Redistribution de données entre deux grappes d'ordinateurs

Travail tiré de

l'article *On Approximating a Scheduling Problem*", de P. Crescenzi, D. Xiaotie, C. Papadimitriou dans la conférence Approx98.

Plan

- 1. Présentation du problème
- 2. Complexité
- 3. Algorithmes d'approximations
- 4. Heuristiques

1. Présentation du problème.

Le problème initial : configuration

Réseau :

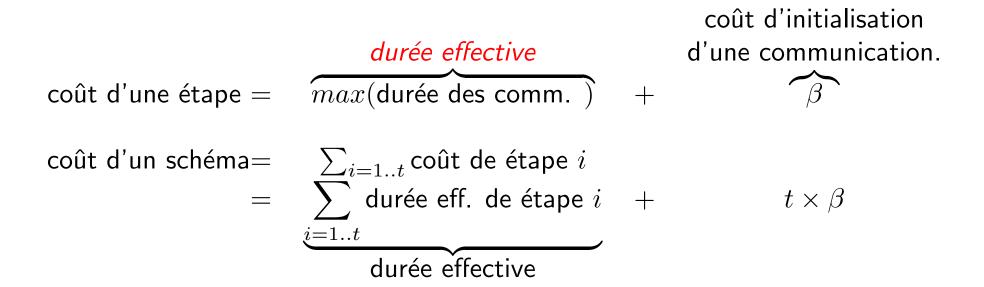
Matrice du trafic Q:

	destination				
source	Α	В	С	D	
A'	3	18	15	3	
B'	14	0	10	1	
C'	4	0	0	0	

Le problème initial : contraintes

- Modèle 1-port: un noeud participe à 1 communication.
- Préemption des communications.
- Étape : ensemble de communications fixées simultanées.

Définition du coût



Objectif : Minimiser le coût d'un schéma de communications.

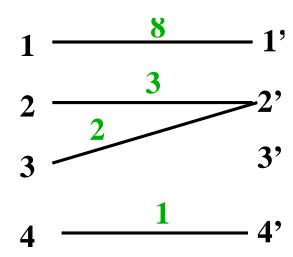
Simplification du problème

Le Problème.

- $\bullet \ \ \ \ \, \text{Donn\'ees du problème:} \quad \frac{\{source\}, \{destination\}}{\beta, \ Q=(q_{i,j}\in N)_{1\leq i\leq n, 1\leq j\leq n}}$
- Minimiser le coût d'un schéma de communications (ensemble d'étapes).

Formulation en termes de couplages dans un graphe biparti

	destinations			
sources	1'	2'	3'	4'
1	8	0	0	0
2	0	3	0	0
3	0	2	0	0
4	0	0	0	1



Formulation en termes de graphe.

Préemptive bipartite Scheduling Problème:

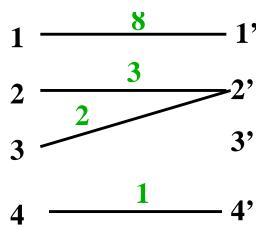
Entrée: Un graphe biparti G = (X, Y, E), une fonction poids des aretes w.

Objectif : Trouver t couplages C_i pondérés valides de somme égale à G tel que

- $\sum_{i=1}^{t} w(C_i) + \beta \times t$ soit minimal.
- pour tout $e \in E$, $w(e) \leq \sum_{e \in C_i} |w(C_i)|$

Exemple

Configuration:



$$\mathsf{coût} = 3 \! + \! 5 + 2 \! \times \! \beta$$

Simplification du problème: $\beta = 1$.

Entrée: Un graphe biparti G = (X, Y, E), une fonction poids des aretes w.

Objectif : Trouver t couplages C_i pondérés valides de somme égale à G tel que

- $\sum_{i=1}^{t} w(C_i) + t$ soit minimal.
- pour tout $e \in E$, $w(e) \leq \sum_{e \in C_i} |w(C_i)|$

Notations

m(G) =le nombre d'arêtes de G

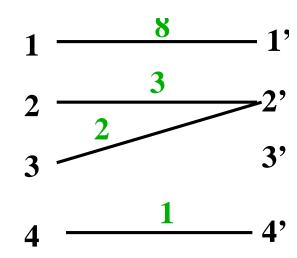
 $\Delta(G) =$ le maximum des degrés du graphe G

 $W(G)=\mbox{le maximum de la somme des poids incidents à un sommet}$

P(G) = la somme des poids de toutes les arêtes

Exemple:

- m(G) = 4
- $\bullet \ \Delta(G) = 2$
- W(G) = 8
- P(G) = 14



2. Complexité du problème

NP-complétude du problème BPS

Théorème 1: Le problème BPS

Instance: Un entier n, un graphe biparti G pondéré, un entier B.

Question: Trouver une suite de couplages pondérés valides C_1, C_2, \ldots, C_t tel que $G = \sum_{i=1}^t C_i$ et $\sum_{i=1}^t w(C_i) + t \leq B$

est NP-complet.

Définition le problème Restricted TimeTable Design

Problème Restricted TimeTable Design

Instance: Un ensemble $T=\{t_1,\ldots,t_n\}$ d'enseignant, Un ensemble $C=\{c_1,\ldots,c_m\}$ de classes, une fonction de disponibilité $A:T\times\{1,2,3\}\to\{0,1\}$, et une fonction de demande $R:T\times C\to\{0,1\}$

Question: Existe-t'il une fonction d'affectation $f: T \times C \times \{1,2,3\} \to \{0,1\}$ tel que

- 1. $f(t_i, c_i, k) = 1$ implique $A(t_i, k) = 1$
- 2. $\forall c_j \in C$, $\forall k \in \{1, 2, 3\}$, $\sum_{i=1}^n f(t_i, c_j, k) \leq 1$.
- 3. $\forall t_i \in T, \forall k \in \{1, 2, 3\}, \sum_{j=1}^m f(t_i, c_j, k) \leq 1.$
- 4. $\forall c_j \in C, \ \forall t_i \in T, \ \sum_{k=1}^3 f(t_i, c_j, k) = R(t_i, c_j).$

Exemple.

$$A = egin{bmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 1 & 0 \ \end{bmatrix} \quad ext{et} \quad R = egin{bmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ \end{bmatrix}$$

Une fonction d'affectation:

$$f(t_1, c_1, 2) = f(t_1, c_3, 3) = f(t_2, c_2, 1) = f(t_3, c_3, 1) = f(t_3, c_4, 2) = 1$$

1.
$$A(t_1, 2) = A(t_1, 3) = A(t_2, 1) = A(t_3, 1) = A(t_3, 2) = 1$$

2.
$$\forall c_j \in C$$
, $\forall k \in \{1, 2, 3\}$, $\sum_{i=1}^n f(t_i, c_j, k) \le 1$: Okay.

3.
$$\forall t_i \in T, \forall k \in \{1, 2, 3\}, \sum_{i=1}^m f(t_i, c_j, k) \leq 1$$
: Okay.

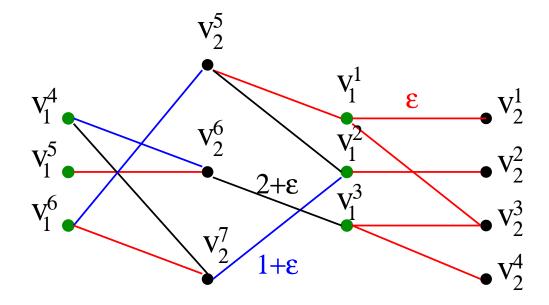
4.
$$\forall c_j \in C$$
, $\forall t_i \in T$, $\sum_{k=1}^3 f(t_i, c_j, k) = R(t_i, c_j)$: Okay.

Transformation de Restricted TimeTable Design. vers BPS.

- Soit une instance $\langle T, C, A, R \rangle$ de Restricted TimeTable Design.
- Voici l'instance correspondante $\langle G = (V_1, V_2, E), w \rangle$ de BPS.
 - 1. ϵ un rationnel positif et arbitraire.
 - 2. $|V_1| = 2|T| = 2n$, $|V_2| = |T| + |C| = n + m$
 - 3. $\forall i, j$, tel que $1 \leq i \leq n$ et $1 \leq j \leq m$, $(v_1^i, v_2^j) \in E \Leftrightarrow R(t_i, c_j) = 1$. Et, dans ce cas $w(v_1^i, v_2^j) = \epsilon$
 - 4. $\forall i, j$, tel que $n+1 \leq i \leq 2n$ et $1 \leq j \leq m$, $(v_1^i, v_2^j) \notin E$
 - 5. $\forall i,j$, tel que $1\leq i\leq n$ et $m+1\leq j\leq m+n$, $\forall k\in\{1,2,3\}$, $(v_1^i,v_2^j)\in E\Leftrightarrow j=m+[(i+k-2)modn+1]\wedge A(t_i,k)=0].$ Et, dans ce cas $w(v_1^i,v_2^j)=k-1+\epsilon$
 - 6. $\forall i, j$, tel que $n+1 \leq i \leq 2n$ et $m+1 \leq j \leq m+n$, $\forall k \in \{1, 2, 3\}$, $(v_1^i, v_2^j) \in E \Leftrightarrow j = m + [(i-n+k-2)modn+1] \land A(t_i, k) = 1].$ Et, dans ce cas $w(v_1^i, v_2^j) = k-1+\epsilon$

Exemple:
$$|T| = 3$$
 et $|C| = 4$

L'instance correspondante de PBS :



Remarque

Lemme 2: Si $\langle T, C, A, R \rangle$ admet une réponse positive alors $opt(\langle G = (V_1, V_2, E), w \rangle) = 6 + 3\epsilon$

Proof: Soit f une fonction d'affectation pour $\langle T, C, A, R \rangle$,

Pour
$$h = 1, 2, 3$$
,

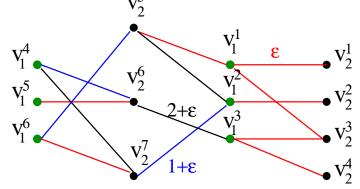
$$M_k = \{(v_1^i, v_2^j) : 1 \le i \le n, 1 \le j \le m, f(t_i, c_j, k) = 1\}$$

$$\cup \{(v_1^i, v_2^j) : 1 \le i \le 2n, m+1 \le j \le m+1, w(v_1^i, v_2^j) = k-1+\epsilon\}$$

est une solution de PBS dont son coût est $6+3\epsilon$.

Retour à l'exemple:|T| = 3 et |C| = 4

$$R = \begin{array}{|c|c|c|c|c|c|c|}\hline 1 & 0 & 1 & 0 \\\hline 0 & 1 & 0 & 0 \\\hline 0 & 0 & 1 & 1 \\\hline \end{array}$$



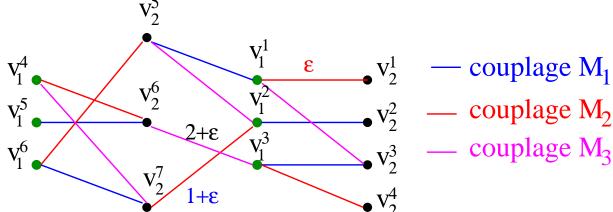
$$f(t_1, c_1, 2) = 1$$

$$f(t_1, c_3, 3) = 1$$

$$f(t_2, c_2, 1) = 1$$

$$f(t_3, c_3, 1) = 1$$

$$f(t_3, c_4, 2) = 1$$



Remarque

Lemme 3: Si $\langle T, C, A, R \rangle$ admet une réponse négative alors $opt(\langle G = (V_1, V_2, E), w \rangle) \geq 7 + 3\epsilon$

Proof: Supposons, que $\langle T, C, A, R \rangle$ admet une réponse négative et qu'il existe une collection M_1, \ldots, M_s tel que leur coût $\leq 7 + 3\epsilon$

- Degrée minimum de G est $3 \Rightarrow s \geq 3$.
- somme des couplages $\leq 4 + 3\epsilon$.
- toutes les arêtes de poids ϵ (resp. $1+\epsilon$, $2+\epsilon$) sont dans le même couplage.
- ullet Donc $\langle T,C,A,R \rangle$ admet une réponse Positive (d'où contradiction).

Inapproxabilité.

Théorème 4: Approximer PBS avec un rapport inférieure à 7/6 est NP-dur

Preuve par contradiction. Supposons qu'il existe un POLYNOMIAL algo. \mathcal{A} avec un rapport d'approx. ρ avec $\rho \leq 7/6$.

- 1. Construire $\langle G, w \rangle$ à partir de $\langle T, C, A, R \rangle$ et de \mathcal{R}
- Un algo. \mathcal{B} : 2. Appliquer \mathcal{A} sur l'instance $\langle G, w \rangle$
 - 3. Si le coût cost de la solution $\leq 7 + 3\epsilon$, retourner VRAI sinon FAUX.

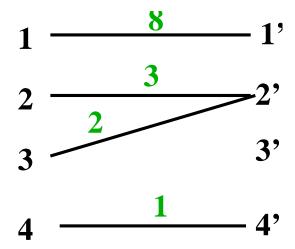
 ${\cal B}$ résout le problème RTD en temps polynomial: car

- Si $\langle T,C,A,R \rangle$ admet une réponse positive, alors $opt(G,w)=(6+3\epsilon)$
- $6 + 3\epsilon \le cost \le \rho(6 + 3\epsilon)$ avec $\rho \le 7/6 \Rightarrow 6 + 3\epsilon \le cost < 7 + 3\epsilon$

3. Algorithmes d'approximations.

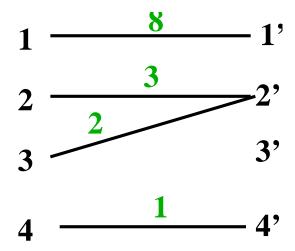
Borne inférieure de la solution

- Borne inférieure de la durée effective: W(G)
- ullet Rappel: W(G) le maximum de la somme des poids incidents à un sommet.



Borne inférieure du coût

- ullet Borne inférieure du nombre d'étapes: $\Delta(G)$
- \bullet Rappel: $\Delta(G) = \mbox{le maximum des degrés du graphe } G$



Borne inférieure de la solution

Théorème 2: Le coût de la solution optimale est minimisé par

$$\eta(G) = W(G) + \Delta(G)$$

Car le coût = durée effective + nbre_étapes $\times 1$

Algorithme

Algorithme 1:

- Entrée: un graphe biparti G.
- Sortie: une décomposition en couplages valides.
- 1. Décomposer les arêtes e en $\lceil w(e) \rceil$ arêtes de poids 1. ce qui donne un multigraphe H
- 2. Décomposer $\Delta(H)$ couplages dans H.
- 3. Les couplages précédents forment une solution pour G.

1 couplage = 1 étape de durée 1

Complexité : dépend du poids des arêtes:

Algorithme pseudo-polynomial.

Évaluation de la qualité de la solution

- Nombre d'étapes = nombre de couplages = $\Delta(H)$.
- Durée effective de chaque étape = 1
- $Cout(A1) = 2\Delta(H)$
- Chaque arête de G représente $\lceil w_G(e) \rceil$ dans H.

$$\Rightarrow \Delta(H) \le \Delta(G) + W(G)$$

$$\Delta(G) + W(G) \le 2\Delta(H) \le 2(\Delta(G) + W(G))$$

Algorithme Polynomiale

Théorème 5: Il existe un algorithme pour le problème PBS avec un rapport d'approximation 2.

Preuve: Algorithme:

- Soit une nouvelle fonction poids w' tel que $\forall e \in E, w'(e) = \lceil w_G(e) \rceil$.
- $W(G, w') = max\{w'(v) : v \in G\}. \Rightarrow \Delta(H) = W(G, w')$
- Transformer G en un graphe poids-régulier (G',w'): $\forall v \in V(G'), w'(v) = W(G,w')$.
- Tant qu'il existe une arête dans G',
 - Trouver un couplage parfait M dans G'.
 - Soit $w'(M) = min\{w'(e) : e \in M\}.$
 - Pour chaque arête $e \in M$, w'(e) = w'(e) w'(M) +suppression.

Heuristique de Gopal et Wong

- Trouver une solution avec le nombre minimum de couplage.
- Solution: 1 couplage M=1 étape de durée $max\{w(e):e\in M\}$

	M						
		1	M				
			1	1	M		
A=				1	1	1	M
					1	1	1
						1	1
							1

Évaluation de l'heuristique de Gopal et Wong

Proposition 6: Cette heuristique a un rapport d'approximation non borné.

Proof:

- Soit une $(2n+1) \times (2n+1)$ matrice A tell que $-a_{i,(2i-1)} = M$ et $a_{(i+j),(2i-1+j)} = 1$ avec $i=1,\ldots,n+1,\ j=1,\ldots,2(n-i)+2$. sinon $a_{i,j}=0$.
- Solution de cet algorithme
 - $M_i = \{a_{(i+j),(2i-1+j)} : j = 0,\dots,2(n-i)+2\}$ pour $i = 1,\dots,n+1$
 - -n couplages pour les autres arêtes.
- Coût := $\sum_{i=1}^{n+1} cout(M_i) + n = M \times (n+1) + n$.
- rapport:= $\frac{(n=1)+n}{M+n} = \infty +$