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Abstract

We investigate relations between interpolation properties and non-approximability
aspects of some NP-complete graph coloring problems. The graph coloring we con-
sider here is the fall coloring, i.e., a proper coloring of a graph G in which every
colored vertex sees all the other colors in its neighborhood. Given a graph G, the
optimization problem we focus on consists in determining the maximum cardinality
of such a fall coloring (if at least one exists in this graph). The interpolation prop-
erty of fall colorings says that for some graphs, there is no fall coloring for some
cardinals between the minimum and the maximum cardinalities of fall colorings (we
talk about not f-continuous graphs). We exhibit a family of graphs having at most
two cardinalities of existing fall colorings and in which determining the maximal one
leads to a NP-complete problem. By combining these interpolation and complexity
properties, we show that the optimization problem about fall coloring can not be
approximated with ratio less than n1−ε, for any ε > 0, for any graph with n vertices,
unless P = NP . Moreover, we give the complexity of problem of deciding whether
a given graph is f-continuous and we prove that unless P = NP , there exists no
polynomial-time approximation algorithm with approximation ratio bounded by a
constant for problem of finding the maximum integer k for which a graph G has
a fall k-coloring for f-continuous graphs. Finally, we study the properties of graphs
having fall colorings and the f -spectrum of graphs (i.e., set of cardinal of existing
fall colorings). We exhibit a class of graphs such that any integer set S (included in
IN \ {0, 1}) can be associated with a graph having its f -spectrum equal to S.
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1 Introduction

We investigate relations between interpolation properties and non approxima-
bility aspects of some NP-complete graph coloring problems. Given a graph
G, we consider here a (k)-coloring of G, as a proper coloring with cardinality
k [3]. It is well known that the problem of determining the minimum chromatic
number χ(G) (i.e., the minimum possible value for k) cannot be approximated
within a factor of |V |1−ε for any ε > 0 [14] unless P = NP . Moreover for some
particular proper colorings, approximation results also exist. For instance, the
NP-complete problem of determining the maximum cardinality k of an a-
coloring, i.e., a (k)-coloring in which for any pair of colors there exists an edge
connecting two vertices with these colors, can be approximated within a factor
of O(|V | log log |V |/ log |V |) (see [12]).

In this paper, we focus on the impact of interpolation properties of some
graph colorings [9] on their approximation behavior. To illustrate this kind of
property, let us consider b-colorings. A (k)b-coloring of a graph G is a (k)-
coloring in which for any used color, there is at least one vertex called colorful
vertex with this color having each other color in its neighborhood [10]. It is
clear that any (χ(G))-coloring of G is a b-coloring. Moreover, the problem
of determining the maximum cardinality b(G) of such a b-coloring is NP-
complete [10]. In terms of interpolation property [9], it is easy to see that
there exist some non b-continuous graphs G, i.e., there exist some integers k,
χ(G) < k < b(G), such that there is no (k)b-coloring of G (see [10]). Moreover,
in [2], for any nonempty integer set (included in IN \ {0, 1}), there exists a
graph whose set of b-colorings cardinalities (called b-spectrum) is this given
set. Up to our knowledge, there is no constant ε > 0 for which the problem
of determining b(G), can be approximated within a factor of 120/113 − ε in
polynomial time, unless P = NP [4]. Moreover, in [7], a distributed algorithm
to compute a b-coloring is presented.

In this paper, we focus on a particular case of b-colorings called fall color-
ings [6], defined as proper colorings in which each vertex is a colorful vertex
(i.e . We call fall chromatic number and fall achromatic number respectively
the minimum and maximum cardinalities of a fall coloring of G which we
denote by χf (G) and ψf (G)). Note that fall colorings do not exist in every
graph and Dunbar et al. have shown that the problem of deciding if a given
graph admits a fall coloring is NP-complete [6]. Moreover, in [5], some classes
of graphs where the usual coloring problem is easy, such as chordal graphs
are studied : the fall coloring can be computed in polynomial time for chordal
graphs if there exists one.
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In this paper, we only consider graphs in which at least one fall coloring exists.
As for b-colorings, it is easy to see that there exist some not f-continuous
graphs (we give an example in Section 3). Answering a question of Dunbar
et al. [6], we also show in this paper that given a graph G and an integer
k, determining whether ψf (G) is greater or equal to k is an NP-complete
problem. The main question we focus on here is whether these “holes” in the
cardinal set of fall colorings could negatively influence the approximation of
ψf (G). To answer this question, we define a class of graphs with n vertices
the f-spectrum of which (i.e., set of cardinal of existing fall colorings) is either
{2} or {2, α}, such that α is an integer less than n, the problem of deciding
which of these two sets is the f-spectrum being NP-complete. This shows that
there is no approximation algorithm with ratio less than n1−ε, for any ε > 0
unless P = NP .

The proof of the main result is based on graphs in which the f-spectrum
contains only χf (G) and ψf (G). If all non f-continuous graphs would verify
this property, we could think of a positive approximation result for all the
other graphs. But actually we show that any integer set is the f-spectrum of
a graph and that knowing if a graph is f-continuous or not is NP-complete.

The paper is organized as follows. In Section 2, we show that the maximization
problem about fall coloring can not be approximated with ratio less than n1−ε,
(for any ε > 0), for any graph with n vertices, unless P = NP . Moreover, we
prove that the problem of deciding whether a given graph is f-continuous
is NP-complete and that unless P = NP , there exists no polynomial-time
approximation algorithm with approximation ratio bounded by a constant
for problem of finding the maximum integer k for which a graph G has a
fall k-coloring for f-continuous graphs. In Section 3, we discuss on f-spectrum
of graphs and in particular we show that for any integer set S included in
IN \ {0, 1}, there exists a graph which cardinal set of fall colorings is S.

2 Approximation results

This section is devoted to determine the complexity of the optimization prob-
lem related to compute a fall coloring having a maximum number. Formally,
the following problem is studied:

MAXIMUM FALL K-COLORING (MFKC)
Instance: Graph G having a fall coloring.
Solution: a fall α-coloring of G
Measure: α
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Let OPT (x) denote the optimal value for any arbitrary instance x of MFKC
and let B(x) be the solution found by an algorithm B. Consider a function λ :
ZZ+ → IR+. We say that a polynomial-time algorithm B is a λ-approximation
algorithm for MFKC iff for every instance x of MFKC of size n, B(x) is in the
range [OPT (x)/λ(n), OPT (x)]. We say that MFKC is approximated within a
factor of λ if such an algorithm exists. The remaining of this section proves
that r−approximating with r < n1−ε for any ε > 0, becomes computationally
intractable.

We give now our main result concerning non-approximation of MFKC.

Theorem 1 The optimization problem MFKC is not approximated within a
factor of n1−ε for any ε > 0 where n is the number of vertices, unless P = NP .

The remaining of this section is devoted to the proof of Theorem 1. First,
in Section 2.1, we establish a polynomial time transformation from an in-
stance of the NP-complete problem NOT-ALL-EQUAL 3-SATISFIABILITY
(see [8,13]) to an instance Gt of MFKC. Then, in Section 2.2, we give the
f-spectrum of graph Gt. Finally, we conclude the proof of our theorem in Sec-
tion 2.3 and we give some extension results for particular graphs in Section 2.4.

2.1 Polynomial Transformation

The NP-complete problem NOT-ALL-EQUAL 3-SATISFIABILITY (NAE-3-
SAT) is defined as follows [8,13]:

NOT-ALL-EQUAL 3-SATISFIABILITY (NAE-3-SAT)
Instance: Set U of variables, collection C of disjunctive clauses over U such
that each clause Ci ∈ C has |Ci| = 3.
Question: Is there a truth assignment for U such that each clause in C has
at least one true literal and at least one false literal?

We give now a polynomial time transformation called A (see Table 1) which
takes as input an instance I = 〈U = {u1, . . . , uk}, C = {C1, . . . , Cp}〉 of NAE-
3-SAT and an integer t with t ≥ 1. It constructs a graph Gt, an instance of
MFKC. Let K ′

n,n be a graph obtained from a complete bipartite graph Kn,n

by removing a perfect matching. Now, we will describe transformation A.

Each clause Cj, for j = 1, . . . , p, of I is represented only by one vertex cj (see
instruction 5a). Moreover, Gt contains a graph K ′

2t,2t such that every vertex
cj for j = 1, . . . , p has 2t − 1 neighbors, in one of both bipartition class of
graph K ′

2t,2t. The goal of this construction is to consider that every vertex cj
for j = 1, . . . , p can easily have 2t− 1 different colors in its neighborhood.
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Fig. 1. An example of graph Gt such that instance I has C1 = (u1, u2, uk)

Every variable ui of I corresponds 4t + 1 vertices (see instructions 4a, 4b
and 4c): sets Xi and Xi contain t vertices which are adjacent to a vertex zi

(see intruction 4f). The goal of this construction is to consider that if zu is
colorful for a coloring with 2t+ 1 colors then sets Xu and Xu must contain 2t
distinct colors. For literal u (resp. u), one vertex in Xu (resp. Xu) is selected
so that if literal u (resp. u) appears in clause Cj, then this selected vertex is
adjacent to vertex cj in instruction 5c. Moreover other vertices are added so
that vertices in Xu ∪Xu can be colorful for a coloring with 2t+ 1 colors (see
instructions 4b, 4e and 4d). Finally, two disctint vertices a and b are added.
Vertex a (resp. b) is adjacent to all vertices in Yk+1 (resp. Xk+1) and Yi∪Yi in
(resp. Xi ∪Xi) for i = 1 . . . k . Algorithm A is described formally in Table 1.

In order to determine the running time of Algorithm A, the total number of
vertices of Gt will be computed according to the size of instance I of NAE-3-
SAT 〈U = {u1, . . . , uk}, C = {C1, . . . , Cp}〉. Every variable u of I corresponds
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Algorithm A.

Input:
Instance I of NAE-3-SAT 〈U = {u1, . . . , uk}, C = {C1, . . . , Cp}〉

an integer t

Output: Graph Gt = (Vt, Et)

(1) Xk+1 ← {x1
k+1, x

2
k+1, . . . , x

2t
k+1}, Yk+1 ← {y1

k+1, y
2
k+1, . . . , y

2t
k+1},

(2) Vt ← {a, b} ∪Xk+1 ∪ Yk+1

(3) Et ← {(y`
k+1, x

`′
k+1), (y

`
k+1, a), (x`

k+1, b) : 1 ≤ ` ≤ 2t ∧ 1 ≤ `′ ≤ 2t ∧ ` 6= `′}

(4) for each variable ui ∈ U do

(a) Xi ← {x1
i , x

2
i , . . . , x

t
i}, Xi ← {x1

i , x
2
i , . . . , x

t
i}

(b) Yi ← {y1
i , y

2
i , . . . , y

t
i}, Yi ← {y1

i , y
2
i , . . . , y

t
i},

(c) Vt ← Vt ∪ Yi ∪ Yi ∪Xi ∪Xi ∪ {zi}
(d) Et ← Et ∪ {(y`

i , x
`′
i ), (y`

i , x
`′
i ) : 1 ≤ ` ≤ t ∧ 1 ≤ `′ ≤ t}

(e) Et ← Et ∪ {(y`
i , x

`′
i ), (y`

i , x
`′
i ) : 1 ≤ ` ≤ t ∧ 1 ≤ `′ ≤ t ∧ ` 6= `′}

(f) Et ← Et ∪ {(x`
i , zi), (x`

i , zi), (x`
i , b), (x

`
i , b), (y

`
i , a), (y`

i , a) : 1 ≤ ` ≤ t}

(5) For each clause Cd ∈ C do,

(a) Vt ← Vt ∪ {cd}
(b) Et ← Et ∪ {(cd, x

`
k+1) : 2 ≤ ` ≤ 2t ∧ ` 6= t + 1}

(c) for each literal uα in Cd do Et ← Et ∪ {(cd, x
1
α)}

(6) return Gt

Table 1

to 4t + 1 vertices (see instructions 4a, 4b and 4c of Algorithm A) and each
clause of I is represented only by one vertex (see instruction 5a). Moreover,
there are 4t+2 additional vertices (see instructions 1 and 2). Since the number
of vertices of Gt is equal to 4t(k+1)+k+p+2, Algorithm A runs in polynomial
time in term of t and of the size of instance I. The next section is devoted to
the f -spectrum of Gt.

Figure 1 gives an example for the partial graph resulting from algorithm A.

2.2 The f-spectrum of Gt

Now, we will give the f -spectrum of Gt. This f -spectrum depends on the
instance I of NAE-3-SAT and on an integer t.
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Proposition 1 Let I = 〈U,C〉 be an instance of NAE-3-SAT. Let Gt be the
output of algorithm A having I and an arbitrary integer t as input.

(1) The f-spectrum of Gt is {2, 2t + 1} if set U of variables has a truth as-
signment with desired properties

(2) The f-spectrum of Gt is {2} otherwise

Now, we will prove Proposition 1. First, it is easy to see that graph Gt is a
bipartite graph because all edges have only one vertex in ∪k

i=1

(
Xi ∪Xi

)
∪

Xk+1 ∪ {a}. So, we deduce that:

Lemma 1 Graph Gt has a fall 2-coloring.

Moreover, graph Gt satisfies the following lemma:

Lemma 2 Graph Gt does not have any fall j-coloring for j = 3, . . . , 2t.

Proof. We show Lemma 2 by contradiction. Assume that Gt has a fall j-
coloring with 2 < j < 2t+ 1.

Without loss of generality, we assume that the color of vertex z1 is j. The
neighborhood of z1 is X1∪X1. Since z1 is colorful, for each color c in {1, . . . , j−
1} there exists at least one vertex in X1∪X1 colored with c. In addition, vertex
b must be colored with j, because it is adjacent to all the vertices of X1 ∪X1.
Since the vertices in ∪k+1

i=1Xi∪k
i=1Xi are adjacent to vertex b, their color is not

j.

Moreover, the neighborhood of c1 is included in ∪k+1
i=1Xi∪k

i=1Xi. Since that all
neighboors of c1 are not colored with color j, c1 should be colored with color
j.

Since j− 1 < 2t and since |X1 ∪X1| = 2t, at least two vertices in X1 ∪X1 are
colored with the same color, say color α. This implies that color α cannot be
assigned to any vertex of Y1 ∪ Y1, because each vertex of Y1 ∪ Y1 has 2t − 1
neighbors in X1 ∪X1. So, every vertex of Y1 ∪ Y1 has at least one neighbor in
X1 ∪X1 colored with α.

Since there are at least j − 1 distinct colors in X1 ∪X1, there exists at least
one vertex u of X1∪X1 colored with α′ such that α′ 6= α. Consequently vertex
u cannot be colorful. Indeed, vertex u has not any neighbor of color α. This
leads to contradiction with the definition of fall coloring. This concludes the
proof of Lemma 2. 2

According to Lemmas 1 and 2, it remains to prove that the set U of variables
has a truth assignment with desired properties if and only if Gt has a fall
(2t+ 1)-coloring.
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Lemma 3 If set U of variables has a truth assignment with desired properties,
then Gt has a fall 2t+ 1-coloring.

Proof. Assume first that I has a satisfying truth assignment f : U → {T, F}.
Color vertices {a, b, zi, c` : 1 ≤ i ≤ k ∧ 1 ≤ ` ≤ p} with color 2t + 1. Next, for

i = 1, . . . , k, if f(ui) = T , color vertices {x`
i , y

`
i , x

`
i , y

`
i}, for ` = 1, . . . , t with

colors {`, ` + t, ` + t, `} respectively, otherwise with colors {` + t, `, `, ` + t}
respectively. Finally, color vertices x`

k+1 and y`
k+1 with color ` for ` = 1, . . . , 2t.

Clearly this coloring is a proper coloring. Moreover, by construction, it is easy
to see that every vertex not in {ci : 1 ≤ i ≤ p} is colorful. Now, it remains to
check that all the vertices in {ci : 1 ≤ i ≤ p} are colorful. Let Cj be a clause
in C. Vertex cj is adjacent to vertices in {x`

k+1, x
`+t
k+1 : 1 < ` ≤ t} and so

it is adjacent to vertices of colors `, 1 < ` ≤ t and to vertices of colors `,
t+ 1 < ` ≤ 2t. Since f is a satisfying truth assignment such that every clause
Cj has at least one true literal and at least one false literal, vertex ci is adjacent
to vertices of colors 1, t+ 1 and vertex cj is colorful. So this coloring is a fall
coloring. This concludes the proof of Lemma 3. 2

Conversely, we prove the following lemma:

Lemma 4 If Gt has a fall 2t+ 1-coloring. Then, the set U of variables has a
truth assignment with desired properties.

Proof. Assume that graph Gt has a fall (2t + 1)-coloring. Without loss of
generality, we assume that the color of vertex b is 2t+ 1. Therefore no vertex
of any Xi or Xi has color 2t+ 1.

Let i be an integer between 1 and k. Since zi is a colorful vertex and since the
neighborhood of zi is Xi ∪Xi, this set contains 2t distinct colors and it does
not contain the color of zi. Since vertex b is adjacent to Xi ∪ Xi, the color
of b is the same as that of zi. So, for i = 1, . . . , k, the color of zi is 2t + 1.
Since, the vertices of Yk+1 are of degree 2t, the neighborhood of any vertex y
of Yk+1 must have distinct colors, otherwise y would not be colorful. Now, if
two vertices of Xk+1 have the same color then there exists at least one vertex
of Yk+1 with two neighbors of the same color. So the vertices of Xk+1 have 2t
distinct colors in Xk+1. With regard to vertex a, its color is 2t + 1 using the
same previous properties.

Let Cj be a clause in C. Since the neighborhood of cj is contained in set⋃k+1
i=1 Xi ∪

⋃k
i=1Xi, and since this fall (2t+ 1)-coloring is proper, cj must have

color 2t + 1. Moreover, for any clause Cj, vertex cj is adjacent to {x`
k+1 :

1 < ` ≤ 2t ∧ ` 6= t + 1}. Since vertices in {x`
k+1 : 1 < ` ≤ 2t ∧ ` 6= t + 1}

have 2t− 2 distinct colors, we assume without loss of generality that the two
missing colors are 1 and t+1. We define a function f : U → {T, F} by setting
f(ui) = T if vertex x1

i is colored with color 1, otherwise f(ui) = F . Since

8



the coloring is a fall (2t + 1)-coloring, each vertex ci is adjacent to at least
one vertex of color 1 and at least one vertex of color t+ 1. This function f is
a satisfying truth assignment with desired properties for NAE-3-SAT, which
concludes the proof of Lemma 4. 2

Lemmas 1, 2, 3 and 4 imply Proposition 1.

2.3 Non-approximation proof

This section is devoted to prove Theorem 1. From Proposition 1 we first prove
the following proposition:

Proposition 2 The problem of deciding, for a graph G = (E, V ) having a
fall 2-coloring and an integer t, whether its f-spectrum is {2, 2t + 1} is NP-
complete.

By setting t = 1, we can deduce that the problem of deciding, for a graph
G = (E, V ) having a fall 2-coloring, whether G has a fall 3-coloring is NP-
complete.

Moreover, using the gap technique ( [1], p. 100), by Propositions 1 and 2, we
prove that no polynomial-time t-approximation algorithm for MFKC may exist
unless P = NP . Now, we will compare t to n (number of vertices of graph Gt).
In Section 2.1, n is computed : n = 4t(k + 1) + k + p + 2. Choose arbitrarily
a sufficiently small constant ε > 0. We consider t = d(4(k + p))1/ε−1e. By
definition, we have n < 4t(k+1) and (4(k+p))1/ε−1 ≤ t. Thus, we can deduce
that n ≤ t1/(1−ε). Then t ≤ n1−ε and problem MFKC is not approximated
within a factor of n1−ε for any ε > 0 in polynomial time. This concludes the
proof of Theorem 1.

We have shown that the problem of deciding, for a graph G = (E, V ) having
a fall 2-coloring and an integer t, whether its f-spectrum is {2, 2t + 1} is
NP-complete. In this last case, the ”hole” between 2 and 2t + 1 leads to the
non-approximability of MFKC. But these graphs have a very particular f-
spectrum and once could ask if except them, it is possible to obtain better
approximation results. We give some first negative answers in the next section.

2.4 Complexity of f-continous graphs.

One could ask if similar negative results presented previously occur if only
f-continuous graphs are considered. This is an open question, but we can
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give the following first result about the difficulty of deciding whether a graph
is f-continuous or not. In order to prove it, we first give a simple lemma
about combining the f-spectrums of two graphs. The join graph (see [11]) of
two graphs G1 = (V1, E1) and G2 = (V2, E2) with disjoint vertex sets is the
graph G = (V,E) defined by V = V1 ∪ V2 and E = E1 ∪ E2 ∪ R, where
R = {(v1, v2) : v1 ∈ V1, v2 ∈ V2}. From the f-spectrum of two graphs G1 and
G2, the f-spectrum of the join graph of G1 and G2 can be computed.

Lemma 5 Let G1 and G2 be two graphs. The f-spectrum of the join of G1

and G2 is {i+ j : i ∈ Sf (G1), j ∈ Sf (G2)}

Proof. The edges added between the vertex sets of G1 and G2 prohibit colors
from appearing in both sets. Thus the proper colorings of the join consist of
proper colorings of G1 and G2 using disjoint sets of colors. 2

Let us prove the following proposition.

Proposition 3 The problem of deciding for a graph G = (E, V ) having a fall
coloring whether G is f-continuous, is NP-complete.

Proof. This problem is in NP : given a graph G, for each integer k between
2 and n (where n is the number of vertices of G), a non-deterministic poly-
nomial time algorithm can determine whether there exists a fall k-coloring of
G. We prove now that this problem is NP-hard. We transform NAE-3-SAT
to this problem. The transformation takes as input an instance I = 〈U =
{u1, . . . , uk}, C = {C1, . . . , Cj}〉. First, G1 is computed by polynomial time
algorithm A described in Table 1 taken as input I and t = 1. Afterward,
graph G is constructed from the join of the graph G1 and the graph H3 that is
the hypercube graph of dimension 3. This transformation runs in polynomial
time since Algorithm A is a polynomial time algorithm and since the join of
G1 and H3 can be performed in polynomial time. To complete the proof, we
show that this transformation is indeed a reduction: graph G is f -continuous
if and only if U has a truth assignment with desired properties.

It is easy to compute the f -spectrum of H3: the f-spectrum of H3 is the set
{2, 4}. Moreover, by Proposition 2, we know that the f -spectrum of G1 is
{2, 3} if and only if U has a truth assignment with desired properties. From
Lemma 5, we deduce that the f-spectrum of graph G is the set {4, 5, 6, 7} if
and only if U has a truth assignment with desired properties, otherwise it is
the set {4, 6}. So G is f-continuous if and only if U has a truth assignment
with desired properties. 2

Proposition 3 immediately leads that there is no constant ε > 0 for which the
optimization problem MFKC for f-continuous graphs can be approximated
within a factor of 3/2 − ε. In fact, we can generalize this remark: unless
P = NP , there exists no polynomial-time approximation algorithm with ap-
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proximation ratio bounded by a constant for problem MFKC for f-continuous
graphs. In other worlds, we have:

Theorem 2 Unless P = NP , Problem MFKC for f-continuous graphs does
not belong to APX.

Proof. As previously, NAE-3-SAT is considered. The transformation B takes
as input an instance I = 〈U = {u1, . . . , uk}, C = {C1, . . . , Cj}〉 and an integer
`. This transformation constructs ` graphs B1, . . . , B` as follows:

• B1 is computed by polynomial time algorithm A described in Table 1 taken
as input I and t = 1.
• for any i = 1, . . . , ` − 1, Bi+1 is constructed from Bi and graph Di which

is the output of algorithm A described in Table 1 taken as input I and
ti = 2i+1

3
if i is odd otherwise ti = 2i+2

3
. Bi+1 is the join of Bi and Di.

We denote the number of vertices of G by |V (G)|. We focus on theses three
following properties of graph B` with ` ≥ 0:

Property 1: |V (B`)| ≤ `(3k + p+ 4) + 4(k + 1)2`

3

Property 2: If U has a truth assignment with desired properties, then the

f-spectrum of B` is {i : 2` ≤ i ≤ 2`+ α`} where α` =


2`+1−1

3
if ` odd

2(2`−1
3

) otherwise
.

Property 3: If U has not a truth assignment with desired properties, then
graph B` has only one fall 2`-coloring.

First, we prove Property 1. By construction, we can notice thatB1 has 5k+p+6
vertices (recall that in Section 2.1 the number of vertices of B1 is computed).
We count the vertices of graph B`+1. Since B`+1 is the join of B` and D`,
the number of vertices of B`+1 is equal to the sum of those of D` and B`:
|V (B`+1)| = |V (B`)|+ |V (D`)|. Note that by construction, D` has 4t`(k+1)+
k + p+ 2 vertices. By computation, for any ` ≥ 1, we have

|V (B`)| = |V (B1)|+
∑`−1

j=1 |V (Dj)|

= 5k + p+ 6 +
∑`−1

j=1(4tj(k + 1) + k + p+ 2)

= 4k + 4 + `(k + p+ 2) + 4(k + 1)
∑`−1

j=1 tj

≤ 4k + 4 + `(k + p+ 2) + 4(k + 1)(2`

3
+ `

2
)

≤ `(k + p+ 2) + 4(k + 1)(2`

3
+ `

2
)

≤ `(3k + p+ 4) + 4(k + 1)2`

3
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So, we can state that Property 1 is true and it remains to prove Properties 2
and 3.

Second, we prove Properties 2 and 3 by induction on `. First, we check if the
two properties are satisfied for the base case where ` = 1. By construction,
B1 is a bipartite graph and hence B1 has a fall 2-coloring. By Proposition 2,
we know that the f -spectrum of B1 is {2, 3} if and only if U has a truth
assignment with desired properties. Since α1 = 1, if U has a truth assignment
with desired properties, then the f-spectrum of B` is {2, 2 + α1}. So the two
properties are satisfied for ` = 1.

Now we have to show that if Properties 2 and 3 are satisfied for `, then they
also hold when `+ 1. Assume the following properties are true for `.

Assume that set U of variables has a truth assignment with desired properties.

By Proposition 1, the f-spectrum of graph D` is {2, 2t` + 1}. From induction
hypothesis, the f-spectrum of B` is {i : 2` ≤ i ≤ 2` + α`} because U has a
truth assignment with desired properties.

Recall that B`+1 is the join of B` and D`. From Lemma 5, we deduce that
the f-spectrum of graph B`+1 is the set {i : 2` + 2 ≤ i ≤ 2` + α` + 2} ∪ {i :
2`+ 2t` + 1 ≤ i ≤ 2`+ α` + 2t` + 1}. By computation, we have

• 2`+ 2 + α`+1 = 2`+ α` + 2t` + 1 because

if ` is odd then, 2`+ α` + 2t` + 1 = 2`+ 2− 1 + 2`+1−1
3

+ 2× 2`+1
3

= 2`+ 2 + 2`+2+1
3
− 1

= 2`+ 2 + 2(2`+1−1
3

)

= 2`+ 2 + α`+1

if ` is even then, 2`+ α` + 2t` + 1 = 2`+ 2− 1 + 2(2`−1
3

) + 2× 2`+2
3

= 2`+ 2 + 2`+2+1
3

= 2`+ 2 + α`+1

• 2`+ 2t` + 1 ≤ 2`+ α` + 2 because

if ` is odd then, 2`+ 2t` + 1 = 2`+ 2× 2`+1
3

+ 1

= 2`+ 2 + 2`+1−1
3

= 2`+ 2 + α`

if ` is even then, 2`+ 2t` + 1 = 2`+ 1 + 2× 2`+2
3

= 2`+ 2 + 2`+1+1
3

≤ 2`+ 2 + α`

12



So the f-spectrum of B`+1 is {i : 2(`+1) ≤ i ≤ 2(`+1)+α`+1} and the second
property holds.

Conversely, assume that set U has not a truth assignment with desired prop-
erties. By Proposition 1, and from induction hypothesis, the f-spectrum of D`

and of B` are {2} and {2`} respectively. From Lemma 5, we deduce that the
f-spectrum of graph B`+1 is the set {2(`+ 1)}. So the third property holds.

From Properties 2 and 3, we can deduce that for any `, B` is a f-continuous
graph.

Let r be an arbitrary constant with r > 3/2. Let ` the smallest integer such

that r ≤ 2`+1
3`

and such that ` > 2. By definition, we have 2`−1+1
3(`−1)

< r ≤ 2`+1
3`

and we can deduce that ` < (r + 1) and 2` < 6`r < 6r(r + 1).

Assume that there exists a polynomial-time r-approximation algorithm D for
this problem. Let I = 〈U = {u1, . . . , uk}, C = {C1, . . . , Cj}〉 be an instance of
NAE-3-SAT. Let G be a graph, the output of algorithm B taken as input I and
`. We can note thatG has at most `(3k+p+4)+4(k+1)2`

3
vertices (Property 1).

So G has at most O(r2(k + p)) vertices and algorithm B constructs graph G
in polynomial time in size of instance I since r is a constant.

If the answer to problem NAE-3-SAT for instance I is postive, the r-approximation
algorithm D returns a solution has a measure at least 2`+α`

r
. Note that:

2`+α`

r
≥ 2`+ 2`+1−2

3

r
≥ (6`+2`+1−2)3`

3(2`+1)
≥ 2`+ (6`−4)`

(2`+1)
> 2`

So, if the answer to problem NAE-3-SAT for instance I is postive, the r-
approximation algorithm D returns a solution has a measure at least 2` + 1.
Otherwise, it returns a solution has a measure at most 2`. So due to Property
(2), we could use it to decide whether the answer to problem NAE-3-SAT for
instance I is postive or not in polynomial time. Thus, unless P = NP there is
no r- approximation polynomial algorithm for Problem MFKC for any contant
r ≥ 1. So, this completes the proof of this theorem. 2

3 First results about f-spectrum

This section is devoted to study the f-spectrum of some particular graphs.
First, we answer to an open question of Dunbar et al. [6].

Proposition 4 For any integer `, there is a non f-continuous graph G, such
that χf (G)− χ(G) > `.

13



Proof. We consider the graph G obtained from the complete bipartite graph
K`+4,`+4 = (U ∪ V,E) by removing a perfect matching and by adding an edge
(u1, u2), between two vertices u1, u2 ∈ U . Clearly χ(G) = 3. Moreover, it is
easy to see that G has a fall (` + 4)-coloring. To show that χf (G) = ` + 4,
it remains to prove that G does not have fall k-colorings for 3 ≥ k < ` + 4.
Assume that G has such a fall k-coloring with k < |V |. As k < |V |, at
least two vertices of V are colored with the same color, say color c. Since the
neighborhood of any two vertices of V is the set U , color c cannot be assigned
to any vertex of U . This means that every vertex v ∈ V must be colored with
color c (if it were not the case, then v would not be colorful). This implies
that no vertex u ∈ U \ {u1, u2} is colorful, since all its neighbors are colored
with the same color c. Therefore χf (G) = `+ 4 and χf (G)− χ(G) > `. 2

Now, we will extend this result. The remainder of this section is devoted to
prove that there exists a graph G such that Sf (G) = S for any finite nonempty
set S ⊂ (IN \ {0, 1}). Let us first define the categorical product of two graphs.
For graphs G and H, the categorical product of G and H is the graph G×H
with vertices {(u, v)|u ∈ G, v ∈ H}. Two vertices (u1, v1) and (u2, v2) are
adjacent in G ×H if and only if u1 is adjacent to u2 in G and v1 is adjacent
to v2 in H. Figure 2 shows the categorical product K2 ×K4. In [6] Dunbar et
al. have shown that:

Fig. 2. The categorical product K2 ×K4

Theorem 3 The f-spectrum of the graph Kn1×Kn2 where n1 ≥ 2 and n2 ≥ 2
is the set {n1, n2}.

Note, that this theorem does not generalize to categorical products of three
or more complete graphs. For example graph K2 ×K3 ×K4 have fall 2−, 3−
and 4−colorings but have also a fall 6−coloring (see [6]).

Theorem 4 For any finite nonempty set S ⊂ (IN\{0, 1}), there exists a graph
G such that Sf (G) = S.

Let S = {n0, n1, n2, . . . , np} such that ni−1 < ni for all i ∈ [1, . . . , p]. We
deal with particular cases. If S = {n}, then the complete graph Kn has the
required property. If S = {n1, n2}, then by Theorem 3, S is the f-spectrum
of the graph Kn1 ×Kn2 . Now, we will consider the general case where p ≥ 2.

14



First, the case where n0 = 2 is considered.

Let S = {n0, n1, n2, . . . , np} such that 2 ≤ p and n0 = 2 < n1 < n2 < . . . < np.
We initialize GS with graph K2×Kn1 × . . .×Knp . We add to it a new vertex
v and connect v to the nodes of the subset B defined by : B = {(1, i1, . . . , i1) :
1 ≤ i1 ≤ n1−1}∪p

`=2{(n0−1, n1−1, n2−1, . . . , n`−1−1, β, . . . , β) : n`−1 ≤ β ≤
n`−1}. Figure 3 gives a partial construction of graph GS for S = {2, 4, 6}, and
vertex v is adjacent to nodes in {(1, 1, 1), (1, 2, 2), (1, 3, 3), (1, 3, 4), (1, 3, 5)}.

In fact, for every integer k in an arbitrarily specified set S = {n0, n1, . . . , np} of
positive integers, the categorical product G of complete graphs Kni

for every
ni ∈ S, has fall ni-colorings, for every ni ∈ S, but graph G has also other fall
k-coloring for some k /∈ S. And the rule of vertex v is to prevent from some
undesirable fall colorings in GS.

Fig. 3. Partial construction of graph G for S = {2, 4, 6}. The black nodes represent
v and its neighborhood. We give only the edges between the vertex (1, 4, 1) and its
neighborhood

By construction, we have the following remark:

Remark 1 Two vertices x = (x0, x1, . . . , xp) and y = (y0, y1, . . . , yp) from
V (GS) \ v are adjacent if and only if xi 6= yi for any i, 0 ≤ i ≤ p.

Let us prove that GS satisfies the following Lemma:

Lemma 6 For any i, 0 ≤ i ≤ p, GS has a fall ni-coloring.

Proof. GS is a bipartite graph because all edges of GS have exactly one
extremity in vertex set {(1, x1, x2, . . . , xp)|1 ≤ xi ≤ ni, 1 ≤ i ≤ p}. So GS has
a fall 2-coloring.

Given an integer i such that 1 ≤ i ≤ p, a fall ni-coloring π of GS is con-
structed as follows. The color of vertex v is ni. For xi = 1, . . . , ni, vertices
in {(x0, x1, . . . , xi, . . . , xp) : 1 ≤ xj ≤ nj, 0 ≤ j ≤ p ∧ j 6= i} have the color xi.
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We check first that coloring π is proper. If two vertices x = (x0, x1, . . . , xp)
and y = (y0, y1, . . . , yp) in set V (GS) \ {v} are of the same color then xi = yi,
therefore x and y are not adjacent (see Remark 1). Moreover, by construc-
tion, vertex v is not adjacent to x = (x0, x1, . . . , xp) if xi = ni. So π is
proper. Furthermore, the vertices of V (GS) \ {v} are colorful because each
vertex x = (x0, x1, . . . , x`, . . . , xp) of color x` is adjacent to vertex x′ =
(x′0, x

′
1, . . . , x

′
j, . . . , x

′
p), with x′i 6= xi, of color xj with j 6= `. Since v is adja-

cent to the vertices (1, j1, j1, . . . , j1), (1, n1−1, j2, . . . , j2) . . . (1, n1−1, . . . ni−1−
1, ji, . . . , ji) where 1 ≤ j1 ≤ n1−1 and nh−1−1 ≤ jh ≤ nh−1 with 2 ≤ h ≤ i,
vertex v is colorful. So coloring π is a fall ni-coloring of G. This concludes the
proof of Lemma 6. 2

It remains to prove that if GS has a fall k-coloring, then k ∈ S. For given
x0, x1, . . . xi, where 1 ≤ xj ≤ nj and 0 ≤ j ≤ i ≤ p− 1, let Ai+1(x0, x1, . . . , xi)
be the subset of V (GS) \ {v} defined by :

{(x0, x1, . . . , xi, xi+1, . . . , xp) : 1 ≤ xr ≤ nr, with i+ 1 ≤ r ≤ p}.

Recall that two vertices u = (u0, u1, , . . . , up) and w = (w0, w1, , . . . , wp) are
ajacent in GS if and only if ∀i, 1 ≤ i ≤ p, ui 6= wi. By Remark 1, set
Ai+1(x0, x1, . . . , xi) is an independent set.

Let u1 and u2 be two vertices of set Ap(x0, x1, . . . , xp−1). We have Γ(u1) ∪
Γ(u2) = Γ(Ap(x0, x1, . . . , xp−1)), where Γ(v) and Γ(Ap(x0, x1, . . . , xp−1)) de-
note respectively the neighborhood of vertex v and set Ap(x0, x1, . . . , xp−1).

Lemma 7 For any fall k-coloring, for any r, 1 ≤ r ≤ p−1 such that k < nr+1,
of graph GS, all the vertices of Ar+1(x0, x1, . . . , xr) have the same color.

Proof. Let us begin with r = p − 1. Suppose that G has a fall k-coloring
with k < np. We consider two cases: x0 = 2 and x0 = 1.

Case 1: x0 = 2, this implies that v and Ap(2, x1, . . . , xp−1) are in the same
class of the bipartition. As |Ap(2, x1, . . . , xp−1)| = np > k, at least two vertices
of Ap(2, x1, . . . , xp−1) have the same color denoted by c. Furthermore, the
neighborhood of set Ap(x0, x1, . . . , xp−1) and the union of the neighbors of any
two elements of Ap(x0, x1, . . . , xp−1) are equal. So color c will not appear on
the neighborhood of set Ap(x0, x1, . . . , xp−1). Since all the vertices of G must
be colorful, all the vertices of Ap(x0, x1, . . . , xp−1) have to be colored with c.

Case 2: x0 = 1. Assume that v has a color c. Vertex x = (1, x1, . . . , xp−1, np)
of Ap(1, x1, . . . , xp−1) is not adjacent to v. Since vertex x must be colorful,
then for every color c′ 6= c, x is adjacent to a vertex y = (2, y1, . . . , yp) colored
with c′. By case 1, if y = (2, y1, . . . , yp) is colored with c′ then all the vertices
of set Ap(2, y1, . . . , yp−1) are colored with c′. This implies that every vertex of
set Ap(1, x1, . . . , xp−1) have color c′ on its neighborhood and this fact holds
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for every color c′ 6= c. This means that all the vertices of Ap(1, x1, . . . , xp−1)
are of color c.

Suppose now that this lemma holds for r such that i+ 1 ≤ r ≤ p− 1, and let
us prove it for r = i. We assume that G has a fall k-coloring with k < ni+1.
We have

Ai+1(x0, x1, . . . , xi) =
⋃

1≤xi+1≤ni+1

Ai+2(x0, x1, . . . , xi+1).

Since k < ni+1 < ni+2, by hypothesis, for any xi+1, 1 ≤ xi+1 ≤ ni+1 all
the vertices in set Ai+2(x0, x1, . . . , xi+1) have the same color. We consider two
cases: x0 = 2 and x0 = 1.

Case a: x0 = 2. Since k < ni+1, all the vertices of at least two subsets
Ai+2(2, x1, . . . , x

1
i+1) and Ai+2(2, x1, . . . , x

2
i+1) of set Ai+1(2, x1, . . . , xi) must

have the same color, say color c. Furthermore, we consider a neighbour y of a
vertex z in Ai+1(2, x1, . . . , xi). We will prove that y = (1, y1, . . . , yp) is also a
neighbour of at most one vertex in Ai+2(2, x1, . . . , x

1
i+1)∪Ai+2(2, x1, . . . , x

2
i+1).

Since y is a neighbour of z, by Remark 1, we have x` 6= y` for any `, 0 ≤ ` ≤ i.
Assume that x1

i+1 = yi+1. So, it implies that x2
i+1 6= yi+1. We consider the

vertex w = (1, w1, . . . , wp) in Ai+2(2, x1, . . . , x
2
i+1) such that

• w` = x` for any `, 0 ≤ ` ≤ i.
• wi+1 = x2

i+1

• w` = (y` + 1 mod n`) + 1 for any `, i+ 2 ≤ ` ≤ p.

By construction, we have w` 6= y` for any `, 0 ≤ ` ≤ p. So y is a neighbour of
w and y is included in the neighborhood of set Ai+1(2, x1, . . . , xi). Note that
y is not of color c. We can apply the argument for the case where x1

i+1 6= yi+1.
So, the neighborhood of set Ai+1(2, x1, . . . , xi) is included in the neighborhood
of subset Ai+2(2, x1, . . . , x

1
i+1)∪Ai+2(2, x1, . . . , x

2
i+1). This implies that color c

will not appear in the neighborhood of Ai+1(2, x1, . . . , xi). So, in order to be
colorful, vertices of Ai+1(2, x1, . . . , xi) must have color c.

Case b: x0 = 1. Vertex x = (1, x1, . . . , xp−1, np) in set Ai+1(1, x1, . . . , xi) is
not adjacent to v. Vertex x is colorful, say for color c. So for any color c′ 6= c,
x is adjacent to at least one vertex y = (2, y1, . . . yi, . . . , yp) colored with c′. By
Case a, all the vertices of set Ai+1(2, y1, . . . , yi) have the same color. But every
vertex in Ai+1(x0, x1, . . . , xi) has at least one neighbor in Ai+1(2, y1, . . . , yi).
Hence color c′ cannot be assigned to any vertex of set Ai+1(1, x1, . . . , xi), and
this for every c′ 6= c. This implies that all the vertices of Ai+1(x0, x1, . . . , xi)
are of color c.

So the lemma holds for r = i. This concludes the proof of Lemma 7. 2

17



Now, we can determine the f -spectrum of graph GS:

Lemma 8 Sf (GS) = S

Proof. By Lemma 6, we know that S ⊆ Sf (GS) Now, we will prove that,
if GS has a fall k-coloring with ni ≤ k < ni+1 and 0 ≤ i ≤ p − 1, then
k = ni. We assume that such fall k-coloring exists. Vertex v has some neigh-
bors in exactly ni − 1 distinct sets Ai+1(x0, x1, . . . , xi). Indeed, vertex v has
some neighbors in the sets Ai+1(1, j1, . . . , j1), . . . , Ai+1(1, n1 − 1, . . . , nh−1 −
1, jh, . . . jh) . . . , Ai+1(1, n1 − 1, . . . , ni−1 − 1, ji), with nh−1 − 1 ≤ jh ≤ nh − 1
and 1 ≤ h ≤ i. On the other hand, by Lemma 7, for every x1, x2, . . . , xi with
x0 = 1, 2, 1 ≤ xj ≤ nj and 1 ≤ j ≤ i, all the vertices of Ai+1(x0, x1, . . . , xi)
have the same color. This implies that vertex v has at most ni − 1 colors on
its neighborhood. It follows from this argument that v is colorful if and only
if k = ni. Finally is it clear that GS does not have any fall k-coloring with
k > np, because the degree of vertex v is np − 1. 2

So, we have obtained a construction of graph GS such that Sf (GS) = S and
minS = 2. Now, we will consider the case where S with minS > 2. Let
S = {n0, n1, n2, . . . , np} such that ni−1 < ni for all i ∈ [1, . . . , p]. We construct
graph G such that its f-spectrum is {2, n1−n0+2, n2−n0+2, . . . , np−n0+2}.
By Lemma 5, the f-spectrum of the join of G and Kn0−2 is S. Hence, for each
set of integers S included in IN \ {0, 1}, there exists a graph G having the set
S as a f-spectrum.

4 Conclusion

The main result of this paper given in Theorem 1 shows that problem MFKC
can not be approximated within a factor of n1−ε for any ε > 0. As far as
we know, this is the first result giving a relation between interpolation prop-
erties of a coloring (i.e., there exist not f-continuous graphs) and the non-
approximability of its maximum colors cardinality. This result is directly de-
duced from the fact that there is a ”hole” between this (possible) maximal
number and before the last one. We also answer some open question from
Hedetniemi et al concerning f-continuity. As we say in the introduction, an
open question is to know if a similar result about non-approximability can be
obtained for the b-coloring.
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