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Abstract. Our purpose is to discuss stochastic algorithms to learn equilibria in games, and their time
of convergence. To do so, we consider a general class of stochastic algorithms that converge weakly
(in the sense of weak convergence for stochastic processes) towards solutions of particular ordinary
differential equations, corresponding to their mean-field approximations. Tuning parameters in these
algorithms provides several dynamics having limit points related to Nash equilibria, and hence provide
means to compute equilibria in a distributed fashion in games. We relate the time of convergence of
stochastic dynamics to the time of convergence of their corresponding ordinary differential equation.
This gives lower and upper bounds on the time needed to learn equilibria in games through such
stochastic dynamics.

1 Introduction

In many situations, some actors can own profit by using some resources according to their own
interest to the detriment of a better social behavior. Peer-to-Peer applications, with phenomena
such as free-riding, provide an example of problematic behaviors in large-scale distributed systems.
Routing in Internet network, where some economic interests may provide incentives to alter global
performances, is another example.

In all these contexts, agents often adapt their strategies based on their local knowledge of the
system, by small adjustments in order to improve their own profit. The impact of each individual
player on the network is small. However, as the number of actors is large, a global evolution of the
system may happen.

We are interested in understanding when the system can converge towards rational situations,
i.e. Nash equilibria in the sense of game theory. This is natural to expect dynamics of adjustments
to be stochastic, and fully distributed, since agents are often involved in games where a local,
deterministic description of the whole system is not possible, and since decisions are often attempts
and errors guided.

Several such dynamics of adjustments have been considered recently in the algorithmic game
theory literature. Up to our knowledge, this has been done mainly for deterministic dynamics and
mainly for best-response based dynamics in algorithmic game theory: Computing a best response
requires a global description of the system. Stochastic variations, avoiding a global description,
have been considered. However, considered dynamics are somehow rather ad-hoc, in order to get
efficient convergence time bounds, and still mainly best-response based. We want to consider here
more general dynamics, and discuss when one may expect convergence, with time bounds on their
convergence.



Our settings is the following: Let [n] = {1, . . . , n} be the set of players. Every player i has a set Si

of pure strategies. Let mi be the cardinal of Si. A mixed strategy qi = (qi,1, qi,2, . . . , qi,m1) corresponds
to a probability distribution over pure strategies: pure strategy ` is chosen with probability qi,` ∈
[0, 1], with

∑mi
`=1 qi,` = 1. Let Ki be the simplex of mixed strategies for player i. Any pure strategy

` can be considered as mixed strategy e`, where vector e` denotes the unit probability vector with
`th component unity, hence as a corner of Ki. Let K =

∏n
i=1 Ki be the space of all mixed strategies.

A strategy profile Q = (q1, ..., qn) ∈ K specifies the (mixed or pure) strategies of all players: qi

corresponds to the mixed strategy played by player i. Following classical convention, we write
abusively Q = (qi, Q−i), where Q−i denotes the vector of the strategies played by all other players.

Games with random payoffs are allowed: we only assume that whenever the strategy profile
Q ∈ K is known, each player i gets a random cost of well-defined expected value ci(Q). In particular,
the expected cost for player i for playing pure strategy e` is denoted by ci(e`, Q−i). Strategy x of
player i is said to be a best reply, or best-response to Q−i if ci(x,Q−i) ≤ ci(qi, Q−i) for all qi ∈ Ki.
The (compact, convex, non-empty) set of all best replies to the strategy profile Q of player i is
denoted by BRi(Q).

We want basically to consider learning algorithms of the following form, over the most possible
general games, where b is a parameter, intended to be positive but close to 0. Functions σi, can be
considered to be identity in a first step, but can be actually any function with positive values, with∑

` σi,`(qi) = 1.

– Initially, qi(0) ∈ Ki can be any vector of probability, for all i.
– At each round t, for each player i:
• selects a strategy si(t) ∈ Si according to distribution σi(qi(t)): player i selects strategy ` ∈ Si

with probability σi,`(qi,`(t)).
• This leads to a (random) cost ri(t) for player i.
• Updates qi(t) as follows:

qi(t + 1) = qi(t) + bF b
i (ri(t), si(t), qi(t)). (1)

Let Q(t) = (q1(t), ..., qn(t)) ∈ K denote the state of all players at instant t. Our interest is in
the asymptotic behavior of Q(t), and its possible convergence to Nash equilibria. When Y is some
random variable, we write Eσ[ Y |Q ] for the expectation of Y when players play according to
distribution σ(Q): that is to say, when player j chooses strategy ` ∈ Sj with probability σj,`(qj,`).

Functions F b
i (ri(t), si(t), qi(t))) can be as generic as possible, assuming that the qi(t) always stay

validity probability vectors: that is to say, qi,`(t) ∈ [0, 1] and
∑

` qi,`(t) = 1 is preserved. In partic-
ular, functions F b

i (ri(t), si(t), qi(t)) can be random valued1. We only assume that their expectation
Eσ[ F b

i (ri(t), si(t), qi(t)) |Q(t) ] is always defined, and that Gi(Q) = limb→0 Eσ[ F b
i (ri(t), si(t), qi(t)) |Q ]

exists and is a continuous function of Q.

Algorithms of this form correspond indeed to fully distributed algorithms. Decisions made by
players are completely decentralized: At each time step, player i only needs ri and qi, that is to say
respectively her current cost and her current mixed strategy, to update her own strategy qi.

1 In this case, formally, their may depend on Q, through some “local” experiments.
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2 Summary of Results

In the general case (Theorem 1), any stochastic algorithm in the considered class converges weakly
(in the sense of weak convergence for probabilistic processes) towards solutions of initial value
problem (ordinary differential equation (ODE)){

dX
dt = G(X)
X(0) = Q(0)

(2)

where G(Q) = (G1(Q), · · · , Gn(Q)). In other words, any stochastic algorithm is weakly-convergent
to its mean-field limit approximation given by (2).

This gives ways to obtain dynamics whose limit points are related to Nash equilibria.
As a first example (Section 5.1), take functions σi to be identity, and F b

i (ri(t), si(t), qi(t)))
defined as follows:

F b
i (ri(t), si(t), qi(t)) = γ(ri(t))(esi(t) − qi(t)) (3)

where γ : R → [0, 1] is some affine decreasing function with value in [0, 1]. Recall that esi(t) is the
unit vector of dimension mi with component number si(t) unity.

It follows that the stochastic algorithms behaves like ordinary differential equation

dqi,`

dt
= −qi,`(ci(e`, Q−i)− ci(qi, Q−i)), (4)

that is to say a (multi-population) replicator dynamic, whose limit points (Proposition 1) are well-
known to be related to Nash equilibria (through so-called Folk’s theorems of evolutionary game
theory [13]).

As a second example (Section 5.2), take σi given componentwise by

σi`(qi) =
exp(qi,`/κ)∑
j exp(qi,j/κ)

, (5)

that is to say is the logit dynamics, where κ is some positive constant. When κ goes to 0 this
converges to the best response dynamics, whereas when κ goes to infinity, this acts as some uniform
choice [13].

Consider F b
i (ri(t), si(t), qi(t)) given by

F b
i (ri(t), si(t), qi(t)) = (γ(ri(t))− qi,si(t))esi(t) (6)

Limit points (Proposition 2) of the associated ordinary differential equation correspond to Nash
equilibria of a game whose payoffs are perturbed by an additive term that goes to 0 when κ goes
to 0.

As a third example, take functions σi to be identity, and F b
i (ri(t), si(t), qi(t))) defined as follows:

(i) choose some other pure strategy ej(t) uniformly at random: strategy j is chosen with probability
1

mi
; (ii) plays according to this strategy ej(t). This leads to a (random) cost rj(t) for player i; (iii)

Consider then
F b

i (ri(t), si(t), qi(t))) = ν(ri(t)− rj(t))(ej − qi(t)),

where ν is some increasing function which is 0 for negative argument, and 1 for argument greater
than ε > 0. This leads to a dynamic close to the one considered in [2]. As long as the current
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state Q(t) is not in a ε-Nash equilibrium, this moves to a better response. Stationary points must
correspond to ε-Nash equilibria.

In all these examples, we may expect the stochastic algorithms to behave like associated mean-
field approximation (2). As all of them have stable stationary points corresponding to Nash equi-
libria, if for the considered game this dynamic is convergent, then we can expect the stochastic
algorithms to converge towards Nash equilibria.

Notice, that there is no reason that convergence of mean-field approximation holds for generic
games, but if it holds, then its stable limit points will be Nash equilibria (or ε-Nash equilibria for
the third).

Similar facts have been established several times in game theory literature for specific cases
of stochastic algorithms [22, 16, 9]. Proofs, often rely on the theory of approximation of stochastic
sequence by weak-convergence methods, and do not provide time bounds.

We prove (Theorem 3) that is indeed possible to go further and that it is indeed possible to talk
about the time of convergence in the general case. In other words, the time of convergence of the
stochastic algorithm can be closely related to the time of convergence of the associated ordinary
differential equation. This provides upper-bounds and lower-bounds on the time before convergence
of considered stochastic algorithms.

Notice that this is established through some bounds of very general interest (Theorem 2).
We do a generic study of symmetric 2 × 2 games in Section 8, to show that one may expect a

convergence in a time polynomial in 1
ε for such games.

3 Related work.

In algorithmic game theory, much attention have been put on particular ordinal potential games,
and on (exact) potential games. Following [20], a game is an ordinal potential game if there exists
some function whose sign of variations reflects the sign of variation of utility of any player doing a
pure strategy move. A game is an exact potential game if there exists some function whose variations
reflect exactly the variation of utility of any player doing a pure strategy move. In particular, an
(exact) potential game is an ordinal potential game.

Load balancing games, introduced in [15] are restricted instances of congestion games. Conges-
tion games, introduced in [23], are known to be particular exact potential games [23]. Actually, it
is known that a game is an exact potential game iff it is isomorphic to a congestion game [20].
Ordinal potential games include task allocation games introduced in [4].

An ordinal potential game always have a pure Nash equilibrium: since an ordinal potential
function, that can take only a finite number of values, is strictly decreasing in any sequence of
pure strategy strict best response moves, such a sequence must be finite and must lead to a Nash
equilibrium [23]. This proof of existence of pure Nash equilibria can be turned into a dynamic:
players play in turn, and move to resources with a lower cost.

For (exact) potential games, bounds on the time of convergence of best-response dynamics have
been investigated following this idea in [6]. Since players play in turns, this is often called the
Elementary Stepwise System. Other results of convergence in this model, have been investigated
in [10, 18, 21], but all require some global knowledge of the system in order to determine what next
move to choose.

For load balancing games, a Stochastic version of best-response dynamics has been investigated
in [2]. The expected time of convergence to an ε-Nash equilibrium is in O(nmW 3ε2) where W
denotes the maximum weight of any task.
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For congestion games, the problem of finding pure Nash equilibria is known to be PLS-complete
[14]. Efficient convergence of particular best-response dynamics to approximate Nash equilibria in
symmetric congestion games has been investigated in [3], in the particular case where each resource
cost function satisfies a bounded jump assumption. In this context, the convergence to an ε-Nash
equilibrium occurs within a number of steps that is polynomial in the number of players.

The stochastic dynamic (3) has been partially investigated in [22] for general games and for
potential games: It has been proved to be weakly convergent to solutions of a multipopulation
replicator equation. Notice that compared to [22], we allow perturbed dynamics, and we discuss
time of convergence.

Replicator equations have been deeply studied in evolutionary game theory [13, 26]. Evolu-
tionary game theory has been applied to routing problems in the Wardrop traffic model in [8,
7]. Evolutionary game theory doesn’t restrict to above discussed dynamics, but considers a whole
family of dynamics that satisfy Folk’s theorems in the spirit of Proposition 1.

Bounds on the rate of convergence of fictious play dynamics have been established in [11].
Fictious play has been reproved to be convergent for zero-sum games using numerical analysis
methods, or more generally stochastic approximation theory: fictious play can be proved to be an
Euler discretization of a certain continuous time process [13].

The proof of Theorem 1 relies on weak-convergence methods for probabilistic processes. Some
studies of time of convergence have been made in this context (see e.g. monograph [17]) but one
must understand that what is understood as a time of convergence from a probabilistic point of
view generally differs from the computer science point of view: time of convergence often means
in a probabilistic settings central-limit like theorems for the limit processes, whereas this kind of
results, still mainly often obtained by weak-convergence methods, do not help to talk about the
distance between the process and its mean-field approximation.

The approximation result obtained in Theorem 2 is obtained from ideas of constructions from
[1]. The bounds that we obtain are tuned up to our context, and somehow doubly perturbed
(random+deterministic perturbation) whereas [1] considers only random perturbations, and state
some very generic approximation results, stating that error is function of the time variable, without
really taking care on the exact dependence.

4 Weak-Convergence Results

Recall that we are interested in discussing the evolution of Q(t), where Q(t) = (q1(t), ..., qn(t)) ∈ K
denotes the state of the player team at instant t in the stochastic algorithm. Clearly, Q(t) is an
homogeneous Markov chain. Define ∆Q(t) as ∆Q(t) = Q(t+1)−Q(t), and ∆qi(t) as qi(t+1)−qi(t).
We can write

E[ ∆qi(t) |Q(t) ] = bEσ[ F b
i (ri(t), si(t), qi(t)) |Q(t) ], (7)

with Gi(Q) = limb→0 Eσ[ F b
i (ri(t), si(t), qi(t)) |Q(t) ] assumed to be continuous.

Let us first state informally, why we expect Q(t) to converge towards solutions of ordinary
differential equation (2): Assume we replace E[ ∆qi(t) |Q(t) ] by ∆qi(t) in this last equation. Through
the change of variable t← tb, this would become qi(t+b)−qi(t) = bEσ[ F b

i (ri(t), si(t), qi(t)) |Q(t) ].
Approximating qi(t + b) − qi(t) by bdqi

dt (t) for small b, we may expect the system to behave like
ordinary differential equation (ODE) dqi

dt = Gi(Q), when b is close to 0.
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This can be formalized as follows: Consider the piecewise-linear interpolation Qb(.) of Q(t)
defined by

Qb(t) = Q(bt/bc) + (t/b− bt/bc)(Q(bt/b + 1c)−Q(bt/bc)). (8)

Function Qb(.) belongs to the space of all functions from R into K which are right continuous
and have left hand limits (cad-lag functions). Now consider the sequence {Qb(.) : b > 0}. We are
interested in the limit Q(.) of this sequence when b → 0. Recall that a family of random variable
(Yt)t∈R weakly converges to a random variable Y , if E[h(Xt)] converges to E[h(Y )] for each bounded
and continuous function h.

Theorem 1. The sequence of interpolated processes {Qb(.)} converges weakly, when b→ 0, to Q(.),
which is the (unique deterministic) solution of initial value problem (2).

This can be proved using weak-convergence methods. Formally, this follows from [25, theorem
11.2.3], once this is understood that all the hypotheses of this general result hold2.

5 Examples of Dynamics to Learn Equilibria

5.1 A Replicator Dynamics

Suppose we consider functions σi as the identity, and a dynamics for F b
i (ri(t), si(t), qi(t)) as in (3).

If one prefers, componentwise:

∆qi,`(t) = qi,`(t + 1)− qi,`(t) =
{
− bγ(ri(t))qi,`(t) if si(t) 6= `
− bγ(ri(t))qi,`(t) + b(γ(ri(t))) if si(t) = `.

We then have

Gi,`(Q) = limb→0
1
b E[ ∆qi,`(t) |Q(t) ]

= limb→0
1
b (

∑
j qi,j(t)E[ ∆qi,`(t) |Q(t), si(t) = j ])

= +
∑

j qi,j(t)qi,`(t)E[ γ(ri(t)) |Q(t), si(t) = ` ])
−

∑
j qi,j(t)qi,`(t)E[ γ(ri(t)) |Q(t), si(t) = j ])

= qi,`(E[ γ(ri(t)) |Q(t), si(t) = ` ]− E[ γ(ri(t)) |Q(t) ]).

In other words, Equation (2) leads by Theorem 1 to (some rescaling introduced by affine decreas-
ing function γ of) Dynamics (4). This equation, called the (multipopulation) replicator dynamics,
is well-known to have its limit points related to Nash equilibria (through so-called Folk’s theorems
of evolutionary game theory [13]). More precisely, we have:

Proposition 1. The following are true for the solutions of Equation (4): (i) All Nash equilibria are
stationary points. (ii) All strict Nash equilibria are asymptotically stable. (iii) All stable stationary
points are Nash equilibria.

Actually, all corners of simplex K are stationary points, as well as, from the form of (4), more
generally any state Q in which all strategies in its support perform equally well. Such a state Q is
not a Nash equilibrium as soon as there is an not used strategy (i.e. outside of the support) that
performs better.
2 See Appendix A.
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Unstable limit stationary points may exist for the mean-field approximation (4): Consider for
example a dynamics that leave on some face of K where some well-performing strategy is never
used. To avoid “bad” (non-Nash equilibrium, hence unstable) stationary points, following the idea
of penalty functions for interior point methods, one can use as in Appendix A.3 of [24] some patches
on the dynamics that would guarantee Non-complacency. Non-Complacency (NC) is the following
property: G(Q) = 0 implies that Q is a Nash equilibrium of (4) (i.e. stationary implies Nash).

For general games, we get that the limit for b → 0 of the dynamics of stochastic algorithms is
some ordinary differential equation whose stable limit points, when t→∞, if there exist, can only
be Nash equilibria. Hence, if there is convergence of the ordinary differential equation, then one
expects the previous stochastic algorithms to learn equilibria.

5.2 A Smoothed Best Response Dynamics

Consider as a second example the case where σi is given componentwise by Equation (5), and a
dynamics of the form (6).

We have in this case

Gi,`(Q) = limb→0
1
b Eσ[ ∆qi,`(t) |Q(t) ]

= limb→0
1
b (

∑
j σi,j(qi,j(t))Eσ[ ∆qi,`(t) |Q(t), si(t) = j ])

= σi,`(qi,`(t))(Eσ[ γ(ri(t)) |Q(t), si(t) = ` ]− qi,`).

In other words, Equation (2) leads by Theorem 1 to

dqi,`

dt
= σi,`(qi,`(t))(Eσ[ γ(ri(t)) |Q(t), si(t) = ` ]− qi,`). (9)

Assume to simplify discussion that γ(x) = −x (otherwise, some rescaling+isomorphism might
be necessary). Using the fact that logit dynamic σi correspond to the unique maximizer of strictly
concave function qi →

∑
` z`qi,` − κ

∑
` z` log z` over the interior of K (see [13]), we get:

Proposition 2. Stationary points of Dynamics (9) corresponds to Nash equilibria of the game
whose payoffs are given by vi(Q) = ci(Q)− κ

∑
` qi,` log qi,`.

In other words, limit points of the associated ordinary differential equation correspond to Nash
equilibria of a game whose payoffs are perturbed by a (entropy) term that goes to 0 when κ goes
to 0. Once again, for general games, we get that the limit for b → 0 of the dynamics of stochastic
algorithms is some ordinary differential equation whose stable limit points, when t → ∞, if there
exist, can only be Nash equilibria. Hence, if there is convergence of the ordinary differential equation,
then one expects the previous stochastic algorithms to learn equilibria.

6 Finite Horizon Time Bounds on Stochastic Algorithms

The default of weak-convergence results in the spirit of Theorem 1 is that they do not provide any
way to talk about the speed of convergence: This is not possible to tell, given ε > 0, what is the
time T required to be at distance ε from the ordinary differential equation, nor what should be the
discretization step b.

We now prove that this is possible to bound the error committed by approximating the stochastic
algorithm by its mean-field approximation (2).
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First observe that we can rewrite Dynamics (1) of the algorithm as

Q(t + 1) = Q(t) + bG(Q) + bD(Q) + bR(Q) (10)

where
D(Q) = Eσ[ F b

i (ri(t), si(t), qi(t)) |Q(t) ]−Gi(Q)

can be seen as a deterministic perturbation and

R(Q) = F b
i (ri(t), si(t), qi(t))− Eσ[ F b

i (ri(t), si(t), qi(t)) |Q(t) ]

as a random perturbation. By hypotheses, D(Q) is in O(b) and E[ R(Q) |Q ] = 0.
In absence of these perturbations, Dynamic (10) would behave like Euler’s approximation scheme

qi(t + 1) = qi(t) + bGi(Q) for solving ordinary differential equation (2). The idea is hence to
use generalizations of bounds on the error committed by Euler’s method for solving differential
equations, taking into accounts perturbations.

This gives the following technical result, of very general interest, whose proof is inspired by
constructions from [1].

Theorem 2. Assume a sequence Q(t) = (q1(t), · · · , qn(t), t ∈ N, leaving in a compact K, satisfies
a relation of the form (10).

Assume that (i) G is a function of class C1, (ii) D(.) is a deterministic function, of order
O(b): it takes values in [−Nb,Nb] for some constant N . (iii) R(.) is some random variable with
E[ R(Q) |Q ] = 0 for all Q, and that random variable R(Q(k)) is measurable in the σ-field generated
by (Q(t))0≤t≤k, for all k.

Then, let X(t) be the solution of initial value problem (2).
With high probability,

||Q(k)−X(kb)|| ≤ beΛkb(A + bB),

for all integer k, for some constants A, B and Λ that do not depend on b and k (and actually only
of function G).

This probability can be made greater than µ for all µ < 1.

Proof. Since X(t) is the solution of initial value problem (2), we have X(t)−Q(0) =
∫ t
0 G(X(t))dt.

Denote by D, R, Q, X the piecewise constant interpolation of D, R and Q respectively: they
are defined on R≥0 by D(t) = D(k), R(t) = R(k), Q(t) = Q(k), X(t) = X(k) for any
t ∈ [kb, (k + 1)b).

Recall the piecewise-linear interpolation Qb(.) of Q introduced in Equation (8). Using these
functions, Dynamics (10) can be rewritten as

Qb(t)−Q(0) =
∫ t

0
[G(Q(t)) + D(t) + R(t)]dt (11)

If we introduce ε(t) = Qb(t)−X(t), we then have ε(t)− ε(0) = ε(t) = T1 + T2 + T3 + T4 where

T1 =
∫ t

0
[G(Qb(t))−G(X(t))]dt, T2 =

∫ t

0
[G(Q(t))−G(Qb(t))]dt,

T3 =
∫ t

0
D(t)dt, T4 =

∫ t

0
R(t)dt.
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G being C1 on compact K, it is Λ-Lipschtiz for some constant Λ. The norm of T1 is hence
bounded by Λ

∫ t
0 ||ε(t)||dt, and the norm of T2 is bounded by Λ

∫ t
0 ||Q(t)−Qb(t)dt||.

Now, from Equation (11),

||Qb(t)−Q(t)|| = ||
∫ t

bbt/bc
[G(Q(t)) + D(t) + R(t)]dt|| ≤ bP + b2N + bM,

where P is a bound of G, that exists since G is continuous on compact K, and M is a bound on R
on compact K: recall that a compact is necessarily bounded, and hence that R must take value in
[−M,M ] for some integer M . Hence, the norm of T2 is bounded by Λtb[P + bN + M ].

The norm of T3 is less than∫ bdt/be

0
||D(t)||dt =

dt/be∑
k=0

b||D(k)|| ≤ b2N [dt/be+ 1] ≤ bN(t + 2b).

Consider sequence Zn =
∑n−1

k=0 R(k), with Z0 = 0. Zn is a martingale3. From the fact that R(k)
leaves in [−M,M ], it has bounded variations: We can then apply Azuma-Hoeffding’s Inequality
(Lemma 2 in Appendix) to get, that for all t ≥ 0, and all λ > 0,

Pr(||Zt − Z0|| ≥ λ) = Pr(||
t−1∑
k=0

R(k)|| ≥ λ) ≤ 2e−λ2/(2tM2).

Using some union bounds,

Pr( sup
0≤k≤n

||
n∑

k=0

R(k)|| > λ) ≤ Pr(
⋃

0≤k≤n

||
n∑

k=0

R(k)|| > λ) ≤
n∑

k=0

Pr(||
k∑

j=0

R(k)|| > λ),

which is less than
n∑

k=0

2e−λ2/(2(k+1)M2) ≤ 2(n + 1)e−λ2/(2M2).

So, with high probability, that is probability greater than 1 − 2(n + 1)e−λ2/(2M2) ≥ 1 −
O( t

be
−λ2/(2M2)),

sup
0≤k≤n

||
n∑

k=0

R(k)|| ≤ λ,

and hence ||T4|| ≤ bλ.
Combining all upper bounds of the Ti, i = 1, 2, 3, 4, this gives with high probability

||ε(t)|| ≤ Λ

∫ t

0
||ε(t)||dt + t[Λb(P + bN + M) + bN ] + [2b2N + bλ] (12)

We could apply Gronwall’s Lemma (Lemma 3), but we would get a lower quality bound4.
3 Recall that a sequence of random variables Z0, Z1, · · · is said to be martingale with respect to sequence X0, X1, · · ·

if, for all n ≥ 0, we have (i) Zn is a function from X0, X1, · · · , Xn (ii) E[ |Zn| ] < ∞ (iii) E[ Zn+1 |X0, · · · , Xn ] = Zn.
A function is martingale if it is a martingale with respect to itself.

4 An additional T factor in front of the exponential.
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Let’s do better: This gives for v(t) =
∫ t
0 ||ε(t)||,

(v′ − Λv(t)) exp(−Λt) ≤ t[Λb(P + bN + M) + bN ] exp(−Λt) + [2b2N + bλ] exp(−Λt)

Integrating, since v(0) = 0,

v(t) exp(−Λt) ≤
∫ t

0
[Λb(P + bN + M) + bN ]u exp(−Λu)du +

∫ t

0
[2b2N + bλ] exp(−Λu)du

This yields,

v(t) exp(−Λt) ≤ [Λb(P + bN + M) + bN ]
1− (1 + Λt)e−Λt

Λ2
+ [2b2N + bλ]

1− exp(−Λt)
Λ

Reporting in (12), we get

||ε(t)|| ≤ [b(P + bN + M) + bN ](exp(Λt)− (1 + Λt)) + [2b2N + bλ](exp(Λt)− 1)

+t[Λb(P + bN + M) + bN ] + [2b2N + bλ].

That is to say

||ε(t)|| ≤ b[P + bN + M +
N

Λ
](exp(Λt)− 1) + [2b2N + bλ] exp(Λt)].

that holds with probability greater than 1−O( t
be

−λ2/(2M2)).
Taking t = kb and λ so that O(ke−λ2

) < 1− µ gives the expected result.

7 Applications: Time Bounds

We get the following consequence, that can be applied to all the dynamics discussed in Section 5.

Theorem 3. Assume the ordinary differential equation (2) is converging towards some Nash equi-
libria Q∗ for some initial condition Q(0). Let T (ε) be the time needed to converge to some point at
distance ε from Q∗.

Then for all ε > 0, the stochastic algorithm started with initial state Q(0) will converge with
high probability towards a state at distance 2ε of Nash equilibrium Q∗.

This will hold in a number of rounds of order

1
ε
T (ε) exp(ΛT (ε)),

if one takes b of order
ε exp(−ΛT (ε)).

Proof. Choose T = kb = T (ε), so that X(T ) is guaranteed to be at distance ε from Q∗. Applying
Theorem 2, taking b so that beΛT (A + bB) ≤ ε guarantees that ||Q(k)−Q∗|| ≤ ||Q(k)−X(kb)||+
||X(kb)−Q∗|| ≤ 2ε. This corresponds to the statement.
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Hence, the time required by the stochastic algorithm is formally lower bounded by the time of
the corresponding ordinary differential equation.

Notice that conversely, Theorem 2 gives a kind of lower bound: convergence of the stochastic
algorithm implies convergence of the associated ordinary differential equation, in closely related
time.

Corollary 1. Assume that for some initial condition Q(0) the stochastic algorithm is converging
towards some Nash equilibria Q∗ for some initial condition Q(0). Let N(ε, b) be the number of
rounds needed to converge to some point at distance ε from Q∗.

Then the associated solution of initial value problem (2) is at time t = N(ε, b)b in some point
at distance less than ε + beΛN(ε,b)b(A + bB) from Q∗.

Proof. This is just bounding ||X(kb)−Q∗|| by ||X(kb)−Q(k)||+ ||Q(k)−Q∗||.

In other words,

Corollary 2. Bounding the time of convergence of any stochastic algorithm in the considered class
is exactly the problem of bounding the time of the associated ordinary differential equation (2).

8 Time of Convergence of Symmetric 2 × 2 Games

In this section, we consider dynamics from Section 5.1, hence yielding to continuous ordinary
differential equation of the form (4), over generic symmetric two-player game 2 × 2 in which each
player has only 2 pure strategies.

Let A =
(

a1,1 a1,2

a2,1 a2,2

)
be the payoff matrix5. Since replicator dynamics are invariant under a local

shift of payoffs, matrix A can be transformed into
(

a1 0
0 a2

)
with a1 = a1,1−a2,1 and a2 = a2,2−a1,2

without altering dynamics and time of convergence.
Dynamics (4) can be rewritten here

dq1,1

dt = (a1q2,1 − a2q2,2)q1,1q1,2
dq2,1

dt = (a1q1,1 − a2q1,2)q2,1q2,2
dq1,2

dt = − dq1,1

dt
dq2,2

dt = − dq2,1

dt

Following [26], we can classify games into four categories.

– Category I where a1a2 < 0, a1 < 0 and a2 > 0: there is an unique pure Nash equilibrium
where q1,1 = q2,1 = 0.
We always have (a1q2,1− a2q2,2) < −δ where δ = min(−a1, a2). Indeed, from q2,1 + q2,2 = 1, we
have (a1q2,1−a2q2,2) = (a1 +a2)q2,1−a2. If a2 ≤ −a1, then, (a1 +a2) ≤ 0 and (a1q2,1−a2q2,2) ≤
−a2. If a2 > −a1, then, (a1 + a2) > 0 and (a1q2,1 − a2q2,2) < a1.
Since dq1,1

dt = (a1q2,1 − a2q2,2)q1,1(1 − q1,1), we have dq1,1

dt < δ(1 − q1,1)q1,1 And, hence q1,1(t) <
e−δtq1,1(0) as soon as q1,1(0) 6= 0. Symmetrically, we have q2,1(t) < e−δtq2,1(0) as soon as
q2,1(0) 6= 0. Hence, time of convergence T (ε) of order of 1

δ ln(1
ε ).

5 In order to follow [26], we consider payoffs, that is to say the opposite of costs. Maximizing payoffs correspond to
minimizing costs.
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– Category IV where a1a2 < 0, a1 > 0 and a2 < 0: there is an unique pure Nash equilibrium
where q1,1 = q2,1 = 1. Similar computations show that we always have (a1q2,1 − a2q2,2) > δ

where δ = min(a1,−a2), and that dq1,2

dt < δ(1− q1,2)q1,2,
dq2,2

dt < δ(1− q2,2)q2,2, yieldings a time
of convergence T (ε) towards pure Nash equilibrium of order of 1

δ ln(1
ε ).

– Category II where a1a2 > 0 and a1, a2 are both positive: there is one mixed Nash
Equilibrium where q1,1 = a2

a1+a2
and q2,1 = a2

a1+a2
and two pure Nash Equilibria. One has the

profile q1,1 = 0 and q2,1 = 0. Second has the profile q1,1 = 1 and q2,1 = 1.
Let λ = a2

a1+a2
− q2,1. Since (a1q2,1 − a2q2,2) = (a1 + a2)q2,1 − a2, we have (a1q2,1 − a2q2,2) =

−λ(a1 + a2), and dq1,1

dt = −λ(a1 + a2)q1,1(1 − q1,1). If λ > 0, then dq1,1

dt < −(a1 + a2)λq1,1 < 0.
If λ < 0, then dq1,1

dt > −(a1 + a2)λq1,1 > 0, yielding d(1−q1,1)
dt < (a1 + a2)λ(1− q1,1) < 0.

Symmetrically, let γ = a1
a1+a2

− q1,1. If γ > 0, then dq2,1

dt < −(a1 + a2)γq2,1 < 0. If γ < 0, then
d(1−q2,1)

dt < (a1 + a2)γ(1− q2,1) < 0.
Hence, when λ > 0, q1,1 decreases, while for λ < 0, q1,1 increases. Symmetrically for q2,1.
The mixed Nash equilibrium is hence a saddle point. Outside the exception of a single curve
through this point, any starting point will lead to a dynamic going to the pure Equilibria.
This happens at a speed faster exp(−δt), for δ = min (|λ|, |γ|) computed at the starting point
in the diagonal quarters (corresponding to mixed Nash equilibria), hence yielding a time of
convergence T (ε) is of order of 1

δ ln(1
ε ). Other quarters are left in finite time to reach one of this

quarters: this happens in a time of order 1
δ ln( 1

ε′ ) where δ = min (|λ|, |γ|) is computed at the
point where this diagonal quarters are reached, and ε′ is the distance of this point to the mixed
Nash equilibrium.

– Category III where a1a2 > 0 and where a1, a2 are both negative: there are two pure
Nash Equilibria and one mixed Nash Equilibrium. Nash equilibria have profile q1,1 = a2

a1+a2
,

q2,1 = a2
a1+a2

for the first, q1,1 = 1, q2,1 = 0, for the second, and q1,1 = 0, q2,1 = 1 for the third.
Dynamics can be studied as in Category II. The difference is now that diagonal quarters are
left in finite time, and that anti-diagonal quarters lead to exponentially converging dynamics
towards Nash equilibria.

We see from the above discussion, that, possibly outside some single curves, or some unstable
points, the time of convergence of the ordinary differential equation (4) is of order O(log 1

ε ).
It follows from previous theorems and corollaries, that the corresponding stochastic algorithm

can be guaranteed to converge to a point at distance less than ε from a Nash equilibrium in a time
polynomial in 1

ε , taking b of order polynomial in 1
ε .

Notice that for general games, one may expect the rate of convergence to be related to the
eigenvalues of (the linearization of) the dynamic close to Equilibria, according to the classical
general theory of dynamical systems [12], and hence the convergence to be also polynomial in 1

ε in
neighborhoods of Nash equilibria. There is no reason this holds outside their bassins of attraction,
and this assumes non-degenerated cases (for e.g. that eigen values are all distinct): see [12].
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1. M. Benäım. Dynamics of stochastic approximation algorithms. Séminaire de Probabilités XXXIII. Lecture Notes
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A A General Theorem about Approximation of Diffusions

We will use the following theorem from [25, theorem 11.2.3]. The following presentation is inspired
by the presentation of it in [5, Theorem 5.8, page 96].

Suppose that for all integers b > 0, we have an homogeneous Markov chain (Y (b)
k ) in Rd with

transition kernel π(b)(x, dy), meaning that the law of Y
(b)
k+1, conditioned on Y

(b)
0 , · · · , Y (b)

k , depends

only on Y
(b)
k and is given, for all Borel set B, by P (Y (b)

k+1 ∈ B|Y (b)
k ) = π(b)(Y (b)

k , B), almost surely.
Define for x ∈ Rd,

d(b)(x) =
1
b

∫
(y − x)π(b)(x, dy),

a(b)(x) =
1
b

∫
(y − x)(y − x)∗π(b)(x, dy),

K(b)(x) =
1
b

∫
(y − x)3π(b)(x, dy),

∆(b)
ε (x) =

1
b
π(b)(x,B(x, ε)c),

where B(x, ε)c denotes the complement of the ball with radius ε, centered at x.
The coefficients d(b) and a(b) can be interpreted as the instantaneous drift and the variance (or

matrix of covariance) of X(b).
Define

X(b)(t) = Y
(b)
bt/bc + (t/b− bt/bc)(Y (b)

bt/b+1c − Y
(b)
bt/bc).

Theorem 4 ([25, theorem 11.2.3], [5, Theorem 5.8, page 96]). Suppose that there exist some
continuous functions d, b, such that for all R < +∞,

lim
b→0

sup|x|≤R|a(b)(x)− a(x)| = 0

lim
b→0

sup|x|≤R|d(b)(x)− d(x)| = 0

lim
b→0

sup|x|≤R∆(b)
ε = 0,∀ε > 0

sup
|x|≤R

K(b)(x) <∞.

With σ a matrix such that σ(x)σ∗(x) = a(x), x ∈ Rd, we suppose that the stochastic differential
equation

dX(t) = d(X(t))dt + σ(X(t))dB(t), X(0) = x, (13)

has a unique weak solution for all x. This is in particular the case, if it admits a unique strong
solution.

Then for all sequences of initial conditions Y
(b)
0 → x, the sequence of random processes X(b)

weakly converges to the diffusion given by Equation (13). In other words, for all functions F :
C(R+, R)→ R bounded and continuous, one has

lim
b→0

E[F (X(b))] = E[F (X)].
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B Proof of Theorem 1

Theorem 1 follows from previous theorem. Consider (Y (b)
k ) to be

Y
(b)
k = (Q(k))

with the corresponding b, which is indeed an homogeneous Markov chain. Let π(b)(Q, dy) be its
transition kernel.

We have
d

(b)
i (Q) = 1

b

∫
(yi − qi)π(b)(x, dy)

= 1
b E[ ∆qi |Q ]

= b
b F̃

b
i (Q)

→ Gi(Q) when b→ 0

and
a

(b)
i,j (Q) = 1

b

∫
(yi − qi)(yj − qj)∗π(n)(x, dy)

= b2

b E[ ∆qi∆qj |Q ]
= O(b)
→ 0 when b→ 0

In the same vein, clearly K(b)(Q) stay bounded, being in O(b2).
Now, from the fact that compact K must be kept invariant by the dynamics, F b

i (.) must
have a compact support. This means that π(b)(Q,B(Q, ε)c) is 0 for b sufficiently small. Hence
limb→0 sup|x|≤R∆

(b)
ε = 0, ∀ε > 0.

Hence, we have all the hypotheses of previous theorem with a(Q) = 0 and

d(Q) = G(Q)

observing that the corresponding stochastic differential equation dQ(t) = d(Q(t))dt+σ(Q(t))dB(t)
turns out to be an ordinary differential equation, whose solution is unique by (classical) Cauchy
Lipschtiz theorem.

C Proof of Proposition 1

The following are well-known (and obtained by just playing with definitions).

Lemma 1. A strategy profile Q is a Nash Equilibrium iff ci(qi, Q−i) ≤ ci(e`, Q−i) for all 1 ≤ i ≤ n,
1 ≤ ` ≤ mi.

Corollary 3. In a Nash Equilibrium, we have ci(qi, Q−i) = ci(e`, Q−i) for all 1 ≤ i ≤ n, 1 ≤ ` ≤ mi

with qi,` > 0.

Proposition 1 is then an instance of the so-called folk-theorems of Evolutionary Game Theory
[13]. For completeness, the proof goes as follows: From Corollary 3, clearly any Nash equilibria must
also vanish the right-hand side of Equation (4).

A non-Nash equilibrium Q is not stable: Indeed, if Q is not a Nash equilibrium, this means
that for some i, and some ` we have ci(qi, Q−i) > ci(e`, Q−i). By bilinearity and continuity of ci,
function ci(qi − e`, Q−i) must be strictly positive (say greater than ε) on some neighborhood of Q.
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On this neighborhood, dqi,`

dt is greater than piqi,`ε, and hence the point is left exponentially faster
(faster than exponential qi,`(0) exp(piεt)).

In a corner of K, we have for all i, qi = e` for some `. Then clearly qi,`′ = 0 for index `′ 6= `, and
ci(e`, Q−i)− ci(qi, Q−i) = 0 for index `′ = `′. Hence, the right-hand side of Equation (4) is always
null, and hence any corner is a stationary point.

More generally any state Q in which all strategies in its support perform equally well, is clearly
a stationary point from the definition of the dynamic.

D Azuma-Hoeffding’s Inequality

Lemma 2 (Azuma-Hoeffding’s Inequality: see e.g. [19]). Let Z1, Z2, · · · , Zn a martingale
such that

|Zk − Zk−1| ≤ ck.

Then for all t ≥ 0 and all λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−λ2/(2
Pt

k=1 c2k).

E Gronwall’s Lemma

Lemma 3 (Gronwall’s Lemma). . Let u(t) and g(t) be non-negative continuous functions on
I = [0,∞) for which the inequality

u(t) ≤ c +
∫ t

a
g(s)u(s)ds,

for t ∈ I. Then

u(t) ≤ c exp(
∫ t

a
g(s)ds),

for t ∈ I.
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