through comparison
of graphical representations. Size and color are used here as encoding techniques.
WebTOC belongs to the compressed tree layout method since the tree is represented
by a node-link diagram where the space problem is solved by providing a scroll bar
and interactive methods to collapse and expand tree branches.

Figure 2.11: Example of a WebTOC taken from the University of Maryland’s Website.
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2.3.5 Cone Tree and Cam Tree

Probably the earliest three-dimensional visualization of hierarchical data was pre-
sented by ROBERTSON et al. (1991). Nodes of a tree are laid out on three-dimensional
cones. The root node is placed at the apex of the cone while the child nodes spread
evenly on the baseline of the cone. This process is repeated recursively for all other
child nodes. Each cone in the tree has the same height while the cone base diameters
are adjusted on each level so that the lowest level will still fit in the available view frus-
tum. The traditional Cone Tree is created with the root node at the top of the display
making it difficult to place labels for all nodes (cf. Figure 2.12(a)). An approach to
overcome this problem is presented in the form of Cam Trees where the root node is on
the left of the display with the child nodes stretching to the right (cf. Figure 2.12(b)).
Here, labels can be displayed in the graphical representation of the nodes themselves.

One of the main problems in three-dimensional visualizations is occlusion. It is ad-
dressed here by introducing transparency for the display of nodes and shadows for
presenting an additional two-dimensional representation of tree properties. Cone Trees
were introduced as a focus+context technique making use of the inherent perspective
projection in the three-dimensional visualization. Nodes closer to the virtual camera
are displayed relatively larger than those further away. Important aspects of this vi-
sualization are the presented interaction and animation techniques. When the user
selects a node, it is smoothly rotated to its closest position with respect to the virtual
camera allowing an easy assimilation of changes across views. Parent-child relations
between nodes are encoded through links and position in the tree layout. In addition,
color as well as labels can be used to display node properties.

(a) Schematic overview of a Cone Tree. (b) Schematic overview of a Cam Tree.

Figure 2.12: Cone and Cam Trees.
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2.3.6 Hyperbolic Browser

Hyperbolic geometry is a non-Euclidean geometry meaning that EUCLID’s fifth pos-
tulate4 does not hold. Without going into the sophisticated mathematical detail, a
hyperbolic plane can be displayed by using the POINCARÉ mapping with the result
shown in Figure 2.13(a). The POINCARÉ disk model is useful in visualization since
angles have their Euclidean measure and it is displayed in a bounded region of the
Euclidean plane so that it can always be viewed in its entirety. With this mapping a
tree structure of any size can be fitted within a finite area (a circle). The node in focus
is displayed in the center while all nodes away from the central node and toward the
perimeter of the circle are displayed exponentially smaller. The node in the center
is displayed larger than any other node and, therefore, this technique can be catego-
rized as a focus+context visualization. A commercial implementation of a hyperbolic
browser can be seen in Figure 2.13(b).

As an extension, the H3 layout technique (cf. Figure 2.13(c)) for drawing large di-
rected graphs as node-link diagrams in 3D hyperbolic space was introduced by MUN-
ZNER (1997). Hyperbolic representations of trees allow for a huge number of nodes
to be represented. However, nodes at the perimeter are usually pruned for increasing
rendering performance. Relations between nodes are encoded through direct linking
of nodes and through their placement on the POINCARÉ disk. Additional relational
information could be encoded through coloring or label placement.

(a) Uniform hyperbolic
tree.

(b) StarTree by Inxight Soft-
ware.

(c) H3 Browser.

Figure 2.13: Hyperbolic tree visualizations.

4 If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one
side is less than two right angles, then the two lines inevitably must intersect each other on that
side if extended far enough (EUCLID’s fifth postulate).
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2.3.7 Cheops

A different visualization technique was introduced by BEAUDOIN et al. (1996). The
Cheops explorer relies on a compression technique for visualizing huge hierarchies of
up to one million nodes. High compression rates are obtained through the reuse of vi-
sual components. Nodes are displayed as triangles and layered according to their place
in the hierarchy. In Figure 2.14 the tree on the left is shown as a Cheops visualization
on the right. On the right, one middle triangle can stand for different child nodes of
the parent layer. Node 7, for example, stands for either the last child of Node B, or the
middle child of Node C, or the first child of Node D. To resolve the created ambigu-
ity users can select branches of interest. The selected branches are then colored and
shown in full. The original research does not describe techniques to encode additional
relational information.

A

B C D

E F G H I J K L M

1

2 3 4

5 6 7 8 9

E F G
H I J

K L M

Figure 2.14: Creation of a Cheops tree visualization.

2.3.8 Focus+Context Exploration in Hierarchies

Focus+Context display of data is a common characteristic of many visualization sys-
tems. Examples for focus+context visualizations have already been introduced. Please
refer to Tables 2.2 and 2.3 for exact references. This section will be concerned with
visualizations where focus+context was primarily introduced to aid navigation and
analysis in hierarchical data.

In his fundamental work on fisheye views FURNAS laid the framework for many fo-
cus+context techniques on hierarchical data sets (FURNAS, 1986). His basic strategy
involves the specification of a degree-of-interest (DOI) for each node in the tree. The
DOI of a node specifies the interest of the user in this particular node. It is calculated
by combining an a-priori global structural importance and an a-posteriori importance
that depends on direct user interaction. His concept is also the basis for interest cal-
culations for the work presented in this thesis and will, therefore, be described in
more detail in Chapter 4. Many other focus+context visualization techniques for tree
structures draw from this simple but powerful calculation for a node’s DOI. Three
techniques are of particular interest and are, thus, discussed in the following.
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The TreeJuxtaposer approach introduces focus+context navigation in large phyloge-
netic trees (MUNZNER et al., 2003). Re-arrangement of the tree layout is calculated
using a technique that allows for guaranteed visibility of highlighted or in-focus areas
at all times. TreeJuxtaposer was developed to support the comparison of large trees
with several hundred thousand nodes at a time.

Another technique allowing focus+context navigation in hierarchies was presented
by CARD and NATION (2002). The Degree-of-Interest Tree technique uses a general
node-link diagram as its basic representation. Logical filtering, geometric distortion,
semantic zoom, and clustering are used to produce a focus+context view of the tree. If
a user states interest in a node, internal Degree-of-Interest (DOI) calculations predict
the interest in other nodes and adjust the visualization accordingly. A resulting visu-
alization with several nodes of interest can be found in Figure 2.15. Triangles in this
visualization indicate node clusters. A very similar approach has been implemented in
the SpaceTree project as described by PLAISANT et al. (2002).

As a generalization of the layout of hierarchical structures introduced in this section,
the following section will briefly discuss issues and approaches relevant for the graph
drawing community.

Figure 2.15: Degree-of-Interest Tree adapted from (CARD and NATION, 2002).

2.4 Graph Drawing

Many different approaches for graph layout exist that are typically classified as a
branch of graph theory named graph drawing. These graph drawing techniques play
an important role in information visualization. A good spatial layout of graphs in-
creases the understanding of these often very complex structures while a poor layout
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can obscure structure and distract from important aspects of the data. General graphs
are typically represented by node-link diagrams with a dot for every vertex and an arc
connecting the endpoints of every edge. If the graph is directed the direction of an
edge is indicated by an arrow. Connection is usually used as an encoding technique
since, in contrast to tree structures, graphs may include cycles and other complexities
that eliminate the option of using containment. Graphs are almost exclusively used
to model relational structures. Data entities are stored in the nodes while relations
are represented as the edges of a graph. Starting from this basic representation, the
spatial layout of nodes and edges poses the major problem in graph drawing. Lay-
out algorithms can be categorized according to the type of layout they generate (e. g.,
grid layout) or according to the methodology on which they are based (e. g., non-
deterministic layouts). HERMAN et al. (2000) provide an excellent overview of graph
visualization techniques. In information visualization specifically the aesthetic con-
straints for graph layout are of interest since these greatly influence the perception
and interpretation on the side of the user. Aesthetic criteria involved in graph layout
according to BATTISTA et al. (1999) include:

Crossings: Minimization of edge crossings. Ideally a planar graph.

Area: Minimization of the area of the drawing.

Total Edge Length: Minimization of the sum of the lengths of the edges.

Maximum Edge Length: Minimization of the maximum length of an edge.

Uniform Edge Length: Minimization of the variations in edge length.

Total Bends: Minimization of the total number of bends along an edge.

Maximum Bends: Minimization of the maximum number of bends on an edge.

Uniform Bends: Minimization of the number of bends on an edge.

Aspect Ratio: Minimization of the aspect ratio of the drawing.

Symmetry: Display symmetries of the graph in the drawing.

Angular Resolution: Maximization of the smallest angle between two edges in-
cident at a node.

Empirical studies suggest that, after reducing the path length, the two most important
factors are continuity of the display of paths (including the minimization of bends and
maximization of the angular resolution) and edge crossings (WARE et al., 2002).

Graph layout algorithms usually specialize on meeting just a few of these criteria since
they are not mutually exclusive. A symmetric tree layout, for example, might require a
certain number of edge crossings. Additional constraints can be placed on the drawing
algorithm. This allows the user to pre-arrange certain shapes and give more control to
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the outcome of the drawing. Also, constraints can greatly increase the computational
calculations for graph layout. Constraints may include placing a given vertex in the
center or at the boundary, clustering, or pre-arrangements of paths (top-bottom or
left-right). Figure 2.16 gives an overview of three different graph layouts and the
constraints placed on them.

(a) Hierarchical Layout. Constraints
on the minimal node and edge dis-
tances and the orientation have
been selected in the creation of the
graph.

(b) Orthogonal Layout.
Contraints on the
underlying grid and
length of the edges
have been applied.

(c) Radial Layout. Constraints
on the minimal node dis-
tance and the radius have
been applied.

Figure 2.16: Different layouts of the same graph. Layouts were created using YED (2004).

There is not just one way to draw a graph and no algorithm will always draw the best
graph for each purpose. Therefore, a number of paradigms for graph drawing were
developed with basic steps on how to draw a graph. Each stresses different aesthetics
or has other desirable features such as speed. An overview of these paradigms is given
by BATTISTA et al. (1999). Applications of graph drawing include genealogy, cartog-
raphy (subway maps, for example), sociology, software engineering (visualization of
connections between program modules), and visualization of hypertext links.

2.5 Visualization of Relations

Visualizing relations is one of the most essential tasks in information visualization.
Understanding relations between items in a visualization helps the viewer to build a
mental model of the underlying data. A mental model is needed to understand the
scheme or situation to which the presented data refers. For making decisions based on
the visualization of data the interpretation of this internal model is essential. Relations
can be of the types described above being an inherent attribute of the data such as a
linear structure of time, another metric, or a hierarchical parent-child relation. Other
types of relations are given through additional parameters or attributes of the data or
the addition of contextual data like labels, captions, etc. Typical encoding mechanisms

29



Chapter 2 Related Work

for relations are color, shape, orientation, position, and the visualization through direct
connections with lines or arrows which is an essential part of node-link diagrams and
graphs. The latter type of encoding will be discussed further in this section. Again, a
historical visualization in Figure 2.17 will serve as an introductory example. The figure
displays a gamut with direct links between certain tones. Relations are displayed
through direct visual connection and additional textual information. Clever use of
cuts through these relational arcs helps the viewer to follow the arcs from the origin to
their destination. The first two techniques are very similar to this historical example
but include encoding techniques such as transparency or interactive animation. The
last example shows direct relations displayed on a Tree-Map visualization.

Figure 2.17: Historical diagram of a meantone tuning taken from (DE SALINAS, 1577).

2.5.1 Arc Diagrams

WATTENBERG (2002) introduces a new visualization technique for the display of com-
plex patterns of repetition in strings. Such patterns are contained in melodies, DNA
sequences, compiled code, or just simple text. To visualize repetitive patterns trans-
parent arcs are drawn between pairs of substrings. These pairs are found according
to the following specifications: A maximal matching pair consists of identical symbols,
does not overlap, consists of consecutive substrings, and has maximal length. A repeti-
tion region is a substring that itself consists of more than one immediate repetition of
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a substring. The consecutive substrings are called fundamental substrings. For the con-
struction of the Arc Diagram, essential matching pairs are detected in the string. These
pairs are either a maximal matching pair not contained in any repetition region (e. g.,
1234 in 1234abc1234), a maximal matching pair contained in the same fundamental
substring of any repetition region that contains it (e. g., 23 in 123123abc123123), or
two consecutive fundamental substrings in one repetition region (e. g., 01 in 010101).

Therefore, the Arc Diagram visualizes only a subset of all possible matching pairs with
the aim to show only those sequences that are essential to the understanding of the
string’s structure. The arcs used for visualizing the string pattern are semi-circular and,
therefore, correspond in height to the distance between the items of each essential
matching pair. Figure 2.18 shows two Arc Diagrams visualizing pieces of music. The
following visualization technique is inspired by Arc Diagrams in the use of similar arcs
for displaying relations between e-mail messages in a mailbox.

2.5.2 Thread Arcs

Thread Arcs were introduced as an interactive technique for visualizing relations in
email communication (KERR, 2003). The goal of the visualization is to give users a
greater context for the messages in their mailbox and allow for easier performance of
actions on groups of messages. Thread Arcs were specifically designed to communicate
two conflicting attributes of e-mail threads, the arrival sequence of individual messages
and their reply-to relationship. The chronology of e-mail messages is encoded in po-
sition as a linear order of dots with each dot representing a single message. Reply-to
relationships are drawn as arcs. In contrast to the Arc Diagram described above, these
arcs may also shift below the message line to allow for easier reading. Arcs can also
be flattened at the top to save display space. The size of the thread and the number
of replies per messages are easily discernible from this visualization as can be seen
in Figure 2.19. Interaction techniques allow the user to select and highlight single
messages and their answers. Attributes of email messages such as the author(s), date,
depth in the thread, etc. are encoded in color.

2.5.3 Graph Links on Treemaps

The display of graphs as treemaps was introduced by FEKETE et al. (2003). Using
this technique a graph is turned into a general tree with additional relational informa-
tion. These relations are displayed as Bézier curves on a tree-map for which the basic
technique was presented in Section 2.3.2. Although the authors claim to present con-
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(a) Bach’s Brandenburg Concerto 2.

(b) Part from Ravel’s Bolero.

Figure 2.18: Arc Diagrams. The images were taken from (WATTENBERG, 2001).
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(a) Thread Arc. (b) Thread Arc wit flat top. (c) Traditional diagram as com-
parison.

Figure 2.19: Thread Arcs.

vincing visualization results the presented images and the online demo5 do not show
a clear picture. The initial approach of the visualization was to draw straight lines as
edges but the idea was discarded due to too much visual clutter. However, even with
curved edges the result is not convincing as can be seen in Figure 2.20. This is due
to the static layout of nodes in the treemap. Basically, the technique is a general lay-
out technique for graphs not taking into account one of the most important aesthetic
criterion of minimal edge-crossings (as stated by PURCHASE (1998)).

(a) Picture of the online demo with a
small tree and just a few links

(b) Picture presented by FEKETE et al.
(2003).

Figure 2.20: Links overlaid on Treemaps.

5 Available at http://www.cs.umd.edu/hcil/treemap/.
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2.6 Summary

This chapter gave an overview of the research field that forms the framework for
this thesis. The field of visualization was introduced with a particular emphasis on
information visualization. Specific visualization techniques were discussed that will
be relevant for the development of the visualization technique presented in the fol-
lowing chapter. A further overview of previous research in information visualization
introduced the reader to visualization tools for linear and hierarchical data and graph
drawing. The last section discussed visualization techniques that were specifically de-
veloped to emphasize relations in data. The following chapter will now explain the
design of a new visualization for relations in hierarchical data with a specific emphasis
on a design for ordered tree structures.
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CHAPTER 3

Visualization of Relations in Hierarchical Data

Visualizing relations is one of the most important tasks in information visualization as
has been explained in Section 2.5. The display of relations with direct links or edges
has proven to be a strong encoding technique for relational information as will be fur-
ther explained in this chapter. However, the linked display of relational information
in hierarchical structures poses many problems, the most severe being edge-node and
edge-edge intersections. An attempt to solve the display of direct links on tree struc-
tures will be presented in this section. The first section will introduce the particular
problems that should be solved with the developed visualization. Section 3.2 intro-
duces general requirements for the creation of a meaningful information visualization.
These requirements will be obeyed in the creation of the visualization. The underlying
data structures will be defined in Section 3.3 as a prerequisite for the description of
the proposed visualization in the last section.

3.1 Problem Analysis

According to CARD et al. (1999) there are two purposes for a visualization. The first
purpose is to communicate an idea requiring the idea to be already present and the
second is to create or discover an idea. The visualization presented in this thesis serves
the second purpose. A given hierarchical data set is presented graphically to the user
to help him or her gain new insight and form a decision.

A prerequisite for the visualization constitutes the hierarchical structure of the under-
lying data set. To account for the user’s mental model of the data the display should
be generated in such a way that the hierarchical structure is pointed out. As an enrich-
ment to the data external relational information on connections or relations between
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data items are available. In general, the detection of patterns in data is enhanced
through organizing data visually according to relations (CARD et al., 1999). However,
in this data set two different forms of relations are present: one inherent and one ex-
ternal to the data. Finding a visualization that aids pattern detection for both types of
relations will be one of the main challenges.

Another difficult problem in building a meaningful information visualization is the ef-
fective use of screen real estate. This term describes the amount of space available on a
display for an application to provide visual output. A visualization usually includes a
large dataset and a number of visible controls to be displayed. The goal is to minimize
the use of hidden commands or scrolling which prevent a good overview and, there-
fore, make it more difficult to gain a better understanding of the data. On the other
hand, a cluttered display is to be avoided. An appropriate use of whitespace should be
achieved to prevent information overload. The visualization in this thesis is developed
as a support tool for the user of application software such as a reading environment,
text editor, or calendar. Hence, the visualization has to share screen real estate with
an application that is at the focus of the user’s attention and should require as little
screen real estate as possible.

The development of a certain visualization depends to a great extent on the tasks that
need to be supported. The possible tasks are as widely spread as the types of data to
be displayed. Typical tasks include object generation (e. g., the generation of images,
text documents, 3D models, etc.), exploration of the data set with the objective of be-
coming acquainted with the data, data diagnostics with the aim of finding patterns or
errors in the data, or specialized tasks such as navigation (i. e., in geographical infor-
mation systems). Providing interaction mechanisms for many possible tasks is another
challenge in visualization. The user of the interactive visualization presented here will
have different tasks at hand depending on the data set provided. Potential tasks on
different data sets and their support will be described in Chapter 5.1. In general, this
visualization tool is built to support pattern detection for external relational informa-
tion in hierarchical data structures.

3.2 Requirements for a Visualization

One of the problems of information visualization is its inability to formulate precise
criteria for the effectiveness of graphical representations. Such a formulation is diffi-
cult since the effectiveness depends largely on conventions and the viewer’s perceptual
capabilities. Figure 3.1 presents a ranking of encoding techniques according to three
types of data to be displayed (MACKINLAY, 1986).
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Quantitative Ordinal Nominal

Position ! !Position ! !Position
Length ! !Density ! !Color Hue
Angle ! !Color Saturation! !Texture
Slope ! !Color Hue ! !Connection
Area ! !Texture ! !Containment
Volume ! !Connection ! !Density
Density ! !Containment ! !Color Saturation
Color Saturation! !Length ! !Shape
Color Hue ! !Angle ! !Length
Texture ! !Slope ! !Angle
Connection ! !Area ! !Slope
Containment ! !Volume ! !Area
Shape ! !Shape ! !Volume

Figure 3.1: Efficiency of encoding techniques in descending order. The techniques are compared ac-
cording to three different data types. Gray techniques are less effective in the given context
and, therefore, not relevant for the encoding task. Diagram adapted from (MACKINLAY,
1986).

The chart in Figure 3.1 builds on the psychological observation that people accom-
plish the interpretation of graphical presentations with different degrees of accuracy
depending on the selected encoding techniques (CLEVELAND and MCGILL, 1984). The
ordering is, however, only empirically verified in parts. Since, so far, no global em-
pirically verified theory of human perceptual capabilities exists the following general
visualization criteria will be given:

Mapping: The mapping of data to a visualization has to preserve the data (CARD

et al., 1999). Additional data must be excluded from the representation. The
mapping should also be easy to interpret and avoid possibilities of interpretation
errors.

Mental Model: Humans tend to reduce the complexity of the real world by forming
its most important concepts into mental models. These models guide the user’s
actions and behaviors. A conceptual model is the model upon that an interface or
visualization tool designer bases his or her work (NORMAN, 1988). Both models
need to match—otherwise human-computer interaction might fail. Also, the
mental model which a user might already have of a given data set needs to be
supported.

Overview: For many tasks involving information exploration, a global view of the
information is important. An overview aids navigation and analysis of the data.
It provides an initial context and helps the user to form a mental model of the
data set. Patterns should be recognizable and outliers and exceptions should
be identifiable in an overview of the data. In a next step, the viewer may then
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formulate a more detailed search, identify patterns, or make a Gestalt overview
(JERDING and STASKO, 1998).

Space Utilization: Efficient space utilization is important in information visualiza-
tion. As pointed out in Section 3.1, screen-real-estate is a limited resource. A
balance between an appropriate use of whitespace and used screen space has to
be achieved. Occlusion of items contributes to errors and disorientation.

Interaction: Data should be rearranged and explored interactively. A different display
of data can lead to additional insight (SPENCE, 2000). The interaction mecha-
nisms should require low cognitive load on the user. Smooth transitions and no
abrupt layout changes are necessary for a user to keep a mental model of the
data. The interaction mechanisms should support the possible tasks of the user.

Affordances: Affordance is a term that refers to properties of an object which suggest
how it might be used. In a visualization, items should tell the users if they can be
clicked on, dragged, rotated, etc. Understanding an item’s function depends on
many factors including conventions (SPENCE, 2000). To make a good interactive
interface it must be created with the appropriate affordances to ease the task to
be carried out by the user (WARE, 2000).

Aesthetics: The elements that contribute to an aesthetic appeal of a visualization
may depend on many factors. These include color, texture, symmetry/asym-
metry, focal point, contrast, perspective, dimensionality, pattern, unity/Gestalt,
and proportion. These factors should be chosen carefully to create an appealing
visualization.

User Studies: Visualizations should be tested on the intended viewers. Since visual
perception and interpretation are led by conventions and personal perception
capabilities a visualization tool designer needs to verify his or her tool with user
studies.

After problems of the visualization task for this thesis and general visualization criteria
have been described, the following section will introduce its specific data and data
representations.

3.3 Data and Data Representation

As has been already stated in the problem analysis in Section 3.1, one prerequisite
for the visualization developed in this thesis is a hierarchical data structure. How this
data structure is specified will be the topic of this section.
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Hierarchical data structures are usually represented in directed tree structures. KNUTH

(1997) describes trees as the most important nonlinear data structure in computer
algorithms. In the following, general definitions from graph theory are given:1

Definition 3.1 A tree is a connected graph with no cycles.

Definition 3.2 A directed tree is a digraph whose underlying graph is a tree.

A directed tree, in other words, consists of a number of nodes and parent-child re-
lations with the following characteristics: Every node has just one parent and any
number of children. The number of children of a node is called its degree. The starting
point of the tree is the root node specified by the following definition:

Definition 3.3 A rooted tree is a directed tree with a distinguished vertex r, called the
root, such that for every other vertex v there is a directed path from r to v.

The root node is the only node with no parent. Undirected trees where any node may
act as a root node play a role in mathematics but are not as important in computer
science and will, therefore, not be discussed further. The connection between parent
and child nodes is called an edge. Leaf nodes are nodes without children. The height
or depth of the tree is the maximum number of levels in a tree, not including the root
level. All nodes, excluding the root, partition the tree in disjoint sets of nodes that
each form a subtree. In this thesis the relative order of child nodes plays an important
role, hence, we deal with ordered trees. These are defined as follows:

Definition 3.4 An ordered tree is a rooted tree in which the children of each vertex are
assigned a fixed ordering.

After these general definitions for tree structures haven been introduced, the following
discussion will now be concerned with the data structure created for the visualization
task of this thesis.

In addition to the inherent parent-child relations in the data, external relations might
be specified. Adding external relations to tree nodes might transform a tree structure
into a general graph. However, the two sets of relations will be distinguished and the
data will still be referred to as having a hierarchical layout. The underlying data struc-
ture is known to the user as a tree structure. Therefore, to support the user’s mental
representation of the data, the visualization will resemble one of the already described
representations for trees (cf. Section 2.3). A technique for overlaying a representation
of external relations on such a tree structure will be developed in this section. The fol-
lowing definitions for such a data set correspond to conventions presented by HUANG

(2001). This arc tree data structure is defined as follows:

1 For further definitions regarding graphs, directed graphs, connectedness, or cycles please refer to
Appendix A.2.
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Definition 3.5 An arc tree is an ordered, rooted tree T = (N, E, R). It consists of a finite
set N of nodes, a finite set E of edges, and a finite set R of external relations. Incidence
functions are defined on the tree:
ϕ : E → N×N; ϕ(e) = (u, v) with e ∈ E and u, v ∈ N

φ : R → N×N; φ(r) = (u, v) with r ∈ R and u, v ∈ N.

Both relations and tree nodes carry additional domain-specific attributes. Nodes might
carry user-specified names, IDs, or weights. Relations might be further specified by
type parameters, weights, or IDs. The following definition further specifies these con-
ditions:

Definition 3.6 An attributed arc tree A(T) = ((A(N), A(E), A(R)) consists of a fi-
nite set A(N) of attributed nodes, a finite set A(E) of attributed edges, and a finite set
of attributed external relations A(R). Each attributed node a(ν) ∈ A(N) consists of
(ν, DA(ν)) where DA(ν) is a set of domain-specific attributes associated with node ν in
the tree. Respectively for the attributed edges and external relations.

A graphical representation of a node, relation, or edge is called a glyph. Each glyph
has a set of attributes Ag. The set of possible attributes Ag = {a1

g, a2
g, . . . , an

g } consists
of different parameterizations of the graphical variables presented in Section 2.1.2. If
ai

g is the shape variable possible values for ai
g include rectangle, circle, or arc.

A drawing of an attributed arc tree is specified as follows:

Definition 3.7 A drawing of an attributed arc tree consists of three functions:
The function DN: A(N) → R2 assigns a display location, width, and height to each at-
tributed node a(ν) ∈ A(N).
The function DE:A(E) → R2 assigns location, width, and height to each attributed edge,
specified by its endpoints.
The function DR:A(R) → R2 assigns location, width, and height to each attributed exter-
nal relation, specified by its endpoints.

An attributed visualization AV(A(T)) = (GLYPH(A(N)),GLYPH(A(E)),GLYPH(A(R)))

finally consists of a set of glyphs for the attributed nodes, attributed edges, and at-
tributed relations. Each glyph g(a(ν)) ∈ GLYPH(A(N)) consists of (Ag, DN(A(ν))), a
set of attributes and a display location, width, and height on the plane. Similarly, a set
of glyphs g(a(r)) ∈ GLYPH(A(R)) consists of (Ag, DR(A(r))), respectively for g(a(e)).

Given these definitions, the challenge will be how to map an attributed tree to an
attributed visualization. The proposed solution will be described in the following sec-
tions.
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3.4 Visualization

This section is concerned with creating a visualization from an arc tree data structure.
An initial data set is described and turned into an arc tree visualization. Involved in
the design of the visualization are a spatial tree and relation layout. Encodings for
attributes of nodes and relations are further discussed followed by the introduction of
a labeling scheme.

3.4.1 Initial Data Set

The initial data set given as input to the visualization tool can be derived, for example,
from an XML-file description. An XML parser generates a hierarchically structured arc
tree T = (N, E, R). The sets N and E are filled automatically while parsing, whereas
R initially remains empty. This is straightforward since a well-formed XML document
has an inherent tree structure. The created tree is later handed off to a renderer for
generating a visual representation of the tree. The structure of the tree, therefore, cor-
responds to the structure of the XML document. The built tree structure T is an ordered
tree. Parsed XML elements form the nodes of the tree. Tree attributes can be read or
created by the parser to form an attributed arc tree A(T) = ((A(N), A(E), A(R)). The
set R and its attributes A(R) can be created from XML file specifications, read from an
external file, or be defined by properties of the nodes to be connected. The following
domain specific attributes are later used in the visualization process:

◦ DA(N) = {id, weight, level, degree, nrExternalRelations, type, doi, title}.

◦ DA(E) = {}.

◦ DA(R) = {id, type, weight}.

3.4.2 Spatial Tree Layout

An essential part of the arc tree visualization is the spatial tree layout. The layout
takes the ordered structure of the XML file into account. A sequential order of leaf
nodes is usually of vital interest to the user. In the case of book data, for example, the
nodes have to be arranged in linear order to support the mental representation of the
book’s structure in the user’s mind. The visualization tool, therefore, will regard two
constraints in creating a tree layout:

1. Consideration of a layout for ordered trees.

41



Chapter 3 Visualization of Relations in Hierarchical Data

2. Spatial constraints as stated in Section 3.1: minimization of screen real estate
and appropriate use of whitespace.

During the spatial tree layout, a geometric mapping reserves a spatial location, width,
and height for later display of node glyphs. During this process, domain specific at-
tributes of the nodes such as weight or level information are used to accumulate space.
In this space glyphs can be displayed once their final shape has been determined.

Generally, there are two main options for tree layout: connection (also called explicit
tree visualization) as in node-link diagrams or containment (also called implicit tree vi-
sualization) as in space-filling approaches. Node-link diagrams are superior in reveal-
ing a tree’s structure but can easily acquire large aspect ratios through the inclusion
of a large amount of whitespace. Space-filling techniques, in contrast, shine when
users are interested in leaf nodes but are not as good at displaying the tree’s struc-
ture. However, they typically require less screen space. Due to the given constraints
a space-filling approach was selected. The created layout resembles in its structure a
linear Tree-Map approach as described by TURO and JOHNSON (1992). The tree layout
algorithm partitions a rectangular display space for the root into n parts with n being
the number of the root’s children. For each child, the display space is then again di-
vided vertically according to the number of children at the next level in the tree. This
algorithm was selected to establish an ordered tree layout and to provide a spatially
constrained display environment. It also conforms to traditional tree layouts that flow
from one side of the display to the other. The visual metaphor (cf. Figure 3.2(b))
behind the chosen layout is a stack of nodes similar to an upside-down icicle plot as
presented in Appendix A.1. This stack of nodes is viewed from the top with the result
presented in Figure 3.2.

(a) The proposed space-filling tree layout for ordered trees.

(b) The tree layout metaphor from which the proposed tree layout is derived resembles a
stack of nodes.

(c) Node-link diagram.

Figure 3.2: The proposed tree layout and its node-link counterpart.
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Since this tree visualization technique uses a limited amount of display space it can
easily be used as a modular component of information displays. Therefore, the fol-
lowing requirements for a visualization, as presented in Section 3.1, are met with the
proposed layout:

1. The hierarchical structure is pointed out to the user through a space-filling ap-
proach. A layout for ordered trees is supported.

2. Use of screen real estate is limited. The visualization can be used as a modular
component of information displays.

For displaying all nodes with an equally spaced offset around each node the following
layout algorithm was developed.

Tree Layout Algorithm

A tree layout algorithm specifies the drawing DN:A(N) → R2 and calculates position,
height, and width for the nodes in N. The following domain specific attributes are used
in creating the layout: DADN

(N) = {weight, level, degree} ⊂ DA(N). The following
factors are respectively defined:

width:
The width of the display area,

height:
The height of the display area,

totalWeight:
The sum of all weights of a node’s children,

offset:
An equal amount of space around a node that separates it from its parent or possi-
ble siblings,

offset allocation factor (oaf):
The number of times an offset size needs to be considered in the display of a node,

maximal offset size (mos):
The maximal possible offset size for this tree so that all nodes can be displayed,2

and
space allocation factor (saf):

The amount of space, relative to the display area, reserved for this node and its
offsets.

Figure 3.3 gives an overview of some of these factors. In general, the algorithm recur-
sively specifies how many offsets have to be considered in the display of a node and
how much space is available for the display of a node and its offsets with respect to its
ancestors. The offset allocation factor for Node B, for example, is calculated by adding

2 The actual offset size should be less than the mos.
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Offset 1 and 1
2 ·Offset 2. Therefore, 3

2 offsets have to be taken into account in calcu-
lating the display size for Node B. Similarly, for Node D Offsets 3, 4, 5 and 1

2 ·Offset 2
are added to calculate an offset allocation factor of 7

2 . The size that is available for the
display of a node including its offsets is determined by the size allocation factor. If no
offset size would be specified the display space of Nodes B,C, and D would be half of
the root’s display size leading to a size allocation factor of 1

2 . The maximal offset size at
Level 1 (for Node B and Node C) is 1

3 of the size of the root node. If this offset size is
chosen, however, the display size for all nodes on Level 1 is zero. Therefore, the actual
offset size should always be a fraction of the maximal offset size. Depending on the
chosen proportion smaller or larger offsets can be created.

Figure 3.3: Factors in calculating an offset for nodes in the spatial tree layout.

The code in Listing 3.1 contains the algorithm for calculating offset sizes. The function
calculateOffsetSize(Node n) calculates the mos for all nodes in the horizontal direction
first. In the second function checkBorderSize() the calculated mos is compared against
the maximal possible offset size in y-direction which is dependent on the number of
levels in the tree.

Afterwards, the node sizes and positions are calculated by setting an initial width and
height for the display area and recursively calculating sizes for the nodes. Chosen off-
set size and size allocation factors are taken into account to calculate the final display
space available for each node. As can be seen in the proposed algorithm, the weight
of a node plays an important role in the calculation of the size allocation factor for
a node and, therefore, directly influences how much space will be available for its
display. How these weights can be specified will be the topic of the following section.

Tree Node Metrics

How much space will be reserved for the display of a node can be specified according
to certain metrics that are applied to the nodes in the tree. A node metric is used
to measure or quantify certain abstract features associated with a node to allow for
comparison or ranking of nodes. Node metrics can be of structural type representing
structural information about the tree or content based representing domain specific
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c a l c u l a t e O f f s e t S i z e (Node n){

parent = n . getParent ()
mos = width
i f ( parent == nul l ){

n . setOAF ( 0 . 0 ) // the roo t has no borde r s
n . setSAF ( 1 . 0 ) // the roo t t ak e s up a l l the space

}
else {

oaf = ( parent . getOAF () + parent . getDegree ( ) + 1 ) / parent . getDegree ()
s a f = ( node . getWeight ( ) / parent . getTota lWeights ( ) ) ∗ parent . getSAF ()
n . setOAF ( oaf )
n . setSAF ( s a f )
i f ( n . i s L e a f ( ) ){

p o s s i b l e O f f s e t S i z e = ( s a f ∗ width ) / oaf
i f ( p o s s i b l e O f f s e t S i z e < mos ) mos = p o s s i b l e O f f s e t S i z e

}
for ( each c h i l d of n ) c a l c u l a t e O f f s e t S i z e ( c h i l d of n)

}

checkOf f s e tS i ze (){

//we check i f the o f f s e t i s smal l enough to hold a l l l e v e l s
yOf f s e t = height / ( t r e e . getDepth ()∗2)
i f ( yO f f s e t < mos ) mos = yOf f s e t

}

Listing 3.1: Calculating node and offset sizes.

attributes about the node itself. A node metric algorithm changes the domain specific
weight attribute of a node as given in

DA(N) = {id, weight, level, degree, nrExternalRelations, type, doi, title}.

In the previously described tree layout algorithm the node’s weight attribute is used to
calculate the display size and position for each node. Two different structural metrics
have been conceived to alter tree layouts. These involve the following node character-
istics:

1. Degree of a node meaning the number of the node’s children. A node with more
children will occupy more space than a node with less or no children.

2. Size of the subtree below the node in the tree. A node with many descendants
requires more display space than nodes with less descendants.
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In addition, three content based metrics have been conceived. These involve the fol-
lowing node attributes:

1. Number of external relations ending or starting at each node. Nodes will be dis-
played larger if they are connected by more relations.

2. Initial weights given in the XML file description. This metric gives the user the
freedom to initially specify weights for nodes or certain types of nodes.

3. Degree-of-interest (doi) values specified by the user interactively. This metric will
be described in Chapter 4.

A visual overview of the conceived tree metrics is given in Figure 3.4 based on a small
example tree of just 9 nodes.

(a) Structural node metric depending on the number of each node’s children.

(b) Structural node metric depending on the size of each node’s subtree.

(c) Content based node metric depending on the number of relations specified for each node. The
relations are not visible in this figure.

(d) Content based metric depending on an initial weight given in the input file. Here each node has the
same weight.

(e) Content based metric depending on degree-of-interest values. The leaf on the right has the highest
interest value.

Figure 3.4: Tree metrics implemented for the tree layout.

How significant the choice of a node metric is can be seen in Figure 3.5 where a larger
tree with 419 nodes and a depth of 6 is displayed using the different node metrics.
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(a) Structural node metric depending on the number of each node’s children.

(b) The same metric applied to a side view of the tree.

(c) Structural node metric depending on the size of each node’s subtree.

(d) The same metric applied to a side view of the tree.

(e) Content based metric - each node has the same weight.

(f) The same metric applied to a side view of the tree.

(g) Content based metric - nodes are assigned weights according to interest values.

(h) The same metric applied to a side view of the tree.

Figure 3.5: Tree metrics implemented for the tree layout on a tree with 419 nodes and depth 6.
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Evaluation

The proposed layout has the following advantages: all nodes are laid out in a sequen-
tial order, leaf nodes are easily distinguishable from internal nodes, and the space for
the tree can be constrained in length and height. However, only a given number of
leaf nodes can be displayed sequentially, constrained by the horizontal display reso-
lution. Therefore, focus+context techniques will be introduced in Chapter 4. One
disadvantage of the proposed tree layout is that it can hardly be used to compare node
weights according to the node sizes since the size of a node is not proportional to the
node’s weight. The display space for a node is calculated in relation to the sizes of its
ancestors and the weights of its siblings. Figure 3.6 shows a layout where each node’s
weight has the same value. Node A in Level 2 has the same weight as Node B in
Level 1 but both nodes were assigned different sizes. Node weights can be compared
easily only according to the size of a node’s siblings (larger siblings will have a larger
weight). If it is important for a task that the node weights are easily comparable a
node-link tree layout should be chosen.

Figure 3.6: Node A and Node B have the same weight but different size. Node weights cannot be easily
compared according to node sizes in this tree layout.

One other aspect of a space-filling tree layout is that the drawing DE : A(E) → R2

does not specify a position or size for the edges. The edges are not drawn. Structural
relations are defined by the nested layout. Many other types of relations, however, can
be incorporated in this layout. Therefore, specifications for DR are discussed in the
following.

3.4.3 Spatial Relation Layout

In this thesis external relations R as given in an arc tree T = (N, E, R) are encoded
using direct links. Since the spatial tree layout does not use edges to display structural
relations between nodes this type of encoding can be used to display other types of
relations without the danger of confusion. As has been mentioned in Section 2.1.2, the
Gestalt principle of continuity assumes connectedness. If two objects are connected by
a line, this visual connection can create a link that represents any number of relations
(WARE, 2000). It has been shown by PALMER and ROCK (1994) that connectedness can
be a more powerful grouping principle than proximity, color, size, or shape. Therefore,
direct connections will be introduced as an encoding technique for the relations in
A(R) to emphasize the importance of the additional relational data.
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3.4 Visualization

As soon as additional edges are introduced on tree layouts, the drawing and spatial
layout of these links becomes a graph drawing task. The following drawing constraints
are considered in creating a geometric mapping for A(R):

1. Static Node Layout: The sequential ordering of tree nodes cannot be changed.

2. Intersections: A minimal number of edge-edge and edge-node crossings should
be achieved.

3. Area Bounds: The area of the whole drawing should be constrained and fit in a
given display space.

4. Total Bends: A minimization of the total number of bends along an edge should
be achieved.

5. Angle of Incidence: Avoid small angles of incidence at nodes to allow for easier
comparison of edges.

In order to achieve minimal edge-node crossings and to minimize the use of screen
real estate all edges are drawn above the tree display. The encoding for relations is
inspired by the works on Arc Diagrams (WATTENBERG, 2002) and Thread Arcs (KERR,
2003) that were both introduced in Section 2.5. To visually represent the relations arc
shapes are created. These arcs are drawn directly from the source node of a relation
to the destination node. Arcs are advantageous in minimizing the number of total
bends (with only one bend per arc) and creating a symmetric appeal. With a cleverly
placed arc, edge crossings can be avoided. The drawing function DR : A(R) → R2

positions the endpoints of the arc in x-direction according to the center points of the
nodes to be connected. The arc height has been chosen to be in direct proportion to
the distance between the connected nodes. A prototypical relational layout can be
found in Figure 3.7. As can be seen, edge crossings are avoided with this layout as
long as there are no relations from a node that lies within an already connected pair
of nodes to a node that lies outside of this pair. In order to minimize the needed screen
real estate a modular refinement of the arcs was needed which will be described in the
following.

Arc Size

The initial approach for the layout of the arcs uses a semi-circular design as seen in Fig-
ure 3.8(a). In this approach, the arc’s radius corresponds to the half distance between
the two nodes to be connected. This layout has a symmetric appeal and node distances
can be easily derived from comparing arc heights. However, in the worst case of the
first and last node being connected the display area would need to be at least half in
height as in width in order for all connections to be fully visible. Therefore, an adapt-
able arc shape was needed to support smaller arc heights. Chaikin’s corner cutting
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Chapter 3 Visualization of Relations in Hierarchical Data

(a) Relation layout using semi-circles as node shapes.

(b) Relation layout created using Chaikin curves.

Figure 3.7: Relation set R encoded through direct connection using two different arc shapes.

algorithm provides the functionality needed to produce arcs with a high level of mod-
ularity (CHAIKIN, 1974). A corner cutting algorithm creates smooth curves through a
recursive refinement process. In this process intermediate points are calculated which
lie on the lines joining the points of a control polygon. A new control polygon for
the next refinement step is easily created by cutting the corners off the previous one.
Mathematically, an initial control polygon given by a set of points {I0, I1, . . . , In} is
refined through the creation of a new set of points {Q0, R0, Q1, R1, . . . , Qn−1, Rn−1}.
Each new pair (Qk, Rk) is created by setting Q1

4 and R3
4 of the distance along the line

connecting Ik and Ik+1. Therefore,

Qk =
3
4
Ik +

1
4
Ik+1, Rk =

1
4
Ik +

3
4
Ik+1

It has been shown that this algorithm produces results equivalent to a quadratic uni-
form B-spline curve (RIESENFELD, 1975). Figure 3.7 gives a comparison between the
semi-circular relation layout and one of the many possible arc shapes created using
Chaikin’s algorithm. Figure 3.8(b) gives an example for a curve with one annotated
refinement step.
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(a) Circular arc shape. (b) Interpolation with Chaikin’s
algorithm.

(c) Different arc shapes pro-
duced from varied control
polygons using Chaikin’s al-
gorithm.

Figure 3.8: Proposed arc shapes.

Evaluation

The advantage of the proposed tree layout for displaying direct links lies in a mini-
mization of edge-edge and edge-node intersections. If either the x- or y-axis had been
chosen to encode level information on the tree edge-node intersections would have
been much more severe. This is especially true once relations are introduced that
connect to branch nodes as can be seen in Figure 3.9.

Figure 3.9: Edge-node intersections are more severe if level information is encoded using position.

To alleviate the problem of edge-node intersections in the proposed tree layout three
methods are introduced to connect nodes and edges (cf. Figure 3.10).

Direct Connection: Relations are directly connected to the nodes. Using this method
minimal edge-node intersection are introduced where the edges cross lower level
offset space to connect to a node. More severe edge-node intersections may
appear if the height of an arc is small so that the whole arc is drawn on top of
the tree layout. This edge-node connection has been applied in Figure 3.7(b)
where its problems can also be observed at the smallest arc.

On-Top: Relations are drawn directly above the tree layout without a direct connec-
tion to the node. The start- and end-points of the edge are placed directly above
the center of its reference nodes. The connection has to be made by comparing
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Chapter 3 Visualization of Relations in Hierarchical Data

underlying node centers with the endpoints of an arc. This intersection type has
the advantage that no part of the arc occludes any part of the tree layout.

Top-to-Node: This intersection type combines the previous two. Arcs are drawn
directly above the tree layout but the endpoints extend down to the referenced
nodes as straight lines. The advantage lies in a minimal occlusion of node parts
and in a direct connection to referenced nodes.

(a) Direct edge-node connec-
tion.

(b) On-Top egde-node connec-
tion.

(c) Top-to-Node edge-node con-
nection.

Figure 3.10: Proposed edge-node connections to alleviate edge-node intersections.

This section introduced methods for the spatial layout of tree nodes and relations.
Both are part of a geometric mapping in which geometric attributes of the data such
as display size and position are specified. Based on this, the following sections dis-
cuss how further node and relation attributes can be encoded in a graphical mapping
process.

3.4.4 Visualization of Tree Nodes

During graphical mapping, attributes of data items are visually encoded to create an
adequate representation. A glyph is selected as a visual representation and for each
attributed node a(ν) the set DA(ν) (respectively for edges and relations) is mapped to
the set Ag for the respective glyph g(a(ν)). Geometric and graphical mapping are part
of the visual mapping process in the visualization pipeline as described in Section 2.1.2.
This section is concerned with the following graphical mapping:

(DA(N) = {id, weight, level, degree, nrExternalRelations, type, doi, title})→ Ag(N).

The following graphical attributes are used for visually encoding domain specific at-
tributes of nodes and external relations in the tree:

Ag(N) = {shape, color, 3Ddepthcues, size, position}.

The first important choice in creating an encoding is the type of shape associated with
a node.
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3.4 Visualization

Shape Selection

During geometric mapping, rectangular space was reserved for the display of tree
nodes which can be seen as a bounding box for the actual shape to be displayed. For
the arc tree visualization it is important that the shape for each node contains enough
surface area to allow for further layering of tree nodes. It should be avoided that
higher level nodes become unnecessarily small through the wrong choice of a node
shape. In addition, the Gestalt law of proximity states that objects that are placed
close to each other are perceived as a unit. Therefore, a rounded rectangle was chosen
as the shape to encode tree nodes. Rounded rectangles are advantageous in providing
a large surface for further layering and in offering a strong visual proximity through
their straight contour. In addition, a rounded rectangle was chosen over a regular
rectangle since it provides a small but distinguishable space between two shapes if the
border between the two becomes relatively small as can be seen in Figure 3.11. This
small additional space is important since in the interaction process objects will have
to be selected to perform transformations on the display of data. Another advantage
of the rounded rectangle is its aesthetic appeal. Therefore, in this step the shape of a
rounded rectangle is chosen for each glyph of a node with a given id.

Figure 3.11: Shape selected for encoding nodes. The arrow indicates additional space available for
selecting the underlying node in an interaction process.

Encoding of Size and Position

In the arc tree visualization size and position are directly adopted from the values
calculated during the geometric mapping. In other words, a rounded rectangle fills
the whole space reserved for its display and is centered at its calculated position.
Therefore, weight and degree of a node are encoded in size and position of its glyph as
calculated by the tree layout algorithm.

Color Coding

According to (WARE, 2000), the most important role for color in visualization is cod-
ing of information. Colors are a useful coding technique since they are perceived as
attributes of objects. In the context of the arc tree visualization two types of color codes
are used: colors for coding nominal information and color sequences.
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Nominal color coding describes a technique for classifying objects through the use of
color. For the use of color as a classification factor WARE has collected a number of
perceptual factors to be considered (WARE, 2000):

Distinctness: Colors should be perceived as being as distinct as possible. Visible dis-
tinctness can be approximated by comparing distances in a uniform color space
like the CIE-LAB Color Space.

Unique Hues: A set of hues, namely red, green, yellow, blue as well as black and
white have been found to be special in building opponent pairs of color. In addi-
tion, cross cultural studies have shown that these colors have names which are
quite similar throughout different languages (BERLIN and KAY, 1969). Therefore,
these colors provide a good choice in coding a small number of item types.

Contrast with Background: In general, color-coded objects can appear on a number
of different backgrounds. Color contrast can alter color appearance considerably
by making one color look like another. To reduce contrast effects, a small black
border can be drawn around objects. In addition, there should be a luminance
difference between object and background color to ensure color discrimination.

Color Blindness: If only few colors are needed the yellow-blue color direction should
be preferred over the red-green direction. The reason for this is that the majority
of color-blind people is insensitive to changes in the red-green direction.

Number: HEALEY (1996) suggests that only five to ten colors can be rapidly distin-
guished in nominal color coding.

Field Size: Objects that are color coded should not be too small for its colors to be
perceived. Small objects should have strong, highly saturated colors while larger
objects should have low saturation for allowing a good contrast of smaller objects
on such a background.

Conventions: Color-coding conventions (e.g., red = danger) sometimes need to be
taken into account. However, such conventions are not independent of culture.

Therefore, WARE (2000) suggests using the following colors for nominal color coding:

red, green, yellow, blue, black, white, pink, cyan, gray, orange, brown, and purple.

In the arc tree visualization nodes can be colored according to type as a domain specific
attribute. Since this encoding is nominal, MACKINLAY (1986) suggests using color
hue over color saturation (cf. Figure 3.1). The user is given the following options in
adapting node colors for separate node types:

◦ For each unique node type a hue is selected from the suggested colors presented
above. If more node types are available, node colors are chosen randomly. The
user can also set individual colors for node types of interest. This freedom allows
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users with a type of color blindness to choose colors that can be distinguished
more easily. In addition, the user can adjust colors to follow certain conventions
or to avoid color contrast between nested node types.

◦ To avoid a cluttered interface in cases when too many different node types are
present the user can choose to which node type a color should be applied. Other
types remain uncolored or are set to a certain default color such as white or gray.

◦ Type colors can be applied to leaf nodes only or to all nodes of the tree. This also
avoids a cluttered display.

◦ Borders can be drawn around tree nodes to make similarly colored parent-child
pairs or siblings easier to distinguish.

Figure 3.12 shows an example of type coloring applied to a tree containing textual
data. As can be seen in Figure 3.12(a), all nodes are enclosed in gray parents of the
“group” type. In addition, blue “li” environments are always enclosed in green “ol”-
type nodes. Figure 3.12(b) shows that leaf nodes only contain paragraphs (type “p”),
images (type “img”), and list environments (type “li”). If some of these text-layout
conventions are not correctly applied this type of color coding has been built to reveal
such errors. Examples will be provided in Section 5.1 where case studies are discussed.

(a) Color code applied to all nodes in the tree.

(b) Color code applied to the leaf nodes only .

Figure 3.12: Colors mapped to node types represented in the visualization of the tree. The color selec-
tion dialog is seen on the right.
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Unlike in a node-link diagram, this layout does not provide an implicit ordinal axis
for the levels and, therefore, the distance of nodes to the root node. Level informa-
tion can be retrieved by comparing size and position of nodes in the nested layout.
However, level information is hard to retrieve if a small offset is chosen and if many
nodes are displayed at the same time. Therefore, color was chosen to also encode
level information of tree nodes. Tree levels form a numerical scale between 0 and
MAX_LEVEL. Color scales are commonly used to encode numerical values where each
value is assigned its own color. Appendix A.3 introduces the color scales available in
the arc tree visualization and their respective advantages and disadvantages. Depend-
ing on the number of levels or if additional type coloring is applied or not certain color
scales are more appropriate than others. MACKINLAY (1986) suggests to use color
saturation over color hue (cf. Figure 3.1) to encode ordinal data. Nevertheless, the
choice of the color scale is left open to the user. Color scales with an emphasis on an
increasing color saturation (e. g., gray scales or optimal color scales) are available as
well as other scales that place an emphasis on certain hues (e. g., rainbow scale). The
individual level color can be chosen as well. Since two types of color encodings can
be applied to the tree the type-coding has been chosen to take priority over the level-
coding. The user has to ensure that the color codes remain unambiguous. Figure 3.13
gives two examples of color-coding for level information.

(a) Heated Object Scale to color-code level information.

(b) Individual alternating white-gray level colors and additional type coloring chosen for the leaf nodes.

Figure 3.13: Examples for color-coding of level information.

Degree-of-Interest Coding:

In general, a tree contains two types of nodes: branch nodes that have children and
leaf nodes without children. Branch nodes can be collapsed and expanded through
user interaction. This interaction technique will be further evaluated in Chapter 4. At
this point only the visual encoding for the status of a node is of interest. A 3D-depth
cue is used to visualize a node that is expandable while nodes that cannot be further
expanded are flat-shaded. The illusion of a 3D-depth of a node was chosen as an
encoding technique to give the node the affordance of being clickable in comparison
to a regular button.
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(a) Normal placement to
create a 3D-depth cue
through lighting calcula-
tions.

(b) Application of shading to
a sample node to create a
3D-depth cue.

Figure 3.14: Realization of node shading to encode that a node is expandable.

3.4.5 Visualization of Relations

Another step in the graphical mapping for an arc tree visualization is the visualization
of relations. During this step, a mapping has to be derived from the set of domain
specific attributes to the set of glyph attributes:

(DA(R) = {id, type, weight})→ Ag(R) = {shape, color, transparency, width}

Proposed mappings will be discussed in the following.

Shape Selection

In the arc tree visualization there are two choices for a glyph shape that both follow
the basic shape used to calculate display space during the geometric mapping, a semi-
circle or a Chaikin curve. These glyphs will be further parameterized depending on the
encoding for DA(R). The used encoding techniques will be discussed in the following.

Encoding of Size and Position

The position and size of an arc is directly taken from the position calculated during the
geometric mapping. The width of an arc, however, is coded according to a specified
weight for a relation. The larger the weight of a relation the wider is the arc. If more
than one relation is specified to connect from Node a to Node b in the tree, only one
arc is drawn for the relation and both weights are added to calculate the width of the
joint arc.
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Transparency Coding

During interaction with the tree, certain branches can be collapsed or expanded. If
a node to which a relation connects resides inside a collapsed branch the relation is
drawn to the first visible ancestor of the node. To distinguish relations that point di-
rectly to their destination node from those that point only to a visible ancestor, trans-
parency is used as an encoding technique. If an arc can be drawn directly to both
nodes it connects it is drawn with a low degree of transparency, almost opaque. A
low degree of transparency has been chosen over a fully opaque display to make arcs
easier to follow at intersections. If one of the two nodes resides in a collapsed branch
the node is drawn with a high degree of transparency to point to a rather imprecise
state of the arc.

Color-Coding:

Color is currently not used as an encoding technique since a cluttered display has to
be avoided. Color-coding has been used to a great extent during graphical mapping
of tree nodes and it was felt that additional color-coding for arcs should be avoided.
Arcs are, therefore, all set to one specific color. However, a possible color-coding for
arcs could involve type coloring similar to the type coloring chosen for tree nodes.

Figure 3.15 gives an overview of the encodings for relations. The two arcs in the center
have a larger weight and are, therefore, drawn with a different width than the other
arcs. One node at the very right is collapsed and the two relations ending at this node’s
children are drawn more transparently than the other arcs.

Figure 3.15: Encoding for relations.
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3.4.6 Labeling

A common characteristic of tree nodes is an association with additional information
such as a name or title. Placing textual information at tree nodes is called labeling.
Several different techniques for labeling of nodes exist depending on the type of the
tree layout. In node-link diagrams textual information is usually placed inside a node’s
representation if enough display space is available. If nodes are too small a common
approach involves placing labels only for a selected group of nodes such as leaf nodes.
Graph drawing techniques have been developed to generate layouts for graphs with
non-uniform vertices in which labels can be placed (HAREL and KOREN, 2002). An-
other very common approach to labeling graphical objects involves placing the labels
outside of the objects. Labels and objects are related through lines connecting anchor
points on the objects and their respective labels.

For nested tree layouts such as the arc tree visualization labeling is difficult since branch
nodes are covered to a given extent by other branch or leaf nodes. Depending on the
chosen offset only a small space is available for placing labels inside a node’s represen-
tation. In many tree-map implementations (cf. Section 2.3.2) this problem has been
circumvented by offering context information through a tooltip by hovering the mouse
over the node (see, for example, SCHLECHTWEG et al. (2004)). In contrast to the tree-
map visualization the one-dimensional layout of the arc tree visualization allows the
placement of external labels since lines connecting nodes and labels can be arranged
to minimize interference with the tree visualization. According to HARTMANN et al.
(2004) the following heuristic criteria apply for placement of labels in a visualization:

◦ Labels should be placed near their referenced object,

◦ The length of the line connecting label and object should be minimized,

◦ The connecting line should be orthogonal to a main axis,

◦ Intersections between connecting lines should be prevented, and

◦ The placement of the anchor point should ease the identification of the pictorial
element.

Based on these criteria an external labeling scheme has been developed for the arc
tree visualization (cf. Figure 3.16). Labels are placed below the layout in a hierarchical
fashion. Labels referencing nodes at the same level are placed at the same vertical
height to reduce overlap of labels. Anchor points connect to the tree layout below the
lower left corner of the bounding box of the object to avoid interference with the tree
layout.

However, an overlap of labels cannot be avoided especially when labels are long
and/or tree nodes are small. To avoid overlap a more sophisticated label layout needs
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to be implemented for the arc tree visualization. One concept could involve the mere
reduction of label length when nodes become small. In focus+context views the size
of the labels could be controlled by the placement of a lens and the calculation of in-
terest values. To access the full textual information when labels are reduced tooltips
are a helpful mechanism as can be seen in Figure 3.16(b).

(a) Initial label layout.

(b) Labels are shortened when nodes become smaller. The full textual information can be accessed via
a tooltip.

Figure 3.16: Label layout in the arc tree visualization.

3.5 Summary

This chapter introduced a layout for hierarchical data structures with additional rela-
tional information between nodes in the tree. As a prerequisite to the development
of a spatial tree and relation layout a set of definitions for the underlying data struc-
ture, the relational information, the drawing, and the visualization of the data were
presented. The proposed layout emphasizes the following characteristics.

◦ The support for a layout of ordered trees,

◦ A constrained spatial layout to allow the use of the visualization as a modular
component of information displays,

◦ Support for the display of external relations through direct links, and

◦ Mappings for internal aspects of the data such as node types or weights through
the use of different encoding techniques such as color, size, position, 3D-depth
cues, etc.

◦ A labeling scheme for tree nodes.
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The proposed tree layout can display at most x leaf nodes at a time, if x is the horizon-
tal display resolution. However, a display of this many nodes at a time is hardly useful.
Drawing a one-pixel offset around each node of one-pixel width, reduces the number
of displayable nodes to x

2 − 1. In comparison to the resolution of common desktop
monitors many trees to be displayed are rather large. The display of large trees would
lead to nodes being drawn that are only a few pixels wide which is hard to recognize.
Therefore, focus+context techniques will be proposed in the following chapter.
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CHAPTER 4

Interaction with a Focus+Context
Visualization

Interaction and navigation are two important aspects of an information visualization.
According to SPENCE (2000), a visualization needs to be interactive because the con-
tent of data is often unknown. Data exploration is necessary for these unknown aspects
to be discovered. In particular, when displaying large hierarchical data sets, no layout
algorithm alone can overcome the need for individual exploration of data. Therefore,
user specification of visualization parameters is essential. Some possibilities for adjust-
ing color have been discussed briefly in the last chapter. This chapter will be concerned
with possibilities to directly adjust the amount of data to be displayed. First, general
operations on the data set will be described. These will be extended by focus+context
operations for aiding navigation in the arc tree visualization.

The proposed interaction techniques all belong to the category of direct manipulation.
Direct manipulation is a term coined by SHNEIDERMAN (1983) that defines operations
that make changes to data directly by clicking, dragging, or resizing it. It stands in
contrast to indirect operations that involve typing commands on a command line or
using menus and dialog boxes. The basis for direct manipulation is an adequate iconic
representation of objects to be manipulated. These representations also need to have
the right affordances to be recognized as being manipulable. PREIM (1999) describes
the following characteristics of direct manipulation interaction:

◦ There exists a graphical representation of the application,

◦ Manipulation is accomplished through the use of an input device (e.g., a mouse)
and transmitted directly to the application,

◦ The effect of manipulation is seen immediately on the screen (close feedback),
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◦ Direct-manipulation actions are, once learned, easy to remember (rapid recall),
and

◦ The interface is independent of language.

How direct manipulation can be realized in the arc tree visualization will be the topic
of the following sections.

4.1 Input Device

The only input device necessary for interacting with the arc tree visualization is a point-
ing device. The mouse has been chosen since it (or an equivalent such as a touchpad
or tackball) is generally available for personal computer systems. No more than three
input modes are necessary for controlling the arc tree visualization. Two modes are
necessary for selecting and deselecting target objects in the visualization and one for
calling detail on demand. Therefore, a mouse with two1 or three buttons offers the
exact amount of discrete input options. Users of desktop computer systems are also
very familiar with the use of a mouse in direct manipulation interfaces. Three mouse
buttons have been assigned the following functions in the arc tree visualization.

Mouse Button 1: The left mouse button in a right-handed setup.
The amount of data to be displayed changes immediately after a mouse click on
a specific target and the display is redrawn to give close feedback to the user.

Mouse Button 2: Typically the middle mouse button.
A click with this button calls tooltips with additional information on the objects in
the display. Detail-on-demand as required in the information seeking mantra (cf.
Section 2.1.2) can be accessed. Tooltips are only but then immediately shown
when called for. The user, therefore, demands additional information on an
object by pressing this mouse button. This stands in contrast to the typical im-
plementation for tooltips. In common graphical user interfaces, tooltips appear
after a certain period of time in which the mouse has not been moved. This
interaction style often causes detail to be displayed when not explicitly called
for.

Mouse Button 3: The right mouse button in a right-handed setup.
A click with this mouse button reverses actions called by using Mouse Button 1.
The amount of data to be displayed changes immediately and the display is re-
drawn to give close feedback to the user.

1 The third button in a two-button mouse is usually imitated by pressing both the left and right mouse
button simultaneously.
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The following sections are concerned with operations called by pressing Mouse But-
tons 1 or 3.

4.2 Gardening Operations

In complex tree structures interaction techniques for selectively placing focus on cer-
tain nodes or branches and deselecting those of lesser interest are absolutely necessary.
This is particularly true when tree structures become larger than the display space. In
the following, gardening operations will be introduced as interaction techniques on a
tree structure. Gardening operations are operations to selectively prune or grow the
view of a tree following a definition given by ROBERTSON et al. (1991).

4.2.1 Growing and Pruning a Tree

Growing and pruning a tree are, in general, very simple interaction techniques. The
user can selectively expand nodes by clicking on a node of interest with Mouse But-
ton 1. Once a node has been selected, it is highlighted with a defined highlight color
and its child nodes are shown. The tree layout is then adapted depending on the type
of node metric chosen as explained in Section 3.4.2. If, for example, the node metric
depends on the number of visible children the weight for the selected node is recalcu-
lated and more display space is reserved to allow for a larger display of child nodes.
Figure 4.1 gives an example of one growing operation applied to a tree. Nodes that
are further expandable are drawn with lighting applied to give them a 3D-depth cue.
The goal is to ensure that a 3D-appeal, similar to a regular button, ensures the nodes’
affordance of being further expandable.

(a) Tree with levels 0 and 1 shown.

(b) The same tree with the middle node in level 1 expanded. The middle node was clicked on and
is highlighted. The node metric selected for the tree layout depends on the number of visible
descendants of a node.

Figure 4.1: One growing operation applied to the tree through a node click.

Pruning a tree is just as simple. By pressing Mouse Button 3 on a node a subtree is
collapsed. Two interaction modes are offered. The first mode collapses the branch
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below the node just clicked on. When a large number of nodes have been opened
and the offset between nodes is rather small, it might be hard to select branch nodes.
Therefore, the second interaction mode is offered that collapses the subtree under the
parent of the node just clicked on. The collapsed node is highlighted as a reference to
the user.

How these operations affect the display of relations will be the topic of the following
section.

4.2.2 Necessary Layout Changes

When additional relational information is displayed for a tree and gardening opera-
tions are applied, layout changes for the display of relations are necessary. The follow-
ing cases have to be regarded for the layout of a relation r = (a, b) ∈ R after a growing
or pruning operation has been applied to a node in a subtree containing either Node a,
Node b or both:

1. Both nodes a and b remain visible. No layout change is necessary. The following
image gives an example of this case after the application of a growing operation.

a br(a, b)

invisible

→ →

2. Either node a or b is hidden inside a collapsed subtree. The relation connects
directly to the visible node and indirectly to the hidden node. The indirect con-
nection ends at the first visible ancestor of the hidden node. The glyph encoding
the relation is displayed transparently to show the imprecise state of the rela-
tion. The following image gives an example for this case after the application of
a growing operation. If more than one relation connects the visible and the first
visible ancestor node both are combined to one wider arc.

a

invisible

b

invisible

r(a, b)

→ →

3. Nodes a and b are hidden inside collapsed but different subtrees. The relation
connects indirectly to both hidden nodes. In both cases the connection ends at
the first visible direct ancestor of each node. The glyph encoding the relation is
displayed transparently to show the imprecise state of the relation. The following

66



4.2 Gardening Operations

image gives an example for this case after the application of a growing operation.
If more than one relation connects the first visible ancestors the relations are
combined to one wider arc.

a

invisible invisible

b

r(a, b)

→ →

4. Nodes a and b are hidden inside the same subtree. A separate encoding tech-
nique is necessary which will be discussed in the following.

According to Case 4 both Nodes a and b lie inside the same subtree. In this case two
different visual effects are possible before or after a gardening operation is applied to
a direct ancestor of both nodes: If a growing operation is applied to the parent of a or
b a new arc has to be created (cf. Figure 4.2(a)). In contrast, if a pruning operation is
applied to the parent of a or b a previously showing arc is deleted (cf. Figure 4.2(b)).

(a) A growing operation applied
to the parent of a and b.

(b) A pruning operation applied
to the parent of a and b.

Figure 4.2: Gardening operations applied to a direct ancestor of two connected Nodes a and b. Note
how the relation connecting both nodes appears or disappears depending on the operation.

To avoid confusion, an indication should be made that there are further relations avail-
able below a node. Such an encoding is necessary for three reasons:

1. It prepares the user for the appearance of additional arcs in the expanded layout
after a growing operation.

2. It gives an indication to relations that disappear after a pruning operation.

3. If the user is primarily interested in relations it points the user to possible nodes
of interest.

Encoding options for hidden relations could include a reference icon directly on the
root of the subtree containing the hidden relations, drawing a self-loop, or drawing
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Chapter 4 Interaction with a Focus+Context Visualization

special glyphs outside of the already created visualization. Appendix A.4 gives an
overview of encoding design concepts of which one was chosen for the arc tree visu-
alization. To avoid visual clutter it was felt that this information should be provided
outside but close to the already developed tree and relation layout. Therefore, a new
graphical representation was developed. As an encoding, circular buttons are drawn
below a node containing hidden relations. These buttons are placed directly below
the drawn arc tree as can be seen in Figure 4.3. This button layout can be arranged to
not interfere with the proposed labeling scheme (cf. Figure 4.3(b)). The diameter of

(a) Hidden relations in a collapsed subtree below a node are encoded using circular buttons.

(b) The encoding does not interfere with the proposed labeling scheme.

Figure 4.3: Encoding for hidden relations in the arc tree visualization.

a circle is set proportional to the number of hidden relations so that the more hidden
relations a node contains the larger its circular button. All buttons are arranged on a
line to allow for easier comparison of circle sizes. Circular buttons were chosen as an
encoding technique over the other design concepts for the following reasons:

◦ A large surface area is provided for direct manipulation interaction while little
screen real estate is used,

◦ When many nodes are displayed at a time, clustering of buttons can be easily
recognized and used as an indication for an accumulation of hidden relations in
this part of the tree.,

◦ The size of a circle can be used as an indication for the number of hidden rela-
tions contained in a subtree,
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4.2 Gardening Operations

◦ Circles can be drawn with lighting applied to give them the affordance of regular
buttons, and

◦ The layout has an aesthetic appeal.

If a relation is encoded according to Case 2 or Case 3, growing the tree is also possible
by clicking on the arc with Mouse Button 1. After a click occurred, the tree is grown to
show all hidden nodes and their siblings at the endpoints of the represented relations.
Then the arc clicked on is highlighted. If more than one relation was represented by
the arc, it has to be split to show all previously combined arcs. In this case all split arcs
are highlighted as can be seen in Figure 4.4.

(a) Tree with level 0 and 1 shown.

(b) The same tree after the left arc in 4.4(a) was selected.

Figure 4.4: One growing operation applied to a tree through an arc click.

Figure 4.4 also serves as a more complex example for the need of an encoding for hid-
den relations. Once the left arc has been clicked on, the hidden nodes at its endpoints
are shown. The now visible tree structure causes the right arc to be split as well since
its endpoints are now visible. The wide arc in the center connecting the two bright-
est nodes, however, did not have any connection to either the left or right arc in the
previous layout. It appeared unexpectedly which might be confusing for the user.

Growing the tree is also possible through interaction with the circular buttons. Once
a button is clicked with Mouse Button 1, it expands the referenced node by one level.
The referenced node and its internal relations that might appear are highlighted. If
no hidden relations directly connect to the now visible nodes new circular buttons
are created for those child nodes that contain the hidden relations. In contrast to the
explained growing operation, the represented node could have been expanded to show
all nodes connected through hidden relations. However, this interaction might cause
many nodes to become visible at a time. This would cause large and abrupt layout
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changes which would be confusing for the user. Therefore, the tree is only grown by
one level when the user clicks on a button encoding hidden relations.

4.2.3 Summary

An implementation of gardening operations gives the user a tool for changing the size
of the displayed tree structure. The interaction starts with a global display of the root
node. With growing operations the user can selectively zoom in on regions of inter-
est and zoom out using a pruning operation to see which global structure a branch
involves. Pruning operations are, therefore, a filter mechanism in that they hide un-
wanted information. According to the visual information seeking mantra presented in
Section 2.1.2, gardening operations satisfy the zoom & filter principle. Table 4.2.3
summarizes the implementation of gardening operations in the arc tree visualization.

For large hierarchies it is often difficult or even impossible to perceive global and local
information in one view since nodes and relations become too small in the display.
With gardening operations the user can explore the data structure interactively and
integrate global and local information in his or her mind. This integration, however,
is not an easy task specifically for novice users of a visualization tool. In information
visualization there exist several possibilities to help the user with the integration. One
solution from the field of focus+context techniques will be presented in the following
section.

4.3 Focus+Context Navigation

Focus+context navigation in tree structures introduces an automation for choosing
which portions of the tree to grow and which to prune depending on a statement of
interest by the user. Which gardening operation is applied to a node in the tree, there-
fore, depends on an interest function that is defined from a user-centered perspective.
The user selects a node of maximal interest, the focus node, by clicking on a target node
with the mouse. Depending on the selected focus degree of interest (DOI) values are
calculated for all nodes in the tree. Pruning operations are applied automatically to
nodes below a user specified threshold. These nodes are considered “uninteresting”
and can, therefore, be collapsed to just give context information. This leads to a logi-
cal filtering of nodes. CARD and NATION (2002) call this strategy an attention-reactive
user interface. The following section will now be concerned with the calculation of a
degree of interest function in the arc tree visualization.
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Operation Target Interaction Response

Growing
the tree

Node Click on the node’s
representation
with Mouse But-
ton 1.

The node’s children become visible
and the spatial tree layout is recalcu-
lated. The node clicked on is high-
lighted.

Visible
Relation

Click on the re-
lation’s representa-
tion with Mouse
Button 1.

The nodes referenced by the repre-
sented relations are shown and the
spatial tree layout is recalculated.
The represented relations are high-
lighted.

Hidden
Relation

Click on the circle
representing the
hidden relation
with Mouse But-
ton 1.

The children of the target node are
shown and hidden relations visible at
this level are revealed. Both are high-
lighted. Representations of further
hidden relations are shown if neces-
sary. The spatial tree layout is recal-
culated.

Pruning
the tree

Node Click on the node’s
representation
with Mouse But-
ton 3.

The subtree below the node is col-
lapsed and the spatial tree layout is
recalculated. Another mode can be
chosen in which the subtree below
the node’s parent is collapsed.

Table 4.1: Gardening operations in the arc tree visualization.

4.3.1 Degree of Interest Calculation

The interaction technique for applying gardening operations on the tree remains un-
changed during focus+context navigation in the tree. Growing and pruning opera-
tions are applied for selected nodes depending on the mouse button pressed. The se-
lected node is considered the focus node on which DOI calculations are based. When
a relation is selected, both connected nodes serve as focus nodes. In this case two
DOI values are calculated for a node in the tree. Both foci are then blended by simply
selecting the higher of both values for a node.

Before describing the actual calculation of DOI values in the arc tree visualization,
several constraints on the calculation will be explained.
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Constraints

The arc tree visualization is unlike previous visualization methods for trees that involve
DOI calculations as explained in Section 2.3.8. Therefore, the calculation of degree-
of-interest values will be explained in more detail. Several constraints have to be
satisfied for using interest values in the arc tree visualization. These will be discussed
in the following.

1. Tree Structure: Interest values should take the tree structure into account. As a
basis for DOI calculations the position of the focus node in the tree is regarded.

2. External Relations: External relations might be present in the arc tree visualiza-
tionṪhese relations have to be considered in determining DOI values.

3. Independence: Degree-of-interest values should be used for providing a naviga-
tion aid in the tree regardless whether external relations are present or not. The
calculation should, therefore, be independent of the presence of external rela-
tions but take these into account if available.

4. Node Metric: The calculated DOI values are to be used as a node metric for
adjusting the tree layout according to the selected focus.

5. Thresholding: The degree-of-interest is to be used as a threshold for the auto-
matic application of pruning operations. Therefore, the following conditions
have to be met.

a) Arrangement of DOI Values: The degree of interest of a node has to be equal
or higher than the DOI of its children. A node closer to the root of the tree
is considered to be more important since it provides general context infor-
mation. This constraint is also important since the automatic application
of a pruning operation depends on a selected threshold for a node’s DOI

value. The pruning operation was defined as a filter mechanism to hide
“unwanted” or “uninteresting” information. A node with a DOI below the
threshold can be pruned only if it has descendant nodes of lower or equal
DOI. If the DOI values were defined otherwise a pruning operation might
hide “interesting” nodes in a subtree below an “uninteresting” node.

b) Arrangement of Focus DOI: All ancestors of the focus node have to receive
exactly the same DOI as the focus itself. This constraint is important for the
following reasons:

◦ The ancestors of the focus node should never be pruned regardless of
the chosen threshold,

◦ If the DOI is chosen as a node metric more display space should be
reserved for ancestors of the focus node in comparison to their siblings.
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This ensures more display space for the focus due to the nested arc tree
layout, and

◦ No node should have a higher DOI than the focus node.

The remainder of this section will explain the degree of interest calculation in more
detail taking the described constraints into account.

Basic Degree-of-Interest Calculation

The calculation of a degree-of-interest for a node in the arc tree visualization draws
from ideas presented by FURNAS (1986). In his work the DOI of a node is calculated by
combining an a-priori structural importance of a node with an a-posteriori importance
which depends on user selection of a focus node. For the calculation of a DOI the
concept of distance between nodes in the tree is important.

Definition 4.1 The distance between nodes in a tree is defined as the length of the path
between source and target node.

The algorithm by FURNAS (1986) for calculating a DOI comprises three basic steps.

1. Calculation of an a-priori importance: The a-priori importance of a Node n in the
tree is equivalent to the distance of n from the root node r:
d(n, r) (cf. Figure 4.5(a)).

2. Calculation of an a-posteriori importance: The a-posteriori importance of a Node n

is given as the distance of n from the Focus Node f that was selected by the user:
d(n, f) (cf. Figure 4.5(b)).

3. Calculation of the final DOI values: The interest value of a Node n is given as:
FDOI(n) = −(d(n, f) + d(n, r)) (cf. Figure 4.5(c)). (The minus sign ensures the
correct logic behind the calculation: a larger distance from the focus means less
important).

Figure 4.5(c) also shows the existence of a focus area. A focus area and its context are
defined as follows:

Definition 4.2 A focus area comprises all nodes of equal degree of interest as the focus
node. The context area comprises all nodes not inside the focus area.

This algorithm fulfills three of the initial constraints:

◦ The tree structure is taken into account as well as the selected focus node,

◦ The ancestors of the focus node all have an equal degree of interest, and
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(a) The a-prioiri importance
of a Node n in the tree is
equivalent to the distance
of n from the root Node r:
d(n, r).
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(b) The a-posteriori impor-
tance of a Node n is given
as the distance of n from
the Focus Node f (drawn
in gray): d(n, f).
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(c) The degree of interest of
a Node n is given as:
FDOI(n) = −(d(n, f) +
d(n, r)).

Figure 4.5: FURNAS’ algorithm for calculating a degree of interest for tree nodes. The gray node was
selected by the user as the node of highest interest (focus node).

◦ All children of nodes outside the focus area have a lower degree of interest than
their parent.

Some adjustments to FURNAS’ algorithm were necessary to allow for the use of the
FDOI values in the arc tree visualization. These adjustments are necessary to fulfill
the remaining constraints. First of all, the degree-of-interest values are to be used as a
node metric to create layout changes for nodes of more or lesser interest. For example,
focus nodes can be displayed largest while nodes of lesser interest receive less display
space. Since node weights are defined as positive, non-zero values FURNAS’ algorithm
has to be adjusted to allow for positive degree of interest values. Another adjustment is
necessary since external relations might be present in the arc tree visualization. Nodes
connected directly to a focus node by a relation are considered “interesting” nodes
as well. Therefore, their degree of interest might have to be higher than the value
previously calculated. Therefore, the calculation of degree of interest values for the
arc tree visualization comprises three steps:

1. Calculation of DOI values according to FURNAS (1986).

2. Recalculation of FURNAS’ degree of interest values to positive, non-zero numbers
that can be used as a node metric.

3. Adjustment of degree of interest values if external relations are present.

These steps also ensure the independence constraints stated earlier. The calculation
is independent of the presence of external relations but take these into account if
available. The following sections will describe the last two steps in more detail.
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Adjustments to the Basic Calculation

For FURNAS’ degree of interest values to be used as a node metric the initial FDOI val-
ues calculated by his algorithm have to turned into positive, non-zero numbers. This
adjustment is performed in two steps. First intermediate DOI values are calculated
before these are turned into the final DOI values in the range [0 . . . 1].

The intermediate IDOI values are determined by a simple calculation:

IDOI(n) =
FDOI(n) − FDOI(focus)

−2
. (4.1)

The resulting IDOI values as seen in Figure 4.6 are zero for nodes in the focus area.
All other nodes have a higher IDOI depending on their distance to the closest node in
the focus area. The IDOI values have a range of: [IDOI(n) > 0].
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(a) FDOI values.
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(b) Intermediate IDOI values.

Figure 4.6: An intermediate step for recalculating FURNAS’ FDOI values for later determining final DOI
values for the arc tree visualization.

In the next step, these intermediate values have to be turned into non-zero values. If a
node weight equals zero the node is not drawn. Also, to be used as a node metric the
focus node should receive a higher degree of interest than nodes outside the focus area.
To fulfill these two criteria a non-linear distance function is proposed. The distance of a
node is defined to decline exponentially which also allows for faster integration of the
focus into the context area. Final DOI values for a Node n (DOI(n)) are determined
by:

DOI(n) =
1

mIDOI(n)
; m > 1. (4.2)

The range of DOI values is now: [0 < DOI 6 1]. If values for m are chosen to be
0 < m < 1 the focus node receives a smaller DOI value than context nodes. Used as
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a node metric this would lead to a miniaturization of the focus node and larger sizes
for nodes in the context. For m = 1 all nodes receive the same DOI value resulting in
a normal view following a definition by NOIK (1994). Values for m 6 1 are, therefore,
not considered to be useful in the context of the arc tree visualization and will not be
used. Figure 4.7 serves as an example for the calculation of DOI values in the arc tree
visualization.
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Figure 4.7: Adjustment to FURNAS’ algorithm.

Considering Relations in DOI Calculation

Relations play an important role in the context of the arc tree visualization. Nodes
connected with the focus node through a relation are considered “important” nodes.
Therefore, an additional step is needed to calculate new DOI values for these nodes.
In general, new DOI values are specified for all nodes connected by visible relations
from nodes in the focus area. The algorithm “walks” along these relations and ad-
justs DOI values as needed. For example, instead of the previously defined DOI

a Node n1 connected directly with the focus node will receive a degree of interest
DOI(n1) = 1

m
· DOI(focus) unless it already has an equal degree of interest. This

is continued recursively so that a Node n2 connected from n1 receives a degree of
interest of DOI(n2) = 1

m
· DOI(n1) unless its degree of interest is already equal or

higher.

Changes to DOI values due to relations also have to take the tree structure into ac-
count. One of the constraints at the beginning of this section specified that the degree-
of-interest of a child should always be equal or lower than the DOI of its parent.
Therefore, if a node receives a new DOI value its ancestors must be adapted as well.
If the DOI of a parent is lower than the DOI of its child node the child’s degree-of-

76



4.3 Focus+Context Navigation

interest is passed on to the parent node and recursively to all other ancestors. An
example of these two steps can be seen in Figure 4.8.
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(a) Original tree and its
DOI values. The current
focus is filled in gray.
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(c) B’s parent C has to be
adapted. C’s parent already
has an equal DOI. No fur-
ther steps are necessary.

Figure 4.8: Steps in adapting DOI values for Node B connected to Focus Node A.

The full algorithm takes not only those relations into account that directly connect
to the current focus but also those that might indirectly connect to the focus through
one of its descendants. The descendants’ relations have to be considered due to the
display of relations as explained in Section 3.4.5 and Section 4.2.2. If a relation ends
at a node that is currently pruned it is drawn to end at the next visible ancestor of
the pruned node (unless it is a hidden relation—in that case the relation is not drawn
at all). Therefore, even if a node is currently pruned its relations might be shown at
a higher level visible node. The focus node might then be connected to other nodes
through lower level relations. This case can be seen in Figure 4.9.

Figure 4.9: An arc tree with relation r(a, b) and s(focus, c). Relation r connects to the focus node
since the subtree below the focus is currently pruned. Relation s is a direct relation while r

indirectly connects to the focus.
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Therefore, the full algorithm for the recalculation of DOI values with consideration of
relations comprises the following steps:

1. Collect all relations currently connected to the focus directly or indirectly.

2. Follow these relations recursively and adjust DOI values if needed.

3. If a new DOI was set for a node adjust its direct ancestors if needed.

4. Repeat the previous steps for all other nodes in the focus area.

To exemplify the algorithm Figure 4.10 introduces a simple example where new DOI

values are calculated for nodes connected by relations.

(a) DOI values calculated without relations in the tree.

(b) DOI values redefined according to the displayed relation in the tree.

Figure 4.10: Calculations for new DOI values for nodes in the focus area with m = 2.

4.3.2 Lens Interaction

In an information visualization setting a lens generally comprises a movable region
on the screen comparable to a large magnifying glass that transforms information
below it (GUTWIN and FEDAK, 2004; LEUNG and APPERLEY, 1994). In the arc tree
visualization the user may place a lens on a focus node by directly selecting the focus
with Mouse Button 1. The lens’ transformation function serves as an information filter.
The information filter selects a subset of the nodes in the tree to show to the user.
When information filtering is performed, the user of a system is assigned a rather
passive role in contrast to information retrieval where information is actively sought.
The lens works for the user as an intelligent agent. Information has to be extracted by
the user but the lens searches in the background for “interesting” nodes and defines
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DOI values from a user-centered perspective. The key consideration in this process is
to help the user avoid information overload.

Information overload in the visualization is avoided by an automation for pruning
nodes in the tree. Nodes whose DOI value lies below a certain threshold (s = 1

mt ; t =

0, 1, 2, . . .) are selectively pruned. A t-order view of the tree is specified by the exponent
t defining the threshold,2 following a definition by FURNAS (1986). In contrast to his
algorithm, the nodes below the threshold are not completely omitted from the display
but collapsed to make all of its descendants invisible. Table 4.2 gives an overview of
the first t-order-views and their visual effects when navigating the tree with a lens.

Order Visual Effect During Navigation

0 All nodes with a distance > 0 from the focus area are collapsed.
Only the focus and its ancestors remain expanded. If not already
expanded, the focus is grown to show the first-level descendants (its
children).

1 All nodes with a distance > 1 from the focus area are collapsed. The
siblings of the focus and the siblings of the focus’ ancestors remain
expanded. At most the second-level descendants of the focus are
visible. Therefore, the tree will not grow higher than two levels from
the focus node.

2 All nodes with a distance > 2 from the focus area are collapsed. The
grandchildren of the ancestors of the focus remain expanded. At most
third-level descendants of the focus are visible.

Table 4.2: Visual effects of the first three t-level-views of a tree.

Table 4.3 gives an example of focus+context interaction on the tree. An encoding
technique to highlight the focus area might be of interest to the user to avoid disorien-
tation (CARPENDALE et al., 1997). The focus node is highlighted through user selection
in a specified highlight color. Apart from highlighting the selected focus node several
different encoding techniques are conceivable to distinguish nodes in the focus area
from context nodes. Figure 4.11 gives an overview of conceived encoding techniques.
However, since most include color changes these were not included in the arc tree visu-
alization because they interfere too much with the proposed color-coding mechanisms
as introduced in Section 3.4.4. The following section will be concerned with how the
focus area can, nevertheless, be distinguished from other nodes through the size in
which it is displayed.

2 The exponent t corresponds to the intermediate IDOI values.
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(a) Context nodes are colored with the same hue but a differ-
ent saturation and brightness component.

(b) Context nodes are colored with a light gray color.

(c) Context nodes are colored with a gray color similar in
brightness to the original color.

(d) Context nodes are displayed transparent. This mode
seems rather unemployable since the colors are blended
and the focus is hardly distinguishable from context
nodes.

Figure 4.11: Possible encodings to distinguish nodes in the focus area from context nodes.

4.3.3 Coping with Size

Graphical focus+context views have been introduced (for an early overview refer to
(LEUNG and APPERLEY, 1994)) as an extension to FURNAS’ initial approach (FURNAS,
1981). In graphical focus+context views the degree-of-interest is mapped to spatial
properties of the objects, usually spatial distance and size. One early example was
introduced by SARKAR and BROWN (1992) as “Graphical Fisheye Views of Graphs”.
In their visualization, nodes of greater interest are magnified while correspondingly
nodes of lesser importance become demagnified. Positions of all nodes and link bend
points are then recomputed to create a new focus+context display. One common
characteristic of these graphical focus+context views is that the a-posteriori impor-
tance depends on the spatial distance from the focus point. Figure 4.12 shows a typ-
ical function for the calculation of magnification factors for objects or points. These
functions typically decrease monotonously from the point of maximum magnification.

In the arc tree visualization, however, not the spatial but the structural distance from
the focus determines the DOI of a node in the tree. Therefore, the DOI values for
nodes in the spatial tree layout do not decrease monotonously over the Euclidean
space from the focus point. A node located spatially between the focus and another
node may have the lowest DOI of the three nodes depending on its place in the hi-
erarchy and its connectedness to the focus. To allow for graphical aspects in the fo-
cus+context display of nodes in the arc tree visualization DOI values are used for
determining a new node metric. In the tree layout algorithm a node’s weight at-
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(a) Side view of the magnification
function.

(b) Resulting focus+context view.

Figure 4.12: Example of a monotonic decreasing function for the calculation of a graphical fo-
cus+context view. Image created with the Elastic Presentation Framework by CARPEN-
DALE and MONTAGNESE (2001).

tribute is used to calculate the size and position for later display of the node. A node
metric algorithm changes this weight attribute depending on structural or content in-
formation present at a node. For further information on node metrics please refer to
Section 3.4.2. The following criteria were considered in the implementation of DOI

information as a node metric:

1. Nodes with a higher DOI should be displayed comparably larger than their sib-
lings and other context nodes.

2. Direct ancestors of the focus node should become larger as the focus moves
deeper into the hierarchy. This allows for larger display of the focus with its
distance from the root than with unchanged ancestors due to the nested tree
layout.

Equation 4.3 is used to determine a mapping of these two criteria to the weight at-
tribute of a Node n. The DOI of n is mapped directly to the weight attribute if
n is outside the focus area (i. e. DOI(n) 6= 1). If n is inside the focus area (i. e.
DOI(n) = 1) it is adjusted depending on its distance from the focus.

weight(n) =

{
DOI(n) + distanceFromFocus(n) : DOI(n) = 1

DOI(n) : else
(4.3)

distanceFromFocus(n) = level(focus) − level(n) (4.4)

One drawback of the proposed layout lies in the fact that the focus node might not
necessarily be the largest node displayed depending on the sizes of its ancestors and
their siblings. This calculation of the weight for a node, however, tries to guarantee
a more prominent display of the focus node at deeper levels in the hierarchy than
with a direct mapping to alleviate the previously mentioned drawback of the layout.
A visual example of this mapping can be seen in Table 4.4 which should be viewed in
comparison to Table 4.3.
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Zero-Order View First-Order View

a) Starting point for interaction with the tree is the display of the root node.

b) The root is selected, highlighted, and expanded. The focus is now on the root node.

c) The left node is selected as the focus. Its children are shown.

d) The right node is selected as the focus. The
previously expanded left node is collapsed.

d) The right node is selected as the focus. The
left node remains as is.

e) The children of the previous focus can be fur-
ther expanded without layout changes.

e) The children of the previous focus can be fur-
ther expanded without layout changes.

f) The left node is selected. The node on the
right is completely collapsed.

f) The left node is selected. The previous fo-
cus node is collapsed since its DOI is below the
threshold.

g) The last click repeated with a relation
present at the focus node. The layout change
remains the same.

g) The last click repeated with a relation
present at the focus node. The previous focus
node is not collapsed since its DOI is now above
the threshold.

Table 4.3: Sample steps in a focus+context navigation in the tree.
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Zero-Order View First-Order View

a) Starting point for interaction with the tree is the display of the root node.

b) The root is selected, highlighted, and expanded. The focus is now on the root node.

c) The left node is selected as the focus. Its children are shown.

d) The right node is selected as the focus. The
previously expanded left node is collapsed.

d) The right node is selected as the focus. The
left node remains as is.

e) The children of the previous focus can be fur-
ther expanded without layout changes.

e) The children of the previous focus can be fur-
ther expanded without layout changes.

f) The left node is selected. The node on the
right is completely collapsed.

f) The left node is selected. The previous fo-
cus node is collapsed since its DOI is below the
threshold.

g) The last click repeated with a relation
present at the focus node. The layout change
remains the same.

g) The last click repeated with a relation
present at the focus node. The previous focus
node is not collapsed since its DOI is now above
the threshold.

Table 4.4: Steps in focus+context navigation with node weights that depend on the DOI.
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Chapter 4 Interaction with a Focus+Context Visualization

4.4 Summary

The presented interaction techniques for the arc tree visualization introduce a method
for selectively zooming in and out of parts of the tree structure. Gardening operations
were introduced as interaction techniques to prune and grow parts of the tree depend-
ing on user interaction. These techniques act as a filter mechanism to eliminate un-
wanted information and avoid information overload. As an extension, focus+context
methods were presented to provide an automation for the filtering mechanism. De-
pending on user placement of a focus node a degree of interest calculation proposes
interest values for all nodes in the tree. The presence of relations was specifically
recognized in the calculation of a degree-of-interest for a node. The layout of the
tree is adapted by an automatic application of pruning operations depending on the
calculated degree-of-interest values. The user can influence the layout of the tree by
selecting a threshold for the application of pruning operations. In addition, the spatial
layout of the tree can be adapted to correspond in size to the proposed interest values.
An algorithm was developed to use the degree-of-interest values as a node metric for
the calculation of node sizes and positions in the arc tree visualization. One drawback
of the proposed layout lies in the fact that the focus node might not necessarily be the
largest node displayed depending on the sizes of its ancestors and their siblings. Fu-
ture work might include further implementation of semantic zoom which involves the
display of more or less detail of an object depending on how large it is displayed. In
particular, the proposed labeling scheme includes possibilities for additional semantic
zoom. Depending on interest values more or less text could be displayed in the label
for a node.

Chapter 3 and Chapter 4 have introduced the visualization and interaction possibilities
with the arc tree visualization. The following chapter will now be concerned with the
application of the visualization in different user task scenarios and its evaluation.
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CHAPTER 5

Case Studies and Evaluation

One of the prerequisites for designing the arc tree visualization was to design it as a
support tool for the use in an application software such as a reading environment,
text editor, or calendar. The presented case studies will introduce these and other
possible application domains for the arc tree visualization and example tasks to be
carried out in them. It will be shown how the stated problems for the visualization
task in Section 3.1 have been solved and how the set constraints in Section 3.2 have
been realized in the context of possible applications. However, at this stage of the
development the visualization is not bound to a specific task or application domain.
How an evaluation of the arc tree visualization can be carried out regardless of having
a specific application domain in mind will be the topic of Section 5.2. Specific aspects
for which an evaluation would be most appropriate at this stage of the development
of the visualization will be highlighted.

5.1 Case Studies

Providing interaction mechanisms for many possible tasks was presented as one of
the challenges in the creation of the arc tree visualization (cf. Section 3.1). The user
of an interactive visualization typically has different tasks at hand depending on the
data set provided. Four case studies serve as demonstrations of the use of the arc
tree visualization in different kinds of applications with different analysis tasks. The
arc tree visualization will first be used as a visualization tool for structured documents
in possible conjunction with a reading environment or a text editor application. The
tasks to be supported in this case are reading and writing of scientific texts. In a second
example the arc tree visualization will be used for analyzing sports tournament data.
Calendar data will be used in the third case study followed by a seemingly different
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visualization of relations in a data set created from the hierarchical structure of a study
program.

Different aspects of the visualization will be shown in all cases with an emphasis on
visualization and navigation factors. Problems and constraints for building the visual-
ization as stated in Chapter 3 will be discussed in context.

5.1.1 Structured Documents

Many written documents are organized according to a specific set of rules. A book,
for example, could be described as comprising a title, a table of contents, a series of
chapters, an appendix, and a list of references. Each of these parts of the book may
be further structured. A chapter could be made up of a title and a preamble followed
by a series of sections. Markup languages like SGML, XML, or HTML are examples
of descriptions for structured documents. Textual documents structured with many of
these languages can be created and maintained in plain text and later rendered in a
variety of different ways. In the arc tree visualization XML is used as a description for
the input of hierarchical data. Structured documents and relations in those documents
are an example of a data set that can be displayed in the arc tree visualization, as can
be seen in Figure 5.1.

Book

1 Chapter

1.1 Section

1.2 Section

2 Chapter

2.1 Section

2.2 Section

3 Appendix

(a) Table of contents.

Book

1 Chapter

1.1 Section 1.2 Section

2 Chapter

2.1 Section 2.2 Section

3 Appendix

(b) The table of contents as a tree structure.

Figure 5.1: A hierarchical layout for structured documents.

A structured document can be regarded as a composition of a number of group elements
(such as sections or chapters) and fine elements, called chunks, that form the leaves of
the hierarchical structure. Examples of chunks include paragraphs, images, list items,
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equations, or tables. Such a structure that describes a document in a much finer level
than a table of contents is visualized in Figure 5.2.

Book

Chapter Chapter

Section Section

Paragraph List

Item Item

Paragraph Image

Section

Chapter

Figure 5.2: A structured document is comprised of chunks that form the leaves of the tree and group
elements that themselves contain chunks or other group elements.

Apart from the inherent parent-child relations many other relations between elements
in a structured document are possible. Direct relations in a text may include figure,
table, section, page, or equation references and citations. Chunks could also be re-
lated indirectly in the number of keywords they contain from a query or through other
attributes like the number of annotations a user made or the date of last change. Ex-
amples for relations are now evaluated further in a case study on how the arc tree
visualization can be used for several tasks involving reading and writing of structured
documents.

Reading

The reader of a scientific textbook is usually interested in only one specific topic of the
book. He or she might begin the search for references on a topic of interest by looking
it up in the table of contents or by searching the index pages. When skipping to a
section that comprises the sought information, the reader might soon discover that in
order to understand the covered contents background information from previous sec-
tions is required. The book on “Computer Graphics: Principles and Practice” by FOLEY

et al. (1990) sets a good example. As a standard reference book on topics in computer
graphics it covers over 1000 pages of material. If a reader is, for instance, interested
in the section on shadows he or she might not have the time to read all previous 700
pages to get the background knowledge covered in earlier chapters. Nevertheless, the
reader will discover that background knowledge about light sources, the Phong illu-
mination model, visible-surface determination, scan-line algorithms, or the z-buffer
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is needed when learning about shadows. An author of a book could help a novice
reader in a certain research area such as computer graphics by providing additional
information on required reading for sections of a book. If a reader is given information
which chapters or sections need to be necessarily read before a topic of interest can
be understood he or she might save a lot of time skipping back and forth between the
section of interest and sections covering background information. The reader could
collect information from all required sections first and then page down to the section
of primary interest. The arc tree visualization can serve as a good visualization tool for
such “requires knowledge of” or “is a prerequisite for” relations between elements of
structured documents as is shown in the following.

As a reference serves a data structure representing specific parts of the book by FOLEY

et al. (1990). In this example, following the definitions given in Section 3.3, a node
u ∈ N stands for a text chunk or a group element. The incidence function defines
the connection for a relation r ∈ R to the tree: φ : R → N × R; φ(r) = (u, v) with
r ∈ R; u, v ∈ N and without loss of generality the information in u is a prerequisite for
understanding the information in v.

Figure 5.3 presents an arc tree visualization which gives an overview of the book with
its 21 chapters and Appendix. It can be seen that the constraint concerning a layout
for ordered tree as stated in Section 3.4.2 is important in this case. The viewer sees
the chapters in the right order which corresponds to the mental model he or she might
already have of the book’s structure.

Figure 5.3: An overview of the chapters covered in Computer Graphics: Principle and Practice by FOLEY

et al. (1990).

In this case study the reader is interested in getting information about algorithms for
the implementation of shadows in computer graphics. From the table of contents he
or she finds out that Chapter 16 Section 4 is concerned with shadows. Having no
previous knowledge about shadow algorithms he or she might not be familiar with
all the background information needed to understand the algorithms covered in this
section. Typically, this deficiency is only discovered while reading the section of inter-
est. If additional information on required reading is provided the arc tree visualization
can give a good overview of sections needed to be read. Figure 5.4 shows additional
information describing “requires knowledge of” relations for Section 16.4. The circu-
lar button below Chapter 16 tells the reader that some sections in the same chapter
are required reading. The reader will also notice a relatively wide arc between Chap-
ter 15 and 16 which represents more than one connection between both chapters. He

88



5.1 Case Studies

or she might then first demand additional information on Chapter 15 and find out
through the tooltip that Chapter 15 is concerned with visible surface determination
which seems to be an important aspect of shadow algorithms.

Figure 5.4: Relations represent connections to chapters that include information on which sections
need to be read to understand Section 16.4.

Focusing on the endpoints of the other connections the user will, for example, discover
that the connection to Chapter 3 stands for needed background information on anti-
aliasing and Section 12.6.4 covers binary space partitioning trees (cf. Figure 5.5).

Figure 5.5: The focus is placed on Section 12.6. In a next step detail on demand is called for the node
representing Section 12.6.4 which is a prerequisite for understanding Section 16.4.

The reader might decide to have enough knowledge on both topics and concentrate on
the seemingly most important information in Chapter 15. A click on the arc connecting
to Chapter 15 reveals four relations between both chapters. In a focus+context view
eight focus nodes are placed in the visualization. This leads to the eight connected
nodes being displayed larger in comparison to their siblings giving a clearer picture of
the connected nodes in Figure 5.6. By calling detail on demand the reader will notice
that the knowledge of four algorithms is needed for implementing shadows: Appel’s
Algorithm, a z-Buffer Algorithm, Scan-Line Algorithms, and the Weiler-Atherton Algo-
rithm. Each of these algorithms is connected to one different shadow implementation
covered in Section 16.4. Based on this information the reader can now decide to con-
centrate on a shadow algorithm for which he already has the required background,
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to concentrate on a specific one, or to go through all algorithms after learning the
required background information.

Figure 5.6: The focus is placed on all nodes connected by relations from Chapter 15 to Section 16.4.

The arc tree visualization might, for the presented example, be used as a modular com-
ponent of an electronic reading environment. It was built to require a small amount
of vertical screen real estate and could be integrated as a larger menu or status bar.
One could also imagine the visualization to be rotated by 90◦ and be integrated verti-
cally as a side bar. This integration would correspond to the reading order in typical
electronic reading environments, such as the ACROBAT READER. The interaction on
the visualization could be coupled with an interaction in the text currently being read.
Clicking on a leaf node in the tree could cause the referenced text chunk to be shown in
the reading environment. In contrast, the sections currently being read in the loaded
document could be highlighted and focused in the visualization.

Writing

For writing scientific texts a number of rules, styles, or formats have evolved. These
styles typically describe the organization of a scientific text. One set of rules affects
direct relations between text elements and their references in the text. Such direct
relations may include figure, table, list item, or equation references. THE COUNCIL OF

BIOLOGY EDITORS (1994) presents two rules regarding the positioning of tables, and
figures:

◦ Tables are placed in a document as close as possible to their first mention in the
text.

◦ Figures are placed in a document as close as possible to the first point in the text
at which they are referred to.

The same rules hold for list items or equation references. Non of these text elements
should be placed in a document without a reference in the text. The following case
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study involves the arc tree visualization as a tool for the analysis of these “is referenced
at”-relations in a scientific text. In this case study a node u ∈ N stands for a chunk or
a group element, following the definitions given in Section 3.3. The incidence function
defines the connection for a relation r ∈ R to the tree: φ : R → N × R; φ(r) = (u, v)
with r ∈ R; u, v ∈ N and without loss of generality u is a figure element and v a group
element, paragraph, list, or a list item.

We assume that an author wants to check his or her text on errors regarding figure
references. He or she wrote a book that covers topics on non-photorealistic rendering
in three chapters and a preface as can be seen in Figure 5.7.

From the text the author of the book extracted references between figures and the
paragraphs in which the figures are mentioned. He or she loads these references in
the arc tree visualization with the result shown in Figure 5.8(a).

Figure 5.7: Part of a book covering non-photorealistic rendering in three chapters and a preface.

The first striking relation extends from Chapter 1 to Chapter 3 of the book. Since it
is rather uncommon for pictures to be referenced from another chapter the author
decides to click on the arc. Both endpoints of the relation are revealed as seen in
Figure 5.8(b).

A large layout change is the result of this interaction. However, since the author is
well acquainted with his or her own writings he or she will be able to integrate the
changes with his or her mental model of the data set. A user less acquainted with
the data might need smooth transitions between the two views to understand the
layout change. The implementation of smooth transitions will be discussed further in
Section 6.2.

In order to differentiate between the various types of nodes in the visualization the
author opens a color chooser dialog and sets colors for the different types of nodes
present in the visualization. The different colors and node types can be seen in Ta-
ble 5.1 and Figure 5.9.

After the chosen colors are applied to all nodes, the visualization changes as shown
in Figure 5.10. It can be seen that a paragraph in Chapter 3 referencing an image
in Chapter 1 is the result of the wider arc between both chapters. This reference
can now be checked and corrected by the author if necessary. The author also notes
that the image stands in context to two other images and is also referenced in a list
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(a) The same book with references between figures and paragraphs.

(b) The relation between Chapter 1 and Chapter 3 was selected by the author.

Figure 5.8: The same book augmented with relations and the first interaction step performed on the
visualization.

environment preceding the three images. The visualization of hidden relations directs
the user to group nodes that contain further figures and references. These can, in turn,
be opened to verify that the relations were correctly specified.

In the next step the author wants to verify that he or she did not miss any references in
the preface. A lack of direct reference and hidden relations identified by the absence
of a circular button below the preface node was noticed by the author. He or she clicks
on the preface node and a low threshold for lens interaction causes all open chapters
to close. The author then chooses a higher threshold and opens all group nodes in the
preface. As can be seen in Figure 5.11 the preface contains only paragraph nodes and
one list. No references to figures were missed in the preface.

The author of a text might not necessarily be interested in checking all relations in the
document but concentrate on sections recently edited. With the arc tree visualization
structural problems in the text can also be discovered. For example, the first section
below a chapter should be preceded by an introductory paragraph, a section should
commonly cover more than one subsection etc. Such writing styles could be verified by
analyzing the layout of the tree structure. The arc tree visualization might be especially
helpful for authors with little writing experience who are often less organized in the
creation of a document than experienced writers. It could be integrated as a modular
component in a text editor. An author could call the visualization on demand to verify
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Type Name Color

Book BOOK white

Group GROUP gray

Lists ul, ol dark green

List Item li light green

Paragraph p orange

Image img red

Table 5.1: Node types and their colors chosen by the author. Figure 5.9: Color chooser dialog.

Figure 5.10: The relation between Chapter 1 and Chapter 3 was selected by the author. Additionally
colors are applied according to node types.

his or her writing style and references. Found errors could then be directly corrected
in the text with the visualization in mind.

In the last two case studies several of the previously mentioned constraints for the
visualization can be observed:

◦ The visualization offers an ordered tree layout essential in the interpretation of
structured document data,

◦ The display of arcs in the visualization allows for fast interpretation of external
relations,

Figure 5.11: The focus is placed on the preface of the book. All other chapters are closed automatically.
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◦ Interaction mechanisms allow the exploration of the data,

◦ A global overview of the data is given,

◦ Affordances are provided to help the identification of expandable nodes, and

◦ An effective use of screen real estate is provided.

These constraints can also be observed in the following case studies but will not be
specifically mentioned again. The emphasis will now be placed on the presentation of
possible application domains and the analysis tasks involved.

5.1.2 Sports Tournaments

Sports tournaments played with an elimination system are another common hierarchi-
cal data set. Figure 5.12 presents an extract from a typical tournament diagram. The
diagram shows the semi-finals and the final game. The winner stands at the root of
the tree.

Winner Final

Winner Semi-Final1

Winner QuaterFinal1

Winner QuaterFinal2

Winner Semi-Final2

Winner QuaterFinal3

Winner QuaterFinal4

Figure 5.12: An extract from a typical tournament diagram. The diagram shows the semi-finals and
the final game. The winner stands at the root of the tree.

Tennis tournaments are commonly played in an elimination ladder system. Figure 5.13
gives an overview of the 127 games played in the ladies’ singles tournament at Wim-
bledon 2004. The leaf nodes are formed by the 128 female players who competed in
the first round of the tournament.

Figure 5.13: An overview of the Wimbledon 2004 ladies’ singles games.

Several different types of relations can be conceived for a tournament like Wimbledon.
Many people might be interested if players of their own nationality excelled at a tour-
nament. Following the definitions given in Section 3.3, such an example is defined
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as follows. A node u ∈ N stands for a player who competed in Wimbledon’s ladies’
singles tournament 2004. The incidence function defines the connection for a relation
r ∈ R to the tree: φ : R → N× R; φ(r) = (u, v) with r ∈ R; u, v ∈ N and without loss
of generality u competed against v in one round of the tournament and either u or v

have a given nationality.

For this year’s games with German participation this leads to a clear picture in the
overview display. Only three German players competed in the ladies’ singles tourna-
ment and all of them lost in the first round as can be seen in Figure 5.14. Nodes
representing German players were drawn in red. For one player additional detail was
called and her name is revealed as Ms. Weingartner in the displayed tooltip.

Figure 5.14: Relations represent games with German participation at Wimbledon’s ladies’ singles tour-
nament 2004. Red nodes stand for German players.

For female players with a US passport the same visualization leads to a cluttered dis-
play as can be seen in Figure 5.15. Clearly, a large number of US-players competed
and the larger the arc the further the players advanced in the tournament. Each red
node in the tree signifies a US-player. Taking a closer look at the visualization the
larger stack of red nodes signifies a rather successful US player who advanced far in
the tournament. From this image it is hard to see which first round games involved
US-players. As an extension to the arc tree visualization, in this case a filter mechanism
for the view of relations might be of interest. Relations could be filtered by the level
to which they connect.

Figure 5.15: Relations indicate games with US participation at Wimbledon’s ladies’ singles tournament
2004. Red nodes stand for US players.

To find out more about the later games in the tournament the user could switch to a
lower level view of the tree. Figure 5.16 shows this year’s final. The red node stands
for Serena Williams, a US player identified by the label displayed at her node. She
did not win the game as can be seen by the blue colored root node. This example
shows one further extension possibility for the arc tree visualization. If additional
information is provided with the loaded relations these could be displayed on demand
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by clicking on the arc. In this example, a tooltip would display the results of the game
as prototypically shown in Figure 5.16.

Figure 5.16: An overview of the Wimbledon 2004 final in the ladies’ singles tournament. The red nodes
stand for a US player. A tooltip could display additional information for relations.

Figure 5.17 provides a further overview of the last games in the Wimbledon ladies’
tournament. As can be clearly seen both semi-finals had US-participation while only
two of the quarter-finals were played by US players. One of the quarter finals, however,
was played solely by US ladies which can be recognized from the wider arc and the
two red-colored nodes.

(a) Semi-finals and final. (b) Quarter-finals, semi-finals, and final.

Figure 5.17: Wimbledon 2004 ladies’ singles tournament. Relations represent games with US partici-
pation. Red nodes stand for US players.

Wimbledon is one of the tournaments that attract a high number of top-ranked players
each year. To allow for a large crowd of spectators to watch games with star-players
the Wimbledon organizing committee ensures that:

“Every effort is made to have the potentially most attractive matches played
on the courts with the most spectator accommodation but care has also to be
taken to give any player likely to go far in the tournament his or her fair share
of the show courts.” (AELTC and IBM CORP., 2004).

Another relation that can be visualized with the arc tree visualization involves two
players who played against each other on the Center Court, one of Wimbledon’s show
courts. This type of relation r is defined as: φ(r) = (u, v) with r ∈ R, u, v ∈ N, and
without loss of generality u played against v on the Center Court during one round of
the tournament. Figure 5.18 gives an overview of all games played on the Center Court
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at Wimbledon’s 2004 ladies’ singles tournament. A new labeling style is introduced.
Labels are only shown for nodes connected by a relation. Although labels overlap it
can be seen that number one seeded Serena Williams played most of her games on the
Center Court. Counting the relations it can actually be discovered that she played in 6
of the 15 Center Court games.

Figure 5.18: An overview of games played in Wimbledon’s 2004 ladies’ singles tournament. Relations
stand for games played on the Center Court. Labels are only displayed for nodes connected
by a relation.

Being the most important court at Wimbledon the Center Court hosts the most attrac-
tive games as can be seen in Figure 5.19. The user of the visualization zoomed into the
four lowest levels of the tree to see the quarter-finals and all later games. As can be
perceived the final and semi-finals were all played at the Center Court. In the quarter-
finals only the top seeded game between Serena Williams and Jennifer Capriati was
played on the Center Court and a game from the parallel subtree which would possibly
put forth another of the later finalists: Maria Sharapova vs. Ai Sugiyama.

Figure 5.19: Quarter-finals and later games played in Wimbledon’s 2004 ladies’ singles tournament.

The arc tree visualization could be used as a visualization integrated as an interactive
component in web-pages on sports tournaments. Such a visualization would augment
typical tournament diagrams or tables with tournament results.
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5.1.3 Calendar

Much effort in today’s life is put into managing a large amount of appointments. Cal-
endar applications typically focus on providing a good interface for organizing one’s
personal schedule. However, visualizations for calendar data are rather rare. In par-
ticular, an analysis of recurring events is difficult in common applications. The user of
an electronic calendar might be particularly interested in the start and end times or
possible exceptions to an otherwise regularly recurring appointment. Recurring events
are typically encoded by an icon (as in MS OUTLOOK), by a highlighted border (as in
the MOZILLA CALENDAR Project), or displayed with small dots in an overview window
(as in the PALM DESKTOP Software). Getting an overview of recurring events is rather
difficult with each of these visualizations. Start and end times or the type of recurrence
(i.e. monthly, weekly, etc.) have to be found by going through the whole calendar or
by calling detail on demand on one occurrence of the appointment.

The arc tree visualization is not an ideal environment for managing one’s personal cal-
endar since it does not offer an interface for editing events but it might be a valuable
visualization tool for recurring events as a modular component of a calendar applica-
tion. In this case study one year’s calendar serves as the hierarchical data structure.
An exemplary tree structure for calendar data is presented in Figure 5.20. In this case
study a node u ∈ N stands for an event or a period of time, such as a year, month, or
day, following the definitions given in Section 3.3. The incidence function defines the
connection for a relation r ∈ R to the tree: φ : R → N × R; φ(r) = (u, v) with r ∈ R;
u, v ∈ N and without loss of generality u and v are nodes of the event type and v is an
immediate recurrence of u.

Year

Month

Day Day

Event Event

Day

Month

Day Day Day

Event Event

Figure 5.20: Example of a hierarchical calendar data structure.

An overview of the year 2004 and a sample set of events and their relations is given
in the arc tree visualization in Figure 5.21. From this figure one or possibly more
recurring events are noticed that last from April to August. From the different widths
of the arcs and circular buttons a slight discontinuity of the recurrence can be inferred.

To get a closer look the user zooms into the months of interest as can be seen in
Figure 5.22. From this view the user can get an insight into the type of recurrence of
the presented events. One event occurs monthly while the other one seems to be a
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Figure 5.21: An arc tree visualization of the year 2004 and a sample set of events.

weekly appointment with one exception in the middle of May. The second event lasts
until August while the first event ends in July. This is the reason why the last arc in
Figure 5.21 is just slightly smaller than the previous arcs.

Figure 5.22: The user zoomed in on the months April to August.

For further insight into the weekly appointment and why it is not scheduled to take
place during one week in May the user decides to place the focus on the month of
May in Figure 5.23. He or she zooms in on the weekly appointment and calls detail on
demand on the type of event. The user is familiar with German holidays and notices
that May 20th is a holiday which is the reason that no appointment is scheduled.

Figure 5.23: The user zoomed in on the months April to August. Detail on demand is called for one
occurrence of the weekly appointment.

If many more recurring events are displayed it becomes more and more difficult to get
a clear picture of a single stream of events. However, as can be seen in Figure 5.24,
the arc tree visualization can be used as an analysis tool to identify busier and quieter
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weeks or months in one’s personal schedule. From mid-April to mid-July the schedule
is rather dense while the number of appointments starts to decline beginning in mid-
July.

Figure 5.24: Display of a larger number of recurring event. Trends betweens busier and quieter months
can be seen.

When few recurring events are displayed, the visualization provides a fast overview
of start and end times and possible exceptions to the type of recurrence such as a
rescheduled or a missed appointment due to a holiday. When a large number of re-
curring events is displayed at a time, some extensions to the visualization might be
necessary. For example, all connected arcs for a recurring event could be colored in a
special highlight color once the user selected one of the events. Instead of a special
color a filter mechanism could be introduced that displays arcs for recurring events
based on the choice of the user. A filter could be placed on the visualization based on
the type of recurrence, the start, or end date, etc.

5.1.4 Study Program Organization

The following example involves the visualization of the composition of a study pro-
gram. The task is to visualize that the chosen program of study involves lectures in
many different research areas. As an example the composition of one student’s lec-
tures and seminars taken in Magdeburg’s Computational Visualistics program before
the completion of the final Diplom thesis has been chosen. In general the student has
to take courses in the following areas:

◦ Computer Science: Courses are offered by the Faculty of Computer Science.
Different departments such as the Department of Simulation and Graphics, Data
and Business Information Systems, etc. offer courses in different areas. A num-
ber of different courses have to be chosen.

◦ Mathematics: Courses are offered by the Faculty of Mathematics including cal-
culus, linear algebra, numerical analysis, and geometry. Special courses are re-
quired.

◦ General Visualistics: Courses are offered by different faculties. Subjects include
psychology, philosophy, education, or design. Different subjects have to be cho-
sen.

100



5.1 Case Studies

◦ Applied Subject: Different subjects are offered by different faculties including
medicine, image engineering, or material science. One subject has to be chosen.

A tree structure can be built from this study system as seen in Figure 5.25. The first
level of the tree is formed by the four main research areas a student has to cover. The
second level represents all faculties that offer courses in the respective research area
followed by departments and lectures or seminars a student can take. This hierarchi-
cal structure should show that a large number of faculties and topics are covered by
students in the computational visualistics program.

Computational Visualistics

General Visualistics

. . . Faculty

. . . Department

Lecture . . .

. . .

. . .

Computer Science

Faculty

. . . Department

Lecture . . .

. . .

Mathematics

Faculty

. . . Department

Lecture . . .

. . .

Applied Subject

. . . Faculty

. . . Department

Lecture . . .

. . .

. . .

Figure 5.25: Basic tree structure of the Computational Visualistics program.

Relations can be introduced on this tree depending on the subjects a particular student
chose in the course of his or her studies. The incidence function defines the connection
for a relation r ∈ R to the tree: φ : R → N× R; φ(r) = (u, v) with r ∈ R; u, v ∈ N and
without loss of generality u is a node on Level 1 representing one of the four research
areas and v is a course taken in the respective research area by the student.

Figure 5.26 gives an overview of the Computational Visualistics program. Relations
have been loaded from one student’s schedule. The size of the nodes is defined by a
node metric dependent on the number of relations ending or starting at a node. From
the size of the nodes and the buttons for hidden relations the user of the visualiza-
tion can infer in which research areas the student took more lectures or seminars in
comparison to the other areas.

Figure 5.26: An overview of the Computational Visualistics program. The tree metric used for the
display depends on the number of relations starting or ending at a node.
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Zooming two levels into each research area results in a visualization as seen in Fig-
ure 5.27. The visualization shows departments that offer courses in the respective
research area. In the “General Visualistics” area the user calls detail on demand on a
larger node that seems to represent a department at which the student took several
courses. The size of the relation in this case is a better indication to the number of
courses a student took than the node size. Although the number of relations incident
at a node has been chosen as a node metric the size of the nodes can only be com-
pared to the sizes of their siblings. The explanation for this characteristic was given
in Section 3.4.2. An example is given in Figure 5.27. Detail on demand is called for
the Department of Political Science which is connected by the widest of the arcs in the
“General Visualistics” area. Three faculties to the right another node has a similar size
but is connected with a smaller arc. This is due to the fact that the Department of
Political Science has many siblings and has to share the display space available from
its parent. The other seemingly equally sized node has no siblings and can take up all
available display space its parent node provides.

Figure 5.27: An overview of the Computational Visualistics program. Relations show courses taken in
a specific area.

The user of the visualization is now interested in finding out more about the subjects
taken in the “Computer Science” area. He or she chooses focus+context interaction
and places a focus on the “Faculty of Computer Science” causing all other faculties to
collapse. The node metric is changed to calculate node sizes from the number of visible
descendants of a node to make nodes occupy more space if they have more visible
descendants to display. The resulting presentation can be viewed in Figure 5.28. The

Figure 5.28: The focus is placed on the Computer Science Faculty causing all other faculties to collapse.

viewer realizes that the student took most courses at the Department of Simulation and
Graphics. He or she chooses to find out more about the offered courses and selects
the arc connecting to the department of interest. The visualization created after this
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interaction is shown in Figure 5.29. The user can now go through the opened lectures
and seminars and call detail on demand to view the full titles.

Figure 5.29: The user selected the arc connecting to the Department of Simulation an Graphics in the
previous image.

The visualization of this data could be presented online for students to get a better
overview of which courses they might take in the different research areas. It might
also be interesting for the assessment of a student’s academic background if a user is
unfamiliar with the visualized study program. The visualization was created to show
a seemingly different relational layout. All relations start at one of four lower level
branches which leads to a fan-like layout.

The discussed case studies have been evaluated without questioning potential users
of the visualization tool. How a formal evaluation of the arc tree visualization can be
performed is the topic of the following section.

5.2 Evaluation

“Evaluate: to determine the significance, worth, or condition of — usually by
careful appraisal and study.” (MERRIAM-WEBSTER, 2004)

Evaluating how well a system performs is a very common task in many areas of com-
puter science. The areas providing most relevant information on an evaluation of the
arc tree visualization are human-computer interaction and information visualization.
A brief introduction to evaluation in both areas will be given in this section. These de-
scriptions are followed by an assessment on how evaluation of the arc tree visualization
can be performed.

5.2.1 Evaluation in HCI

In the field of human-computer interaction (HCI) evaluation is defined as follows:
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“Evaluation is concerned with gathering information about the usability or
potential usability of a system in order either to improve features within
an interface and its supporting material or to assess a completed interface.”
(PREECE, 1993)

The field of HCI is concerned with how people use computer systems and how sys-
tems can be improved to better meet the users’ needs. Studies in HCI involve four
components: the user, his or her task or job, the context of the job, and the computer
system used (PREECE, 1993). One main aspect of research in HCI is the assessment
of user interfaces through which users interact with a computer system to perform a
certain tasks. PREECE et al. (1996) introduce four main reasons to perform evaluation
in human computer interaction:

1. Understanding the real world: Learn how a system is used in a real work
environment.

2. Comparing designs: Test design ideas in the creation of a system to integrate it
in the final product.

3. Engineering towards a target: Ensure that a target that was set in the creation
of a computer system is met (e. g., a system is at least as good as another one).

4. Checking conformance to a standard: Test a computer system against stan-
dards that were set in the creation of the product.

5.2.2 Evaluation in Information Visualization

In contrast to HCI, evaluation in information visualization is a research area that has
just recently begun to evolve. Since information visualizations now find their way
into an increasing number of commercial computer systems new evaluation meth-
ods specifically tailored to assessing the value of visualization are needed. PLAISANT

(2004) identifies a special need to present further evidence of measurable benefits of
visualizations to encourage their wide-spread adoption. According to CHEN and CZER-
WINSKI (2000) urgently needed are improved methods in areas such as task analysis,
usability evaluation, and usage analysis.

PLAISANT (2004) introduces three reasons for performing evaluation in information
visualization and their thematic areas:

1. Comparing designs: Design elements of one or more visualizations or two or
more visualization tools are compared through controlled experiments. The latter
case is the most common type of study in information visualization.
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2. Test usability: A visualization tool is tested with potential users through a us-
ability evaluation. The goal is to find potential problems of a tool and to identify
possibilities for refinement.

3. Understanding the real world: Test a visualization tool in realistic settings
through case studies. This is the least common study in information visualization.

A connection between evaluation in HCI and information visualization is introduced
through the increasing integration of visualizations in common computer tools. Ac-
cording to MORSE et al. (2000), tests of visualizations are rarely undertaken except as
a part of an overall usability testing of a system in which a visualization is integrated.
This type of evaluation is an important research topic in HCI.

Before a visualization tool can be tested for its overall performance in a task, usability
testing should be performed on visual elements and metaphors upon which the design
of a visualization was built. Such studies can help to better understand the strengths
and weaknesses of a tool or the tasks for which it is most appropriate. Furthermore,
possible improvements might be discovered. If done early enough in the design pro-
cess evaluation can point to aspects of a visualization where efforts should be focused.
It might even point to new directions for interesting and useful research.

5.2.3 Evaluation of the Arc Tree Visualization

To assess possible evaluation methods for the arc tree visualization the stage of the
visualization in the design life-cycle has to be considered. Information visualization
designers are encouraged to design tools with a global scope that can be used with a
variety of data types and applied in many application domains. According to PLAISANT

(2004), this generality forms an impairment for a task-specific evaluation of informa-
tion visualization. Possible adopters of a visualization are more interested in an evalu-
ation of a system that meets their specific needs. The arc tree visualization is currently
not restricted to a specific application domain, data, or task. It was also designed to
be generic in nature. Therefore, experiments involving specific tasks or data sets are
not the evaluation method of choice at this design stage. The evaluation of the arc
tree visualization should rather be confined to testing the overall design choices made
in the creation of the tool. Such an evaluation could test design choices, affordances,
and interaction metaphors described in the previous chapters.

In particular, the following aspects of the arc tree visualization should be the subject of
an evaluation:

◦ Tree Layout: The design of the nested tree structure of the visualization should
be evaluated. Previous studies of tree layouts using containment as an encod-
ing technique have already identified potential advantages and problems which

105



Chapter 5 Case Studies and Evaluation

have been discussed in Section 3.4.2. The tree layout was chosen deliberately
due to the advantageous use of screen real estate to be able to use the arc tree
visualization as a modular component of information displays. Also, the tree
layout allows the display of relations with minimal edge-node intersections. An
evaluation could test if these deliberate choices are justifiable, i. e., if another
tree layout with a display of direct connections might be easier to understand.
Such an evaluation could be performed by having users interpret and compare
different designs. Features of the nested tree layout might also be tested. For
instance, an appropriate offset size needs to be identified that enables a good
display of the tree structure, large enough sizes for the display of nodes, and an
adequate size for selecting nodes through a mouse click.

◦ Relation Layout: The basic relation layout is based on a previous study showing
that connectedness can be a more powerful grouping principle than proximity,
color, size, or shape (PALMER and ROCK, 1994). This finding should be confirmed
by a user study. The display of relations could be compared to a display of
relations in the same tree using color coding.

◦ Visualization of Nodes: Emphasis should be placed on assessing if the intended
affordance in the visualization of nodes through the use of a 3D-depth cue is
achieved. Users could be asked to identify expandable and non-expandable
nodes in a visualization. Another possibility for testing the visualization of nodes
could involve comparisons between different designs. Was the chosen node
shape ideal or would a circular, oval, or rectangular shape be more appropri-
ate?

◦ Visualization of Relations: The encoding of indirect and direct relations could
be assessed to find out if the interpretation of transparent and opaque relations
is straightforward or leads to interpretation errors. This encoding could be com-
pared to another design choice using color to encode the two types of relations
(e. g., gray for indirect relations and a color for direct relations). The same
type of evaluation should be performed for the encoding of hidden relations.
The questions to be answered are: Is the interpretation of the created circular
buttons straightforward or do users interpret these buttons in a way previously
unthought of? Does the display of these buttons create the intended affordance
of being selectable?

◦ Focus+Context Presentation: The presented focus+context technique is novel
in that it takes relations in the data into account. One of the main assumptions in
the creation of the focus+context display could be tested: Are nodes connected
from the focus area really “important” nodes? Or would a regular focus+context
display be sufficient or even more appropriate?
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◦ Interaction: One of the requirements for interaction in a visualization discussed
in Section 3.2 is a low cognitive load on the user. Smooth transitions and no
abrupt layout changes are necessary for a user to keep a mental model of the
data. However, since the implementation of smooth transition between different
views is a topic for future work on the arc tree visualization this evaluation should
be delayed until smooth transitions are integrated.

5.3 Summary

This chapter introduced four case studies for the application of the arc tree visual-
ization in real world applications and tasks. For each of the tasks the strengths and
possible weaknesses of the arc tree visualization were described. The assessment of
the visualization was extended by potential areas for further development of the tool.
The shown case studies only include a small set of the possible application domains for
the arc tree visualization. Other application domains have to be extrapolated from the
shown examples. Further application areas for the arc tree visualization include project
planning, especially the visualization of critical paths, visualization of relations in tax-
onomies and classifications, or in bibliographies. The last section assessed possibilities
for a user-centered evaluation of the arc tree visualization. Areas were highlighted
where an evaluation would be most appropriate at this stage of the development of
the visualization.
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CHAPTER 6

Conclusion

Creating effective visualizations poses many problems including an appropriate repre-
sentation of the data to be displayed, a meaningful encoding of attributes of the data,
and the need for offering intuitive interaction techniques to explore the data. This
chapter summarizes how this thesis attempts to solve these problems. The develop-
ment process is briefly outlined followed by a short description of the main aspects
considered in the creation of the visualization. In addition, possible directions for fu-
ture work in the realm of the presented visualization are discussed in the last section.

6.1 Summary of Contributions

This thesis deals with the creation of an effective information display. It presents a
novel visualization for the display of relations in hierarchical data structures. Many
of the problems in the display of direct links on tree structures can be solved with the
developed visualization technique. A particularly novel aspect is the consideration of
relations in the development of focus+context navigation and presentation.

The discussion of visualization techniques (in particular graphical variables, Gestalt
laws, and the visual information seeking mantra) and the analysis of related work in
Chapter 2 forms the basis for the development of the visualization in Chapter 3. In
the design of the visualization, encodings for the hierarchical tree structure and rela-
tions between data items were of primary concern. Chapter 4 enriched the developed
visualization with methods for an interactive exploration of the data. The created vi-
sualization was subsequently analyzed with respect to possible application domains in
Chapter 5 which also introduced possible areas for evaluation of the presented visual-
ization tool.
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In the development of the visualization the following points were emphasized:

◦ The display of relations using direct links since connection has been shown to
be a strong grouping principle,

◦ Visualization of a hierarchical structure for ordered trees,

◦ Effective use of screen real estate,

◦ Providing possibilities for a global overview of the data,

◦ Interaction mechanisms for the exploration of the data set including options
for focus+context navigation, and

◦ Providing affordances and encodings for attributes of the data to make the
interface more intuitive to use and understand.

For the visualization of tree structures a nested tree layout was chosen to be able
to restrict the visualization in space. The display of relations was solved using arc-
shaped glyphs which can be adapted in height and shape. An effective use of screen
real estate is achieved through these layout choices. Interaction possibilities include
zoom and filter mechanisms for tree content. Automation for interaction on the tree is
offered through user-centered focus+context navigation. Affordances and encodings
for attributes of the data were carefully chosen. How and if these choices are successful
should be further tested with user studies. Several other extension possibilities for the
arc tree visualization will be discussed in the following.

6.2 Future Work

This section describes possibilities for future work on the arc tree visualization. These
have not been implemented in the current version of the program but will provide
valuable contributions once integrated.

6.2.1 Visualization

The visualization of relations can be extended by providing information on the direc-
tion of a relation. In some application domains the direction of a relation might be
important to know. Encoding possibilities include placing an icon indicating direction
on top of the arc or showing the direction through shading as seen in Figure 6.1. In-
tegrating this encoding in the arc tree visualization would make its display of relations
more powerful than most other commonly used approaches. The use of color, texture,
shape, etc. cannot visualize directions of binary relations.
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(a) Encoding through an icon. (b) Encoding through shading.

Figure 6.1: Encoding possibilities for the direction of a relation.

Another extension for the visualization of relations involves the integration of several
types of relations in one display. As seen in the calendar example presented in Chap-
ter 5.1, if a larger set of different relations is presented it might be advantageous to
distinguish them by color.

The presented case studies also showed the need for a more sophisticated label layout.
Labels can easily overlap if they become too large or too numerous. An improved label
layout includes the display of abbreviated labels if nodes become too small, or the in-
tegration of focus+context interaction and degree of interest values with label layout.
Another possible label layout involves the display of vertical labels which would also
lead to less occlusion in the display.

Filter mechanisms for relations could also augment the visualization. Relations could
be filtered depending on choices made by the user (e. g., display relations which con-
nect to one certain node only, or those which start or end at a specific level of the
tree).

6.2.2 Interaction

The implementation of smooth transitions is an important point for future work on the
arc tree visualization but was not of primary concern in the creation of interaction and
visualization techniques. It can, however, be integrated in the visualization with a fair
amount of programming effort.

Finally, detail-on-demand could not only be included for nodes but also for relations
if such information is made available. As for nodes, tooltips could present additional
information for relations if called for. A prototypical implementation was presented in
Figure 5.16.
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6.2.3 Evaluation

Before the visualization is further developed in the context of a special application do-
main, user studies as suggested in Section 5.2 should be carried out. These might give
insight into possible problems of the current visualization and point to areas which
need further development. If the visualization is to be used for a special application
domain further user studies should identify the exact tasks users need to carry out
with the visualization. Then, an adjustment of the visualization should be performed
to make the arc tree visualization an ideal information display for a specific task in a
certain application domain.
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Appendix

A.1 Tree Representations

Different Tree Representations
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Table A.1: Conventional Tree Representations. Many examples taken from (KNUTH, 1997).

127



Appendix A Appendix

A.2 Graph Theory Definitions

This section will introduce a selection of basic terminology used in graph theory. The
given definitions follow those introduced by (GROSS and YELLEN, 1999).

Definition A.1 A graph G = (V, E) is a mathematical structure consisting of a finite,
non-empty set V, a finite set E, and an incidence function ϕ : E → V × V; ϕ(e) = (u, v)
with e ∈ E and u, v ∈ V. The elements of V are called vertices or nodes, and the elements
of E are called edges. Each edge has a set of one or two nodes associated to it that are
called its endpoints.

Definition A.2 A directed edge is an edge with one endpoint designated as the tail and
the other endpoint designated as the head.

Definition A.3 A self-loop is an edge that joins a single endpoint to itself.

Definition A.4 A multi-edge is a collection of two or more edges having identical end-
points.

Definition A.5 A directed graph (or digraph) is a graph with all its edges being di-
rected.

Definition A.6 The underlying graph of a directed graph G is the graph that results from
removing all edge directions of G.

Definition A.7 A graph or digraph is simple if it has neither self-loops nor multi-edges.

Definition A.8 In a graph, a walk from vertex v0 to vertex vn is an alternating sequence
W =< v0, e1, v1, e2, . . . , vn−1, en, vn > of vertices and edges such that ϕ(ei) = (vi−1, vi)

for i = 1, . . . , n.

Definition A.9 A graph is connected if for every pair of vertices u and v there is a walk
from u to v.

Definition A.10 A digraph is connected if its underlying graph is connected.

Definition A.11 A trail is a walk with no repeated edges.

Definition A.12 A path is a trail with no repeated vertices (except possibly the initial
and final vertices).

Definition A.13 A walk, path, or trail is trivial if it has only one vertex and no edges.

Definition A.14 A nontrivial closed path is called a cycle.

128



A.3 Color Scales

A.3 Color Scales

Color scales are commonly used to encode numerical values where each value is as-
signed its own color. This section introduces the color scales available in the arc tree
visualization and their respective advantages and disadvantages.

Color Scales for Visualization

Gray Scale This scale is not considered to be a color scheme but
is often used. It is simple and has a natural sense of
order (from dark to bright). The disadvantage of the
gray scale is its limited dynamic range (only 60 to 90
Just Noticeable Differences).

Linearized
Gray Scale

This scale is perceptually linearized to make perceived
distances between adjacent gray values as uniform as
possible. The disadvantage is that a large amount of
values is mapped to dark gray values.

Heated Ob-
ject Scale

The intensity of the three primary colors rises
monotonously and with the same amount of magni-
tude. The basis for this color scale is the fact that the
human visual system is most sensitive to luminance
changes in the orange-yellow hue.

Magenta
Scale

The intensity of the three primary colors rises
monotonously and with the same amount of magni-
tude. The basis for this color scale is the fact that the
human visual system is most sensitive to hue changes
for the magenta hue.

Optimal
Color Scale

This color scale was introduced by LEVKOWITZ and
HERMAN (1992). It maximizes the number of distinctly
perceived colors and maintains a natural order among
the colors.

Linearized
Optimal
Color Scale

This color scale resembles the Optimal Color Scale but
is also perceptually linearized.

continued on next page
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Color Scales for Visualization

Blue to Yel-
low Scale

This scale provides a clear differentiation between neg-
ative blue values and positive yellow values. This scale
has a higher perceived dynamic range (measured in
Just Noticeable Differences) than the gray scale, thus
providing better perceptual resolution.

Blue to Cyan
Scale

The blue to cyan scale belongs to a class of scales each
spanning 60 degrees out of the 360 degrees of the hue
circle. This scale does not include red or green colors.
This it avoids problems with the most common color
deficiencies.

Rainbow
Scale

This scale traverses colors along a path from black to
white through all the colors of the rainbow. The colors
are traversed at different lightness.

Table A.2: Color scale options for the additional encoding of level
information.

A.4 Design Study for the Visualization of Hidden Relations

For the visualization of relations hidden in the subtree below a collapsed node sev-
eral encoding techniques were considered. Figures A.1–A.4 give an overview of the
techniques thought of.

Hidden relations are visualized by drawing a self-loop below the collapsed node in
Figure A.1. A self-loop has the advantage that it corresponds to graph drawing con-
ventions and its function might, therefore, be easier recognized by a first-time user.
This encoding technique was not chosen since self-loops could not be easily recog-
nized and selected when the node has a very small width.

Figure A.1: Hidden relations visualized through a self-loop.
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A.4 Design Study for the Visualization of Hidden Relations

Hidden relations are indicated with an arc shaped glyph in Figure A.2. The arc-shaped
glyph has the advantage that it resembles the already used glyph for representing
relations.

Figure A.2: Hidden relations are indicated with an arc shaped glyph.

Hidden relations are indicated by circular buttons in Figure A.3. This encoding tech-
nique was chosen and is further explained in Section 4.2.2.

Figure A.3: Hidden relations are indicated by circular buttons.

Hidden relations are indicated by an arc shaped icon on the surface of the node. This
encoding technique was not chosen since these icons cannot be recognized if the width
of the node becomes too small.

Figure A.4: Relations indicated by an arc shaped icon on the surface of the node.
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