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Load balancing game.

m machines with speeds s1, ..., s,
n tasks with weights wy, ..., w,.

o each task is managed by a selfish agent.
e each agent aims to placing the task on the machine with

smallest load.
the load ¢; of machine j under assignment A :
Zz’:A[i]:j W
U= ——""——
S5

The cost ¢; of an agent i = load of the machine A[i].



Load balancing game

e 4jobs:wi =1, wy = w3 =3, wy =2,
¢ 2 identical machines
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Load balancing game

e 4jobs:wi =1, wy = w3 =3, wy =2,
¢ 2 identical machines
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Nash Equilibrium (NE)

An assignment A is a (pure) Nash Equilibrium if and only if
no agent can improve its cost by unilaterally
moving its task to another machine.




Nash Equilibrium (NE)

An assignment A is a (pure) Nash Equilibrium if and only if
for all agents 4, and for all machines k,
we have : cf‘[’] <ck




Mixed strategy

A mixed strategy ¢, for the agent i is a probability vector
¢ =(q1,- - qim)

where i chooses the machine k with the probability g; ..

The strategy profil @ = (q1, - . ., ¢,) corresponds to the mixed
strategies of all agents.



Mixed strategy

A mixed strategy ¢, for the agent i is a probability vector
¢ =(q1,- - qim)

where i chooses the machine k with the probability g; ..

The strategy profil @ = (q1, - . ., ¢,) corresponds to the mixed
strategies of all agents.

Consequence :
e Each profil @ induces a random mapping
e Each agent aims at minimizing its expected cost.
e The notion of Nash equilibrium can be extended.
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Previous works
1. Do the load balancing games have pure Nash Equilibria ?

Theorem [Fotakis2002,Even-Dar2003]

Every instance of the load balancing game admits at least one
pure Nash equilibrium.

Theorem [Fotakis2002]

The Largest Processing Time algorithm computes a pure Nash
equilibrium in the load balancing games.
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1. Do the load balancing games have pure Nash Equilibria ?

2. What are their performance ?

cost(P)

Price of Anarchy = maxgmazp ;s NE (e

] | Identical machines | Uniformaly related machines |

Pure NE 2- 1L © (Iog)lgo;nm)
Mixed NE | © (lem ) 0 (g )

e 1999 : Koutsoupias & Papadimitriou
e 2001 : Mavronicolas & Sirakis,
e 2002 : Czumaj & Vocking



Previous works
1. Do the load balancing games have pure Nash Equilibria ?

2. What are their performance ?
3. How to learn equilibria ? How fast is the convergence ?
e n agents with a set of strategies

e The game is repeated :
at each step ¢, the agents play their strategy.

¢ Can the system converge to a Nash equilibrium ?



Learning Equilibria : Definition

e ¢;(t) : a mixed strategy for agent i at time ¢

(a probability vector over pure strategies)

e ¢gi(t+1)= learning,algorithm({qj(t’)}j agent,tfgt)

e Find a learning algorithm such that for all i
When ¢t — oo, qi(t) — ¢

where (¢7,-- -, ¢5) is an Nash Equilibrium



Best Response Learning Algorithm :
Principle

The best response policy activates the unsatisfied agents one
after the other :
the active agent plays a best reponse (machine with
minimum load).
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Best Response Learning Algorithm :
Principle

The best response policy activates the unsatisfied agents one
after the other :

the active agent plays a best reponse (machine with
minimum load).

5

assignment after the move



Best Response Learning Algorithm :
Properties

Theorem [Even-Dar2003]

Let A be any assignement of n tasks to m identical machines.
Starting from A, best response policy eventually reaches a pure
Nash equilibrium.

Theorem [Berenbrink2006]

A stochatic extension of this policy reaches eventually a pure
Nash equilibrium in an expected number of rounds
O(log log n + m*) whenever all tasks are identical.




Our Dynamic : replication dynamic

Algorithm :
 For all agents i, choose any initial mixed strategy ¢;(0)
At each step ¢, activate randomly an unique task i.

For the active agent i :

e Choose a machine a, according to distribution g;(¢)
e Move : to this machine, and measure cost ¢; of this choice.

o Update the mixed strategy

it +1) = qi(t) + b x ri(t) x (1o, —ai(t))

b : aconstant step size
Ti(t) =1- C;

{3 e

0 otherwise



The Main Ideas

e Q= (q,--.,qn) : the global state of the system
(g; is the mixed strategy of 7).
e [ :afunction over the global state @) of the system where

m

FQ) =Y "1/st |5 qukw] +qukw =

k=1

Property 1 : Each step of the algorithm changes @ (one
component ¢;) in a way such that

AF(Q) = E[F(Q(t+ 1)) - F(Q)IQM)]) <

Corollary : F will decrease with high probability, and F will
converge with high probability (almost surely). A limit point
must vanishes AF'.

Property 2 : Nash Equilibria correspond to such points.



Property 1 : AF <0
¢ Fix the probabilistic choices (the ¢ and machine a;).
FQ(t+1)) = F(Q(t) =wi Y D X hip
k=1
where
Ajgp =bx1i(t) X (Lp=a; — G k(1))

hik = wi + Z 4 kWj-
JF
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Property 1 : AF <0

¢ Fix the probabilistic choices (the ¢ and machine a;).

FQ(t+1)) = F(Q(t) =wi Y D X hip
k=1
where

A; ;, = modification of ¢;(t)
hi . = expected cost of i when ¢ chooses &
e Now,

AF =E[F(Q(t+ 1)) — F(Q())|Q(¢)]

— ——Zwlz > tintiw ik — hiw]?

i=1 k=1Kk'>k

AF <0



Corollary : F Will Decrease

Since AF = E[F(Q(t+ 1)) — F(Q(1))|Q(t)] <0,
F will decrease with high probability (almost surely).

Formal Statement (Martingale Theory / Foster’s Theorem) :
Let Qo,Q1,- - ,Qn, -+ be a sequence of random variables with
values in E such that for some function F : E — R=°,
E[F(Qns1)|@Qn] < F(Qn) — e whenever Q,, ¢ S, where S is a
set.

Then, for any Qo, @, will reach S almost surely.



Corollary : FF Will Decrease Rapidly

Since AF = E[F(Q(t + 1)) — F(Q(t))|Q(t)] <0,
F will decrease with high probability (almost surely).

Formal Statement (Martingale Theory / Foster’s Theorem) :
Let Qo,Q1,- - ,Qn, -+ be a sequence of random variables with
values in E such that for some function F : E — R=°,
E[F(Qns1)|@Qn] < F(Qn) — e whenever Q,, ¢ S, where S is a
set.

Then, for any Qo, @, will reach S almost surely.

Furthermore

F(Qo)

€

E[Reach(S)] <

where Reach(S) is the corresponding stopping time
(time before reaching S for the first time).



Corollary : Speed of Convergence

o Recall AF = —b1G where

G:Zwiz szsz’[hzk_ zk’]

i=1 k=1k'>k

e Fix some ¢ > 0. Denote by

Inf(e) = {X|G(X) < €}.

e Foralle >0

nk'(Q(0))
be

E[Reach(Inf(€))] <

3n(30700 w) (s Usw)

E[Reach(Inf(e))] < be




Property 2 : Limit Points Correspond to Nash
Equilibria

e [ decreases almost surely whenever

AF = —b% sz’ Z Z i, ki k! [hi,k - hi,k’]z <0

i=1 k=1k'>k

e Hence, limit points (AF = 0) are those such that for all ¢
hi,k = hi,k’ for all k, k' such that qi .k 75 0, Qi k' 75 0.

e The limit points correspond to Nash equilibria.



Conclusion

We considered a particular algorithm to learn Nash
equilibria.

We proved almost-sure convergence of our algorithm to
Nash equilibria.

previous proofs were only (complicated) proofs that it can
not do anything else + weak convergence arguments
instead of almost-sure convergence.

Only pure Nash equilibria are stable : all non-pure
equilibria will be left almost-surely (combined with some
results [Coucheney-Gaujal-Touati 2009]).

This is the first time a speed of convergence for this
algorithm is proved formally.



Other well-known characterization of NE.

A strategy profile @ is a Nash equilibrium if and only if
for all agents ¢, for all machines j,
¢i ;. > 0 — for all other machines k, h; ; < h; 1,

Where
hi 1 = expected cost of i when i chooses &
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