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Load balancing game.

• m machines with speeds s1, . . . , sm

• n tasks with weights w1, . . . , wn.
• each task is managed by a selfish agent.
• each agent aims to placing the task on the machine with

smallest load.

• the load `j of machine j under assignment A :

`j =

∑
i:A[i]=j wi

sj

• The cost ci of an agent i = load of the machine A[i].
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Load balancing game

• 4 jobs : w1 = 1, w2 = w3 = 3, w4 = 2,
• 2 identical machines

4

3

2

1

3

3 2 1

4

7

Assignment A1 where
• c1 = c2 = c3 = 7

• c4 = 2
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Load balancing game
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Assignment A2 where
• c2 = c3 = 6

• c4 = c1 = 3
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Nash Equilibrium (NE)

An assignment A is a (pure) Nash Equilibrium if and only if
no agent can improve its cost by unilaterally
moving its task to another machine.
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Nash Equilibrium (NE)

An assignment A is a (pure) Nash Equilibrium if and only if
for all agents i, and for all machines k,

we have : c
A[i]
i ≤ ck

i
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Mixed strategy

A mixed strategy qi for the agent i is a probability vector
qi = (qi,1, . . . , qi,m)

where i chooses the machine k with the probability qi,k.

The strategy profil Q = (q1, . . . , qn) corresponds to the mixed
strategies of all agents.

Consequence :
• Each profil Q induces a random mapping
• Each agent aims at minimizing its expected cost.
• The notion of Nash equilibrium can be extended.
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Previous works
1. Do the load balancing games have pure Nash Equilibria ?

Theorem [Fotakis2002,Even-Dar2003]
Every instance of the load balancing game admits at least one
pure Nash equilibrium.

Theorem [Fotakis2002]
The Largest Processing Time algorithm computes a pure Nash
equilibrium in the load balancing games.

2. What are their performance ?

3. How to learn equilibria ? How fast is the convergence ?
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Price of Anarchy = maxGmaxP is NE
cost(P )
opt(G)
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m Θ

(
log m
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(
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• 1999 : Koutsoupias & Papadimitriou
• 2001 : Mavronicolas & Sirakis,
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• n agents with a set of strategies

• The game is repeated :
at each step t, the agents play their strategy.

• Can the system converge to a Nash equilibrium ?
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Learning Equilibria : Definition

• qi(t) : a mixed strategy for agent i at time t

(a probability vector over pure strategies)

• qi(t + 1) = learning algorithm({qj(t
′)}j agent,t′≤t)

• Find a learning algorithm such that for all i

When t →∞, qi(t) → q∗i

where (q∗1, · · · , q∗N ) is an Nash Equilibrium
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Best Response Learning Algorithm :
Principle

The best response policy activates the unsatisfied agents one
after the other :

the active agent plays a best reponse (machine with
minimum load).
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Best Response Learning Algorithm :
Principle

The best response policy activates the unsatisfied agents one
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Best Response Learning Algorithm :
Principle

The best response policy activates the unsatisfied agents one
after the other :

the active agent plays a best reponse (machine with
minimum load).
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assignment after the move
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Best Response Learning Algorithm :
Properties

Theorem [Even-Dar2003]
Let A be any assignement of n tasks to m identical machines.
Starting from A, best response policy eventually reaches a pure
Nash equilibrium.

Theorem [Berenbrink2006]
A stochatic extension of this policy reaches eventually a pure
Nash equilibrium in an expected number of rounds
O(log log n + m4) whenever all tasks are identical.
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Our Dynamic : replication dynamic

Algorithm :
• For all agents i, choose any initial mixed strategy qi(0)

• At each step t, activate randomly an unique task i.
• For the active agent i :

• Choose a machine ai according to distribution qi(t)
• Move i to this machine, and measure cost ci of this choice.
• Update the mixed strategy

qi(t + 1) = qi(t) + b × ri(t) × ( 1ai
− qi(t))

• b : a constant step size

• ri(t) = 1− ci

• 1ai j =

{
1 if j = ai

0 otherwise
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The Main Ideas
• Q = (q1, . . . , qn) : the global state of the system

(qi is the mixed strategy of i).
• F : a function over the global state Q of the system where

F (Q) =
m∑

k=1

1/sk

1

2
(

N∑
j=1

qj,kwj)
2 +

N∑
j=1

qj,kw
2
j (1−

qj,k

2
)


Property 1 : Each step of the algorithm changes Q (one
component qi) in a way such that

∆F (Q) = E[F (Q(t + 1))− F (Q(t)|Q(t)]) ≤ 0

Corollary : F will decrease with high probability, and F will
converge with high probability (almost surely). A limit point
must vanishes ∆F .

Property 2 : Nash Equilibria correspond to such points.
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Property 1 : ∆F ≤ 0

• Fix the probabilistic choices (the i and machine ai).

F (Q(t + 1))− F (Q(t)) = wi

m∑
k=1

∆i,k × hi,k

where

∆i,k = b× ri(t)× (1k=ai
− qi,k(t))

hi,k = wi +
∑
j 6=i

qj,kwj .

• Now,
∆F = E[F (Q(t + 1))− F (Q(t))|Q(t)]

∆F = − b

n

n∑
i=1

wi

m∑
k=1

∑
k′>k

qi,kqi,k′ [hi,k − hi,k′ ]2

∆F ≤ 0
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Corollary : F Will Decrease

Rapidly

Since ∆F = E[F (Q(t + 1))− F (Q(t))|Q(t)] ≤ 0,

F will decrease with high probability (almost surely).

Formal Statement (Martingale Theory / Foster’s Theorem) :
Let Q0, Q1, · · · , Qn, · · · be a sequence of random variables with
values in E such that for some function F : E → R≥0,
E[F (Qn+1)|Qn] ≤ F (Qn)− ε whenever Qn 6∈ S, where S is a
set.

Then, for any Q0, Qn will reach S almost surely.

Furthermore
E[Reach(S)] ≤ F (Q0)

ε

where Reach(S) is the corresponding stopping time
(time before reaching S for the first time).
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Corollary : Speed of Convergence
• Recall ∆F = −b 1

nG where

G =
n∑

i=1

wi

m∑
k=1

∑
k′>k

qi,kqi,k′ [hi,k − hi,k′ ]2

• Fix some ε > 0. Denote by

Inf(ε) = {X|G(X) ≤ ε}.

• For all ε > 0

E[Reach(Inf(ε))] ≤ nF (Q(0))

bε

E[Reach(Inf(ε))] ≤
3n(

∑N
j=1 w2

j )(
∑m

k=1 1/sk)

2bε
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Property 2 : Limit Points Correspond to Nash
Equilibria

• F decreases almost surely whenever

∆F = −b
1

n

n∑
i=1

wi

m∑
k=1

∑
k′>k

qi,kqi,k′ [hi,k − hi,k′ ]2 < 0

• Hence, limit points (∆F = 0) are those such that for all i
hi,k = hi,k′ for all k, k′ such that qi,k 6= 0, qi,k′ 6= 0.

• The limit points correspond to Nash equilibria. (more details)
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Conclusion

• We considered a particular algorithm to learn Nash
equilibria.

• We proved almost-sure convergence of our algorithm to
Nash equilibria.

previous proofs were only (complicated) proofs that it can
not do anything else + weak convergence arguments
instead of almost-sure convergence.

• Only pure Nash equilibria are stable : all non-pure
equilibria will be left almost-surely (combined with some
results [Coucheney-Gaujal-Touati 2009]).

• This is the first time a speed of convergence for this
algorithm is proved formally.
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Other well-known characterization of NE.

A strategy profile Q is a Nash equilibrium if and only if

for all agents i, for all machines j,

qi,k > 0 → for all other machines k, hi,j ≤ hi,k

Where
hi,k = expected cost of i when i chooses k

back
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