Petra Isenberg

Visualization for Large Multi-touch Interactive Surfaces Tutorial PacificVis 2011

Petra Isenberg

Visualization for Large Multi-touch Interactive Surfaces Tutorial PacificVis 2011

Background

Diplom, University of Magdeburg Computational Visualistics

- PhD , University of Calgary *Computer Science*
- *WINRIA* PostDoc

WINRIA Research Scientist, INRIA French National Research Institute for CS

Past Research Overview

Interaction

multi-touch/ direct-touch

graph layout

data selection

data manipulation

3D data interaction

Socio-technical aspects

collaboration

context

coordination

awareness

reasoning

Current Work

infrastructure

perception

tangible infovis

4

why large multi-touch displays?

people work not only on desks people interact with their environment directly people work not always by themselves desktop screens are often too small support new data analysis scenarios & environments

Picture from (McGee, 2001)

exciting possibilities for visualization

new audiences

@ Ars Electronica Center, Linz

http://www.multigesture.net/

new audiences: example

SyncLost is a multi-user installation for immersion in the history of electronic music

http://3bits.net/synclost/

floating.numbers (2004)

visualizes the relevance of numbers exhibition at the Jewish Museum/Berlin

exciting possibilities for visualization

new environments

meeting rooms

museums

emergency response / war rooms

shared work spaces (research labs, offices, ...)

ambient displays (hallways, ...)

MS Surface Blog

WorldNews.com

Perceptive Pixels

9

exciting possibilities for visualization

new presentation & interaction possibilities

more degrees-of-freedom input

- higher pixel count
- different data projections

touch & cognition?

Sphere (Benko et al., UIST o8)

WILD Wall + Tabletop (INRIA)

Scarpet - http://vimeo.com/19933042

Sphere multi-touch

today

13:30 – 15:00 Large Display Technology Software Frameworks

Coffee Break

15:30 - 17:00

Visualization Challenges & current solutions Collaboration Challenges & current solutions

multi-touch large interactive display

>= 30" surface as main interface several simultaneous inputs

part I.I:

Large Display Technology

part I.I:

a bit of a history

PLATO (mid 1960s)

Touch screens (single touch) Flat panel plasma displays

http://www.billbuxton.com

http://advancedtrading.com/

One-Point Touch Input of Vector Information (1978)

8 signals from one touch point

<u>http://www.youtube.com/watch?v=vMkYfd0sOLM</u> (via billbuxton.com)

Touch-Sensitive Tablet (1985)

A MULTI-TOUCH THREE DIMENSIONAL TOUCH-SENSITIVE TABLET

SK. Lee, W. Buxton, K.C. Smith

Digital Desk (1991)

A real classic!

Wellner, P. (1991). The Digital Desk Calculator: Tactile manipulation on a desktop display. *Proceedings of the Fourth Annual Symposium on User Interface Software and Technology (UIST '91)*

Responsive Workbench (1994)

required glasses & gloves multi-user visualization applications

Krüger, W., Fröhlich, B. **The Responsive Workbench** IEEE Computer Graphics and Applications, 14(3), pp. 12-15, 1994

More vis examples later...

the perfect display for visualization

basic choice: vertical vs. horizontal

Microsoft Surface

Tasks with equal participation

Presentation

Rogers, Y. and Lindley, S. (2004) Collaborating around *vertical* and *horizontal* displays: which *way is best*? Interacting With Computers, 16, 1133-1152

part I:

a selection of current examples

Disclaimer:

I do not guarantee any pricing information to be correct Prices may or may not include additional hardware/software/support

Microsoft Surface 1.0

	Tradeoff
Screen Size	30″
Resolution	1024 x 768
Marker Detection	Yes
Identity Detection	No
Multi-touch	52
Display	Bottom-projected
Cost	\$12,500 US (no longer sold)

SMART Table

Screen Size	30″
Resolution	1024 x 768
Marker Detection	No
Identity Detection	No
Multi-touch	120
Display	Bottom-projected
Cost	\$5999 USD

http://smarttech.com

DiamondTouch

R	

Screen Size	42″
Resolution	Projector dependent
Marker Detection	No
Identity Detection	Yes
Multi-touch	1 per person
Display	Top-projected
Cost	\$12,500 USD

http://www.circletwelve.com/

ICT-Multitouch

http://www.ict-multitouch.de

Screen Size	50″
Resolution	1920 x 1200 (44ppi)
Marker Detection	Yes
Identity Detection	No
Multi-touch	32
Display	Bottom-projected
Cost	~\$60 000 USD

Other companies:

IntuiFace (France) Reactable (Spain \rightarrow dedicated music platform)

Other solutions: DIY (later)

. . .

Further Reading: <u>http://sethsandler.com/interactive-table-list/</u>

URAN COMPUTER INTERACTION SERIES

Christian Müller-Tomfelde (Ed.)

Tabletops - Horizontal Interactive Displays

2 Springer

Perceptive Pixels Multi-touch Wall

http://www.perceptivepixel.com/

Multi-touch Cells

Screen Size	Modular (46" each) up to 14 connected
Resolution	1920 x 1080
Marker Detection	yes
Identity Detection	No
Multi-touch	unlimited
Display	LCD
Cost	€8500 - €11500 each

http://multitouch.fi/

University of Groningen – curved multi-touch wall

http://www.youtube.com/watch?v=AIWFtF06RFo

Screen Size	10m x 2.8m
Resolution	4900 x 1700 (~13ppi)
Marker Detection	~
Identity Detection	no
Multi-touch	yes
Display	backprojected
Cost	DIY project

ring°wall

ring^owall Interactive Multimedia Wall

	-	- 200			Max.
Akerten Bise				P	
 And the second se					

Screen Size	1771″
Resolution	28,800 x 1,200 (~16ppi)
Marker Detection	~
Identity Detection	no
Multi-touch	yes
Display	back-projected
Cost	custom made

sensory-minds.com

LCD/Plasma MT displays

Surface 2.0

Screen Size	40″
Resolution	1920 x 1080
Marker Detection	yes
Identity Detection	no
Multi-touch	yes
Display	LCD
Cost	\$7,600 Summer 2011

LCD/Plasma MT displays

NUITEQ Flat 46" Multi-touch Frame

Screen Size	46″
Resolution	1920 x 1080
Marker Detection	no
Identity Detection	no
Multi-touch	32
Display	LCD
Cost	9000 € ~\$12.000 USD

http://www.microsoft.com/surface/
LCD/Plasma MT displays

PQLabs 46" Multi-touch Frame

Screen Size	46" (up to 250" possible)
Resolution	up to you
Marker Detection	no
Identity Detection	no
Multi-touch	32
Display	LCD
Cost	~\$3000 USD (46")

LCD/Plasma MT displays

Many different overlays from other manufacturers:

further reading

<u>http://perspectivevoxel.posterous.com/</u> (Johannes Schöning) <u>http://interactivemultimediatechnology.blogspot.com/</u> (Lynn Marentette) <u>http://www.touchuserinterface.com/</u>

what resolution is good enough?

Resolution:

of pixels per unit distance, here: per inch = ppi

Assume: regular grid, square pixels

Further Reading: Chapter: High-resolution Interactive Displays (Ashdown et al.)

what resolution is good enough?

Minimum Resolution: Based on text readability: min. 48ppi to read 12pt text min. 6oppi to read 10pt text min. 6pt font on Windows w/ 96ppi Tullis TS, Boynton JL, Hersh H (1995) Readability of Fonts in the Windows Environment

Maximum Resolution:

Assume: use at arm's length (61cm) 0.59 arc minutes visual acuity

max. 300 — 500 ppi Practically most monitors ~ 110ppi OS assume between 72ppi (MacOS) — 100ppi (X)

41

what resolution is good enough?

	Front/ Native (pixels)			Physical (inches)			Res.		
Tabletop system	Rear	Horiz	Vert	Diag	Hori	z Vert	Diag	Mpxl	(ppi)
DigitalDesk [7]	F	1120	780	1365	18	12	22	0.87	63
DigiTable [15]	F	1024	768	1280	34	26	42	0.79	30
DViT Table (med. res.) [16]	F	2048	1024	2290	60	48	77	2.10	30
DViT Table (high res.) [17]	R	2800	2100	3500	60	48	77	5.88	45
Escritoire (fovea) [18]	F	1024	768	1280	17	12	20	0.79	63
Escritoire (periphery) [18]	F	1024	768	1280	48	36	60	0.79	21
i-m-Top (fovea) [19]	R	1280	720	1469	12	8	14	0.92	106
i-m-Top (periphery) [19]	R	1280	768	1493	47	32	57	0.98	26
InteracTable [20]	R	1024	768	1280	33	26	42	0.79	30
Lumisight [21]	R	1024	768	1280	16	16	22	0.79	57
Origami [4]	F	1024	768	1280	16	12	20	0.79	64
Surface [22]	R	1024	768	1280	26	15	30	0.79	43
T3 [23]	F	3072	1536	3435	48	36	60	4.72	57

Data from 2009

for good resolution:

multi-projector solution + DIY DI

high resolution displays + overlay

e.g. 4k display at 64" (~72ppi)

assuming 1080p projectors

touch input

Further Reading: Chapter: From Table–System to Tabletop: Integrating Technology into Interactive Surfaces (Kunz & Fjeld)

Early Touch Input: Resistive

resistive sensing

- overlay of two transparent layers of conducting material
- gap between them closed by touch: connection
- location from linear system

only one simultaneous touch

DViT Input

- Digital Vision Touch
 - IR light strips along sides
 - cameras in four corners
 - cameras see "shadow" of touch before the IR strips
 - triangulation to find positions
- domains: tables & walls

- pros: back & front-projection, touch size detection
- cons: ≤2 independent touches, each touch counts

DIY DViT [Korkalo and Honkamaa, 2010]

- camera arrangement important
- fast cameras
- stable detection of 4–5 touchpoints

FTIR Input

• Frustrated Total Internal Reflection (Han, 2005)

- domains: tables & (large) walls (e.g., CNN etc.)
- pros: general shapes, many touches
- cons: general shapes, special surface, no ID, bulky bottom

more details : <u>http://www.anneroudaut.fr/</u> (the original) <u>http://www.aviz.fr/~isenberg</u> (some additional detail)

Diffuse Illumination

- back-projected (4) screen (1)
- IR flooding from below (2)
- cameras (3) to capture the IR light reflected from touch
- multi-touch, shapes, and reflection patterns (e.g., 2D barcodes)

- domains: (smaller) tables & walls (e.g., MS Surface)
- pros: hover, shapes & patterns, many touches
- cons: hover, no ID, bulky bottom

DIY FTIR & DI

by Alex Castle

http://www.tuio.org/

Embedded Optical Sensing

- extension of the diffuse IR flooding technique
- several smaller
 IR emitters &
 sensors (cameras)

 pros: thin, scalable, multi-touch, general shapes one of most promising solutions

Liquid Displacement Sensing

- malleable surface for top-projected display
- setup:
 - plexiglas carrier
 - black ink layer
 - latex sheet seal
 - camera below surface
 - touch displaces ink
 - bright spot visible
 - captured by camera
- pros: pressure-sensitive, any shapes, simple setup
- cons: only horizontal surfaces, only front projection

Ack. Tobias Isenberg

Creating Malleable Interactive Surfaces using Liquid Displacement Sensing

Advanced Resistive Touch Sensing: IFSR

- IFSR: Interpolating Force-Sensitive Resistance
- main ideas:
 - not only wires at borders, but grid of wires
 - 2. force-sensitive resistive materials (bumpy layers)
- results:
 - produces pressure image
 - thin overlays possible
 - transparent overlays possible
 - multi-resolution sensing possible, inexpensive, flat
 - fingers and pens are easily distinguishable

What if I want to build my own?

- Many videos out there
- Tutorials available:
 - e.g. <u>http://wiki.nuigroup.com/</u>
- Can be fun but be warned: A lot of fiddling required (be patient and ready to test and try)
- My opinion: if you have the money buy something that works out of the box (if your main interest is on the vis side)

More information on current technologies

- Tutorial material at <u>www.its2010.org</u>
- Blogs, Wikipedia, ...

part I.II:

Software Frameworks

Criteria

- Several touch input frameworks available:
 - OS independence
 - Open source
 - Basic multi-touch detection (find touch-points)
 - Addition. per-touch data (extension, orientation,...)
 - Support for tangibles
 - Access to raw image
 - Gesture detection

- ...

TUIO http://www.tuio.org/

- It's a protocol not a library
- De facto industry standard

		TUIO	
	1	1.1	2
Basic Multitouch Detection	Y	Y	Y
			ellipse
			data,
		ellipse	geometry,
Additional per-touch Data	Ν	data	pressure
Tangible Support	Y	Y	Y
Raw Image	Ν	N	Y
			negative
Hover	N	N	pressure
OS Independent	Y	Y	Y
Open Source	Y	Y	Y

Information based on Framework tutorial by Ulrich von Zadow, ITS 2010

CCV http://ccv.nuigroup.com/

- TUIO tracker implementation delivers TUIO events
- Works with all optical setups (FTIR, DI, DSI, ...)

Basic Multitouch Detection Additional per-touch Data Tangible Support Raw Image Hover

OS Independent Open Source

Many more...

http://www.tuio.org/?software

Microsoft APIs

- Integrated into WPF event model

Basic Multitouch Detection Additional per-touch Data Tangible Support Raw Image Hover	Microsoft WPF Touch (4.0) Y N N N N N	Surface SP1 Y N Y Y Y N
OS Independent Open Source	N N	N N
Hand-Finger Correlation Gestures	Ν	Ν
Integrated Zoom/Pan/Rotate	Y	Y
Other Gesture Support	N	only tap & hold
Inertia	Y	Y
Widget Support	basic widgets, not multiuser	Y

Information based on Framework tutorial by Ulrich von Zadow, ITS 2010

Python API: PyMT http://pymt.eu/

- Followed by new project: Kivy http://kivy.org/

Basic Multitouch Detection	Y
Additional per-touch Data	Y
Tangible Support	Y
Raw Image	N
Hover	N
OS Independent	Y
Open Source	Y
Hand-Finger Correlation	N
Gestures	
Integrated Zoom/Pan/Rotate	Y
Other Gesture Support	?
Inertia	N
Widget Support	Y

libavg http://www.libavg.de/

- Framework with Python API
- Screen layout (xml) + interaction (python)

Basic Multitouch Detection Additional per-touch Data Tangible Support **Raw Image** Hover **OS** Independent **Open Source** Hand-Finger Correlation Gestures Basic Zoom/Pan/Rotate Integrated Zoom/Pan/Rotate Other Gesture Support Inertia Widget Support

Information based on Framework tutorial by Ulrich von Zadow, ITS 2010

Visualization/Graphics frameworks/TK with MT input support

- Processing (check out MT4j)
- VTK (possible example here: https://sites.google.com/site/pierrefillard/coding-blog/multi-touchgesturesinvtk)
- InfoVis toolkit (not in online version)
- Flare (through flash libraries)

part II:

visualization applications for large touch technology

New Contexts

for information visualization

Interaction Design Representation Design Socio-Technical Aspects of Data Analysis Infrastructure

part II.I:

interaction challenges

Multi-Touch Devices

Opportunities:

Challenges:

Multiple DOF, Engaging, Collaboration, Kinesthetics(?) ... Fat fingers, Fatigue, Infrastructure ...

Visualization Interaction Challenges

• Multiple levels of detail

Visualization Interaction Challenges

- Multiple levels of detail
- Multitude of interaction types

blications	Taxonomic units	
	interaction techniques	
neiderman (1996)	Overview, zoom, filter, details-on-demand, relate,	
]	history, and extract	
ja, Cook, and	Focusing (choice of [projection, aspect ratio,	
ayne (1996) [9]	zoom, pan], choice of [variable, order, scale, scale-	
	aspect ratio, animation, and 3-D rotation]), linking	
	(brushing as conditioning / sectioning / database	
	query), and arranging views (scatter plot matrix	
	and conditional plot)	
Chuah and Roth (1996) Basic visualization interaction (BVI) operations:		
[13]	graphical operations (encode data, set graphical	
	value, manipulate objects), set operations (create	
	set, delete set, summarize set, other), and data	
	operations (add, delete, derived attributes, other)	
c and Ellis (1998)	Highlighting and focus, accessing extra	
	information - drill down and hyperlinks, overview	
	and context, same representation / changing	
	parameters, same data / changing representation,	
	linking representation - temporal fusion	
Keim (2002) [24]	Dynamic projections, interactive filtering,	
	interactive zooming, interactive distortion,	
	interactive linking and brushing	
Wilkinson (2005) [54]	Filtering (categorical/continuous/multiple/fast	
	filtering), navigating (zooming/panning/lens),	
	manipulating (node dragging/categorical	
	reordering) brushing and linking (brush	

Visualization Interaction Challenges

- Multiple levels of detail
- Multitude of interaction types
- Multitude of complex representations

One example:

Information Visualization Interaction with

DIRECT-MANIPULATION

Tabletop Workspace

Voida et al. - ITS/Tabletop 2009

iLoupe/iPodLoupe

Explorations into:

- Resolution discrepancies among data, display, and input
- Facilitating face-to-face interaction

Resolution Discrepancies

Related Work

- Heavily explored in HCI
- How does this transfer to Visualization application?

Dual-Finger Offset

Design Exercise:

- How would you invoke a selection?
- How would you ask for detail-in-context?
- What if the data is < 1px?

Dual-Finger Stretch

- Data overview/context lost
- Disrupting in collaboration

Benko et al., CHI 200684

LucidTouch

RidgePad

View Changes

Value Operations

View vs. Value Operations

- Important to consider in visualization
 - Changes to data by one person
 = changes to data viewed by another person?
 - How does one relate views?

Collaboration

Collaboration

additional social challenges to take into account

http://diamonspin.free.fr

iLoupe

Past Solutions

Drag Mag Prototype 1

Ware and Lewis, 1995

Carpendale & Montagnese, 2001

iPodLoupe

Comparison

Resolution Discrepancy	Overlay (Non-Distorted) Direct resize, widgets	Secondary device Direct resize, widgets
View and Value	Control via lens' frame	Multi-touch/gesture
Interaction	Interaction through interior of the lens	Interaction through entire device surface
Face-Face Interaction	Free, portal-based magnification and rotation	Free, device-based magnification and rotatio

Summary

- loupe approach to address
 - resolution discrepancy
 - view & value interactions
 - collaboration
- BUT
 - interaction not very fluid
 - all interaction immediate (can still be disruptive)
 - context integration not great

Tangible Views

...but what if we want to invoke

VIEW CHANGES WITH DIRECT-TOUCH?

Challenge

3D visualization requires:

view manipulation with 7DOF

(x/y/z translation, x/y/z rotation, zoom)

But:

- 2-touch input
 - > 4DOF

Design: Frame Interaction

Direct-Touch Interaction for the Exploration of 3D Scientific Visualization Spaces

Lingyun Yu Pjotr Svetachov Petra Isenberg Maarten H. Everts Tobias Isenberg

university of groningen

...but what next?

VIEW CHANGES AREN'T EVERYTHING!

Let's look closer at...

THE CASE OF SELECTION

One approach

• Lenses

Another...

• Use of interaction tools

Gestures

• What if we want to make use of the true power of multi-touch?

Desktop Selection

Traditional Selection

Multi-touch Selection

Multi-touch Selection

- How do virtual and physical techniques carry over?
- How will people use hands and fingers?
- How dextrous will they be?
- Will they focus on single objects or groups?

HCI Solutions

Pile-N-Browse

From (Wu et al., 2006)

HCI Solutions

Multi-modal interaction

From (Tse et al., 2008)

HCI Solutions

Physics -based

From (Wilson et al., 2008)

Study

Goals

- Study tasks with manipulation of large number of small objects
- Compare gestures from physical/mouse to surface
- Derive gesture vocabulary

- 1.) One handed applied to a group
 - Splayed hand pushes pieces
 - One hand shove
 - Pinch
 - Hand and palm

2.) One handed – applied to single item

- Drag single item
- Select single items with multiple fingers
- Toss single object

3.) Two handed – applied to single group

- Both hands coalesce large group to small
- Two-hand transport
- Add/remove from selection

4.) Two handed – applied to > 1 group

- Drag two objects with pointer fingers
- Two hands grab points in sync
- Rhythmic use of both hands
- Two hands grab groups

5.) Surface Only

- One hand hull manipulation
- Two-hand hull manipulation
- Treat finger like a mouse
- Push hard to multi-select

6.) Physical Only

- Lift up
- Go outside the lines
- Slide around objects
- Texture-based
- Toss chips between hands
- Drag and drop some chips on the way

High-level Summary

- Participants showed influence of previous condition
 - Gestures sets and work speed influenced
- Multi-touch grouping was common
- Two-handed interaction common
 - Wide variety of coordinations (in sync, in parallel, ...)

Take-Away

- Grouping gestures and group operations often required
- Possibly most valuable: ephemeral operations (e.g. open-hand grab & move)
- Design of grouping gesture requires great care
 - Wide variety of gestures
 - Wide variety of coordination strategies
 - Expectations differed

Application Graph Manipulatiom

- Touch used for "testing connection", moving single nodes
- Dual touch to "move edge"
- Convex Hull + Rotate & Translate
 - To organize long chains & cliques

MT Graph Interaction

Sebastian Schmidt, Miguel Nacenta, Raimund Dachselt and Sheelagh Carpendale. **A Set of Multi-touch Graph** Interaction Techniques. In *Proceedings of Interactive Tabletops and Surfaces - ITS'10*. ACM Press, 2010

MT Parallel Coordinates Interaction

Robert Kosara, Poster: Indirect Multi-Touch Interaction for Brushing in Parallel Coordinates, *IEEE Information Visualization Posters*, 2010.

Summary

- Many more types of interaction in visualization
- Unified mapping needed to MT

part II.II:

representation challenges

Distortion to 3D visual elements

The effects of changing projection geometry on the interpretation of 3D orientation on tabletops. Mark Hancock, Miguel Nacenta, Carl Gutwin, and Sheelagh Carpendale. In *Proc. ITS*, pp. 175-182, 2009

Example

assume we have a 3D model

Example

this is what we would expect to see on the table

Example

this is what we would actually see on the table

Recommendation

- If you have 3D information:
 - use parallel projection
 - with camera above center of the tabletop

Distortion to 2D visual elements

Wigdor, D., Shen, C., Forlines, C., Balakrishnan, R. (2007). Perception of Elementary Graphical Elements in Tabletop and Multi-Surface Environments. Proceedings of the 2007 SIGCHI conference on human factors in computing systems (CHI 2007)

Visual variables tested on range of orientations

Wigdor, D., Shen, C., Forlines, C., Balakrishnan, R. (2007). Perception of Elementary Graphical Elements in Tabletop and Multi-Surface Environments. Proceedings of the 2007 SIGCHI conference on human factors in computing systems (CHI 2007)

Recommendations from this study **for tables**:

- Relative comparison of values is less accurate when they are not at similar up/down distance
- Some visual variables are more accurately compared:
 - length > position (lateral) > angle (lateral) > area > position (upright), angle (upright), slope
 - most robust: position, angle should be display laterally
 - if both upright & lateral display required: use position

Wigdor, D., Shen, C., Forlines, C., Balakrishnan, R. (2007). Perception of Elementary Graphical Elements in Tabletop and Multi-Surface Environments. Proceedings of the 2007 SIGCHI conference on human factors in computing systems (CHI 2007)

Visual variables in context

Figure 2: A chart could have one of two types of questions. Each participant was asked to identify the maximal decreasing pair (shown as points 1 to 2) or maximal increasing pair.

OA-Graphs: Orientation Agnostic Graphs for Improving the Legibility of Charts on Horizontal Displays Fouad Alallah Dean Jin Pourang Irani, ITS 2010

Perceptual Scalability

- how much data can a person effectively perceive?
- visual scalability = the ability of visualizations to effectively display large amounts of data (affected by human perception, visual metaphor, display, algorithms, computation) [Eick & Karr]
- a visualization that is perceptually scalable should not result in an increase in task completion time or error
 - when time is normalized to the amount of data

Perceptual Scalability

They tested:

Fig. 2. BARS embedded visualization.

Fig. 3. GRAPHS embedded visualization.

Bars & Graphs

Large Display

Yost, B., and C. North, "The Perceptual Scalability of Visualization", *IEEE Transactions on Visualization and Computer Graphics*, vol. 12, no. 5, pp. 837-844, 2006

Perceptual Scalability - Result

- Data increased 20x from small to large
 - Task completion time increased 3x
 - Accuracy did not decrease significantly
- Users navigated physically & gained overview
- On large display spatial grouping seemed more important than visual encoding (small multiples vs. data embedded on a map)

Summary

- perception may be affected when displaying visualizations on large displays
- what visual representations work best?
- what is the cognitive limit?

part II.III:

collaboration challenges

Collaboration

First we need to learn about ...

COMPUTER SUPPORTED COOPERATIVE WORK

The Problem

The world is getting more complex, and problems are getting more urgent. These must be dealt with **collectively**. However, human abilities to deal collectively with complex / urgent problems are not increasing as fast as these problems.

If you could do something to improve human capability to deal with these problems, then you'd really contribute something basic.

...Doug

Engelbart

The early 1950s

CSCW

Groupware

- software that supports group work
- investigate algorithms & architectures for multi-user systems

Computer Supported Cooperative Work

- knowledge about the context of groupware design
- investigate individual/group/organizational requirements for multi-user systems

Research Goals

"is about groups of users – **how to design systems** to support their work *as a group* and how to understand the effect of technology on their work patterns"

> Dix, Finlay, Abowd & Beale Human Computer Interaction, 2nd Ed. Prentice Hall. 1998

"is the **study of the electronic workplace** – an organization-wide system that integrates information processing and communication activities"

Ellis, Gibbs & Rein Groupware: some issues and experiences, Comm ACM 34(1) 1991

	same time	different times
same place co-located	face to face interactions decision rooms single display groupware shared table / wall displays roomware	continuous task
different places remote	remote interactions	communication+coordination

Space/Time Matrix

Multiple people using a single display

- multiple input devices
- simultaneous input
- new interaction widgets
- technical issues (O/S)
- conflict with conventional applications
- supporting social conventions of simultaneous work
- mice vs. direct touch

Single-Display Grouware

	same time	different times
same place co-located	face to face interactions	continuous task
different places remote	remote interactions video conferencing instant messaging chats/virtual worlds shared screens multi-user editors	communication+coordination

Space/Time Matrix

- Share unaltered single user applications
 - technical concerns
 - how regions are captured/transmitted
 - architectural limitations
 - controlling input
 - access control...
 - social limitations
 - turntaking
 - control
 - privacy

Richardson, T., Stafford-Fraser, Q., Wood, K. and Hopper, A. Virtual Network Computing. IEEE Internet Computing. Vol. 2, No. 1. p33-39. January/February, 1998.

Shared Screens / Windows

VNC viewer (client)

	same time	different times
same place co-located	face to face interactions	continuous task
different places remote	remote interactions	communication+coordination email bulletin boards, blogs asynchronous conferencing group calendars workflow version control wikis

Space/Time Matrix

Email

- Many styles
 - threaded mail
 - intelligent mail (routing / sorting)
 - structured mail (by speech acts)
 - multimedia mail
 - object-oriented mail
 - distribution lists / elist servers
- Social
 - managing complexity and overloads
 - spam
 - archiving

	same time	different times
	face to face interactions	continuous task
same place co-located		team rooms large public displays shift work groupware project management
	remote interactions	communication+coordination
different places remote		

Space/Time Matrix

Information that goes across shifts

Control Rooms

Visualization/Data Analysis Spaces

	co-located	remote
concurrent synchronized people intentionally active at the same time	meeting rooms	video conferences, video wall, etc.
	shared work surf shared PCs a	-
semi-synchronized people active in near real time	rapid email exchanges, delayed IM exchanges	
Mixed may include active and serial activity	co-authoring systems, shared calendars	
Serial forces tu <u>rntaking</u>	argumentation tools	
Unsynchronized people use tools at different times	email and struct electronic co	3

Modified from Figure 13.9 in Dix, Finlay, Abowd & Beale, Human Computer Interaction, 2nd Ed. Prentice Hall. 1998

Organization according to time/space is not always clean

Ack. Saul Greenberg

Designing & Studying CSCW Systems

- Needs of a group are different
- \rightarrow Should be reflected in technology
- \rightarrow Need to examine what IS different
- \rightarrow Need to understand differences

Specific Challenges

The intersection of (Visualization and CSCW)

Aspect	Specific Focus in Visualization	Specific Focus in Core CSCW
Users	multiple participants	specific data-related background
Tasks	collaborative activity-centric	information artifact-centric
Cognition	collaborative foraging	information foraging
	collaborative sensemaking	information sensemaking
Results	consensus, shared insight	insights (no actual product)
Interaction	multiple inputs	data-centric interactions
Visual Representations	multiple displays	multiple visual representations
	novel display hardware	high rendering performance
Evaluation	social interaction	analytical sensemaking

Table 1: Specific challenges and focus of collaborative visualization within the broader scope of visualization and CSCW research.

Motivation:

• What are the essential components to design & study?

Mechanics of Collaboration

Basic operations of teamwork - the small-scale actions and interactions that group members must carry out in order to get a task done collaboratively

Mechanics of Collaboration

Explicit Communication - intentional & planned

Mechanics of Collaboration

Explicit Communication - intentional & planned

Spoken Messages

Mechanics of Collaboration

Explicit Communication - intentional & planned

Spoken Messages Written Messages

Mechanics of Collaboration

Explicit Communication - intentional & planned

Spoken Messages

Written Messages

Gestural Messages

Deictic Messages

Manifesting Messages

Mechanics of Collaboration

Explicit Communication – intentional & planned

Information Gathering – decoupled communication

Basic Awareness

Mechanics of Collaboration

Explicit Communication – intentional & planned

Information Gathering – decoupled communication

Basic Awareness

Feedthrough

Mechanics of Collaboration

Explicit Communication – intentional & planned

Information Gathering – decoupled communication

Basic Awareness

Feedthrough

Consequential Communication

Overhearing

Visual Evidence

Mechanics of Collaboration

Communication

Coordination Shared Access •Tools •Objects •Space •Time

Mechanics of Collaboration

Communication

A very short history of:

COLLABORATIVE VISUALIZATION

shaded bars and (numbers): co-located collaboration

Definition

Collaborative visualization is the shared use of computer-supported, (interactive,) visual representations of data by more than one person with the common goal of contribution to joint information processing activities.

Isenberg, Elmqvist, Scholtz, Cernea, Ma, Hagen: **Collaborative Visualization: Definition, Challenges, and Research Agenda** to appear in Information Visualization: State of the Field and New Research Directions. Oct 2011

Large MT displays for:

CO-LOCATED COLLABORATIVE VISUALIZATION

Challenges:

- 1. How do people conduct face-to-face analysis?
- 2. Do we need to redesign visualizations?
- 3. What data/tasks for collaborative analysis?

1. How do people conduct face-to-face analysis?

analysis work processes of teams

- Petra Isenberg, Anthony Tang, and Sheelagh Carpendale. **An Exploratory Study of Visual Information Analysis**. In *Proc. CHI 2008*, ACM Press.
- Identified processes
- Processes used in collaboration
- Processes used over time

Joint Work

Individual Work 🖛

analysis work processes of teams

Recommendations:

- 1. Support flexible temporal sequence of processes
- 2. Support unique approaches
- 3. Activities differ wrt parallel/joint work

collaboration / sharing in a tabletop setting

- different collaboration styles adopted
- influenced what data/views were shared

 allowed flexible investigation based on emerging information

Petra Isenberg, Danyel Fisher, Meredith Ringel Morris, Kori Inkpen, and Mary Czerwinski. **An Exploratory Study of Co-located Collaborative Visual Analytics around a Tabletop Display**. In *Proceedings of Visual Analytics Science and Technology (VAST)*, pages 179–186, Los Alamitos, CA, USA, 2010. IEEE

temporal analysis

close collaboration

loose collaboration

implications for design

- design for transient behavior
 - strategies change & interfaces need to accommodate
 - design system features to support different styles
- encourage closely coupled work
 - awareness features possibly not strong enough for loosely-coupled teams
 - make common information even more obvious

collaborative synthesis

- how do individual analysts combine results from individual analysis results?
- Results:
 - Help create common ground
 - Wide variety of organization styles (timeline, network, groups, ...)
 - Annotation/tagging important
 - Flexible organization required
 - Customization to roles required of tools

Robinson, A.C. 2008 *Collaborative Synthesis of Visual Analytic Results*. *IEEE Visual Analytics, Science Technology Conference*. Columbus, OH, October 19-24

space to think

- how is information spatially organized on a large display (in visual analytics task)?
- Results:
 - space encodes meaning, task advancement
 - tools needed to manage information in space
 - search across space/time needed

Summary

- collaborative visualization requires knowledge about how people interact with one another
- teamwork != taskwork
- how people interact with one another affects how they (want to) use software

Additional resources

- Book Chapter:
 - <u>Digital Tables for Collaborative Information Exploration</u>. *Tabletops— Horizontal Interactive Displays*
 - <u>Creation and collaboration: Engaging new audiences for information</u> <u>visualization</u>. *Information Visualization—Human-Centered Issues and Perspectives*
- PhD Thesis (mine, Jeff Heer, Jo Wood, ...)
- Overview articles (several depending on focus)

Now what about

Personal Digital Historian

Shen et al., 2002

DTLens

Forlines & Shen et al., 2005

Molecular Visualization

Forlines et al., 2006, 2008

Cambiera

[Isenberg & Fisher, EuroVis 2009]

EMDialog

[Hinrichs et al., InfoVis '08]

Summary

- a multitude of application areas exist for large multitouch applications
- collaborative data analysis is one very promising one
- supporting data analysis with interactive displays is not trivial!
 - interaction challenges (MT input)
 - representation challenges (size, resolution)
 - social challenges (collaboration!)

Wrap-up

Today you learned about:

- different types of multi-touch technologies
- software frameworks
- interaction challenges
- representation challenges
- collaboration challenges

engage new audiences

- multi-touch data analysis is a huge field: different needs, goals, questions, challenges exist
- go study them!

make interaction a standard

- interaction is important at all stages of data analysis
- retrofitting visualization tools for multi-touch is possible but not always easy
- build tools with diverse input methods in mind from the ground up
- offer visualization toolkits which offer diverse interaction support

evaluation

- evaluation of traditional interaction is already difficult
- how do we assess the value of touch or other input methods to cognition with data?
- how do we assess collaborative data analysis?
- how do we assess the added value of large-screen environments?

derive higher-level understanding

- build iterative understanding of possibilities of interactive large displays for visualization, data analysis
- in a variety of audiences, spatial/temporal settings, tasks, goals, ...

Petra Isenberg

Visualization for Large Multi-touch Interactive Surfaces Tutorial PacificVis 2011