La NP-complétude

Johanne Cohen

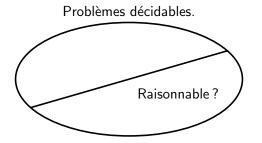
LRI-CNRS, Orsay, France.

Références

- 1. *Algorithm Design*, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006.
- Computers and Intractability: A Guide to the Theory of NP-Completeness, M. R. Garey, D. S. Johnson, 1976.
- 3. Transparents inspirés du cours INF 423, Ecole Polytechnique "Fondements de l'informatique : Logique, Modèles, Calculs".

Objectif de ce cours

Distinguer ce qui est raisonnable de ce qui n'est pas raisonnable en terme de temps de calcul.



Complexité d'un algorithme, d'un problème

■ Complexite(A, d) est le nombre d'opérations effectuées par algorithme A ayant d comme une entrée.

On cherche souvent à évaluer cette complexité en fonction de la taille des entrées taille(d).

- On peut alors parler de la complexité (au pire cas)
 - d'un algorithme (on fait varier seulement les entrées)

$$Complexite_{\mathcal{A}}(n) = \max_{d/taille(d)=n} Complexite(\mathcal{A}, d).$$

d'un problème (on fait varier l'algorithme, et les entrées)

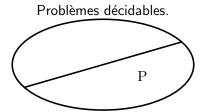
$$\inf_{\mathcal{A} \text{ correct}} Complexite_{\mathcal{A}}(n).$$

Plus précisément

Retour sur l'épisode précédent Une convention Pourquoi cette convention à

Une convention

- La convention suivante s'est imposée en informatique :
 - ► **CONVENTION**: Temps raisonnable = temps polynomial,
 - c'est-à-dire en $\mathcal{O}(n^k)$ pour un entier k.
- Graphiquement :



- Exemples :
 - ▶ Décider si un graphe est eulerien est dans P.
 - ▶ On ne sait pas si le problème du cycle hamiltonien est dans P.

Plus précisément

Retour sur l'épisode précédent Une convention Pourquoi cette convention?

Raison 1 : s'affranchir du modèle de calcul

- Thèse de Church :
 - Les modèles suivants se simulent deux à deux :
 - Les machines de Turing à un ruban.
 - Les machines de Turing à deux rubans.
 - Les machines à $k \ge 2$ piles
 - Les machines RAM
 - Les programmes JAVA, C, CAML, ...
 - de telle sorte que : t instructions de l'un sont simulées par un nombre d'instructions polynomial en t par l'autre.

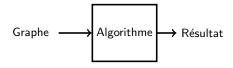
Raison 1 : s'affranchir du modèle de calcul

Nombre d'instructions : T

- On peut donc parler d'algorithme efficace sans avoir à préciser dans quel langage / avec quel modèle l'algorithme est implémenté.
- Le temps correspond au nombre d'instructions dans chacun de ces modèles.

(à la composition par un polynôme près)

Raison 2 : s'affranchir de problèmes du codage



Temps : Polynomial/Non polynomial

La classe P

Rappel : Un problème de décision Π est un ensemble d'instances I_{Π} et un sous-ensemble $Oui(\Pi)$ d'instances positives.

Exemple: Graphe eulerien

Données : un graphe non-orienté G = (V, E).

Question: G a-il un cycle eulerien?

Définition

La classe P est la classe des problèmes de décision qui admettent un algorithme de complexité polynomiale.

La classe NP

Définition

La classe NP est formée des problèmes de décision Π qui possèdent un vérificateur polynomial.

Un vérificateur V est un algorithme qui prend une information en plus (certificat) pour vérifier qu'une instance est positive.

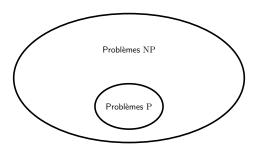
Exemple 1: Graphe Hamiltonien

Données : un graphe non-orienté G = (V, E).

Question: G a-il un cycle hamiltonien?

- Le certificat correspond à une suite S de sommets
- V vérifie que S est un cycle et qu'il transverse chaque sommet une unique fois.
- V fonctionne bien en temps polynomial.

Comparaison entre les deux classes P et NP.



Par définition $P \subset NP$.

Plus précisément

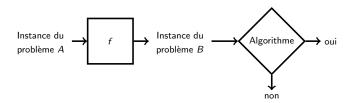
Les classes P et NP La notion de réduction

Comment comparer les problèmes

Soient A et B deux problèmes de décision. Une **réduction de** A **vers** B est une fonction $f:I_A \rightarrow I_B$ calculable **en temps polynomial** telle que

$$w \in Oui(A)$$
 ssi $f(w) \in Oui(B)$.

- On note $A \leq B$ lorsque A se réduit à B.
 - ▶ intuitivement : $A \le B$ signifie que A est plus facile que B.



Principales propriétés

Théorème

 \leq est un préordre (= est reflexive, transitive) :

- 1. $L \leq L$;
- 2. $L_1 \leq L_2$, $L_2 \leq L_3$ impliquent $L_1 \leq L_3$.

Preuve:

Intuitivement : un problème est aussi facile (et difficile) que lui-même

il suffit de considérer la fonction identité pour f

Intuitivement : la relation "être plus facile que" est transitive.

$$L_1 \leq L_2$$
 via la réduction f

$$\implies$$
 $x \in OUI(I_{L_1})$ ssi $g(f(x)) \in OUI(I_{L_2})$.

 $L_2 \leq L_3$ via la réduction g

La composée de deux fonctions calculable **en temps polynomial** est calculable.

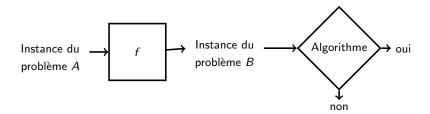
Théorèmes

Théorème

Si $A \leq B$, et si A est dans P, alors B est dans P.

Théorème

Si $A \leq B$, et si A n'est pas dans P, alors B n'est pas dans P.



Motivation

- On souhaite comprendre quels sont les problèmes les plus difficiles dans NP.
- Un problème A est dit NP-difficile si tout autre problème B de NP est tel que $B \le A$.
 - ▶ Intuitivement : il est plus difficile que tous les problèmes dans la classe.
- Un problème A est dit NP-complet si en plus on a $A \in NP$.
 - ▶ Autrement dit : *A* est NP-complet signifie que *A* est un élément maximum dans NP pour ≤.

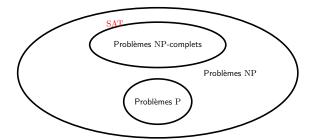
Plus précisément

NP-complétude
Théorème de Cook-Levin
Comment pour prouver la NP-complétude

Théorème de Cook-Levin

Théorème Cook-Levin

Le problème SAT est NP-complet.



Conséquense

Corollaire

P = NP si et seulement si $SAT \in P$.

Preuve:

 \blacksquare Si P = NP, alors puisque SAT est dans NP,

SAT \in P.

- Réciproquement, si $SAT \in P$,
 - Puisque SAT est complet,

pour tout problème $B \in NP$, $B \leq SAT$

▶ Donc $B \in P$

Remarque: généralisation à n'importe problème NP-complet

- Soit A un problème NP-complet. P = NP si et seulement si $A \in P$.
- D'où l'intérêt de produire de nombreux problèmes NP-complets

A quoi sert de prouver la NP-complétude d'un problème?

- Arriver à prouver que P = NP...
 - ▶ Si un problème A et un problème B sont NP-complets, alors A < B et B < A:

Tous les problèmes NP-complets sont donc de même difficulté.

Surtout :

Supposons que l'on n'arrive pas à trouver un algorithme polynomial pour un problème.

Prouver sa NP-complétude permet de se convaincre que cela n'est pas possible, sauf si P=NP.

Plus précisément

NP-complétude

Théorème de Cook-Levin

Comment pour prouver la NP-complétude

Stratégie pour prouver la NP-complétude

Pour prouver la NP-complétude d'un problème A, il suffit :

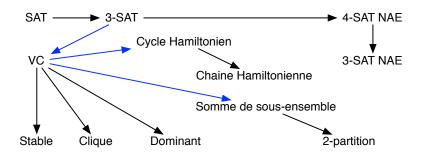
- 1. de prouver qu'il admet un vérificateur polynomial;
- 2. de prouver que $B \le A$ pour un problème B NP-complet

Pourquoi?

- le point 1. permet de garantir que $A \in NP$,
- le point 2. permet que on a $C \le A$ pour tout problème $C \in NP$
 - ▶ on a *C* < *B*
 - ▶ et *C* < *A*

comme B est NP-complet, puisque $B \le A$.

Ce qu'on va prouver dans la suite



Le symbole \longrightarrow désigne le relation "est plus facile que"

Plus précisément

Exemple de réduction
Problème de la couverture de sommets
Problème du cycle hamiltonien

Couverture sommet

Couverture de sommets (VC)

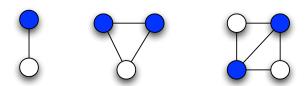
Données : un graphe non-orienté G = (V, E) et un entier k.

 $\textbf{Question}: \textit{G} \text{ contient-il une } \textit{couverture de sommets } \mathcal{S} \text{ de}$

cardinalité au plus k?

Théorème

Le problème Couverture de sommets est NP-complet.



Les sommets en bleu font partie de la couverture de sommets

VC est dans NP

- \blacksquare Certificat : liste \mathcal{S} de sommets.
- On peut vérifier en temps polynomial que
 - 1. la cardinalité de S est inférieure ou égale à k;
 - 2. pour chaque arête $(u, v) \in E$, u ou v est dans S

$3-SAT \leq VC$

3-SAT

Données : un ensemble U de variables $\{u_1,u_2,\ldots,u_n\}$ et une formule logique $L=C_1\wedge\cdots\wedge C_\ell$ ayant des clauses de 3 littéraux Question : Existe-t-il une fonction $t:U\to\{0,1\}$ telle que t satisfait L?

Nous allons transformer une instance (U, L) de 3-SAT en une instance (G, k) de VC en un temps polynomial.

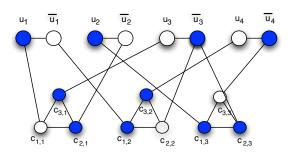
- Pour chaque variable u de U, on associe deux sommets u et \overline{u} , et une arête (u, \overline{u}) dans G
- Pour chaque clause $C_i = (x_1 \lor x_2 \lor x_3)$,
 - on associe un triangle dans G composé des sommets c_{1,i}, c_{2,i},
 c_{3,i},
 - on relie le sommet $c_{1,i}$ à ℓ_1 par une arête
- $k = |U| + 2\ell$

Exemple

On peut prouver:

Il existe une couverture de sommets du graphe G d'au plus k sommets

il existe une fonction $t: U \to \{0,1\}$ qui satisfait toutes les clauses C_1, \ldots, C_ℓ .



Les sommets en bleu font partie de la couverture de sommets

Plus précisément

Exemple de réduction

Problème de la couverture de sommets

Problème du cycle hamiltonien

Problème du cycle hamiltonien

Cycle Hamiltonien

Données : un graphe non-orienté G.

Question : G contient-il un cycle hamiltonien?

Théorème

Le problème Cycle Hamiltonien est NP-complet

Preuve:

- 1. Cycle Hamiltonien est dans NP.
- 2. $VC \leq Cycle Hamiltonien$.

VC ≤ Cycle Hamiltonien.

- On se donne un graphe G = (V, E) et un entier k (correspondant à une instance de VC).
- On veut construire un graphe G' en temps polynomial tel que il existe une couverture de sommets du graphe G d'au plus k sommets

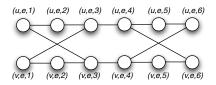
 \iff

le graphe G' a un cycle hamiltonien.

 Pour cela on associe un gadget pour représenter chaque arête de G dans G'.

Le gadget pour une arête e

Pour chaque arête e = (u, v) de G, on lui associe un gadget dans G' correspondant à un sous-graphe composé de 12 sommets :



La transformation de G en G'

- \blacksquare G a k sommets notés $1, 2, \ldots, k$.
- Pour chaque arête e de G, créer un sous-graphe étant une copie du gadget.

- Pour chaque sommet u de G,
 - 1. Numéroter les arêtes incidentes à $u: e_1, e_2, \dots e_d$
 - 2. Créer un chemin entre tous les sommets de type $(u, e_i, *)$ de la façon suivante :
 - 2.1 Relier $(u, e_i, 6)$ à $(u, e_{i+1}, 1)$ par une arête (pour i allant de 1 à d-1)
 - 2.2 Ajouter une arête entre $(u, e_1, 1)$ et j, et une autre arête $(u, e_d, 6)$ à j (pour j allant de 1 à k)

Un exemple

Une instance (G, k) de VC:

On peut prouver que

il existe une couverture de sommets du graphe *G* d'au plus *k* sommets

G' a un cycle hamiltionien.

l'instance obtenue par transformation :

