A (Brief) Introduction to Game Theory

Johanne Cohen

PRiSM/CNRS, Versailles, France.

Goal

Goal

is a Nash equilibrium．

Today

The game of Chicken
Definitions
Nash Equilibrium

Rock-paper-scissors Game
Mixed strategy
Mixed Nash Equilibrium

Prisoner's dilemma

Bonus: Toward learning equilibria

Outline

The game of Chicken
Definitions
Nash Equilibrium

Rock-paper-scissors Game
Mixed strategy
Mixed Nash Equilibrium

Prisoner's dilemma

Bonus: Toward learning equilibria

The game of Chicken (Hawk-dove game)

- A single lane bridge
- Two drivers Bob and Alice want to go cross it from opposite directions.

Each driver can Cross or Stop

The game of Chicken (Hawk-dove game)

- A single lane bridge
- Two drivers Bob and Alice want to go cross it from opposite directions.

Each driver can Cross or Stop

- Both drivers want to minimize the time spent to reach other side.

The game of Chicken (Hawk-dove game)

- A single lane bridge
- Two drivers Bob and Alice want to go cross it from opposite directions.

Each driver can Cross or Stop

- if both attempt to cross, the result is a fatal traffic accident.

There are 4 outcomes depending on the choices made by each of the 2 drivers

Model.

1. Who play?
2. Which actions/strategies?
3. Which payoff according to strategy profile?

Model.

1. Who play?

Alice and Bob
2. Which actions/strategies?

Cross or Stop
3. Which payoff according to strategy profile?
cost $=$ transport time

Model.

1. Who play?

Alice and Bob
2. Which actions/strategies?

Cross or Stop
3. Which payoff according to strategy profile?
cost $=$ transport time

	Bob	
	Cross	Stop
	Cross	
	Stop	$(1,2)$

Model.

1. Who play?

Alice and Bob
2. Which actions/strategies?

Cross or Stop
3. Which payoff according to strategy profile?
cost $=$ transport time
Bob

	Cross	Stop
$\stackrel{\cup}{\mathcal{U}}$	Cross	$(60,60)$
	$(1,2)$	
Stop	$(2,1)$	

Model.

1. Who play?

Alice and Bob
2. Which actions/strategies?

Cross or Stop
3. Which payoff according to strategy profile?
cost $=$ transport time
Bob

Games in standard form

- The two strategies of Bob correspond to the two columns.
- The entries of the matrix are the outcomes incurred by the players in each situation.

Rational behavior

rational behavior of player : select strategy which minimizes its cost.

	Bob	
	Cross	Stop
	Cross	$(60,60)$
	$(1,2)$	
	$(2,1)$	$(5,5)$

For example :

1. If Bob selects to Cross, then Alice would select to Stop.
2. If Bob selects to Stop, then Alice would select to Cross.

Rational behavior

rational behavior of player : select strategy which minimizes its cost.

	Bob	
	Cross	Stop
	Cross	$(60,60)$
	$(1,2)$	
	$(2,1)$	$(5,5)$

For example :

1. If Bob selects to Cross, then Alice would select to Stop.
2. If Bob selects to Stop, then Alice would select to Cross.

Alice has a rational behavior.

Best response

Best responses of player i :
$=$ the strategies which produce the most favorable outcome for a player

		Bob	
		Cross	Stop
	Cross	$(60,60)$	$(1,2)$
穴	Stop	$(2,1)$	$(5,5)$

Best response

Best responses of player i :
$=$ the strategies which produce the most favorable outcome for a player

	Bob	
	Cross	Stop
}{}	Cross	$(60,60)$
	$(1,2)$	
	$(2,1)$	$(5,5)$

Nash Equilibrium

Consider a game with a set of n players $\{1, \ldots, n\}$

- Each player has a set of possible strategies S_{i}
- $s=\left(s_{1}, \cdots, s_{n}\right)$ is a vector of strategies selected by the players

A pure strategy Nash Equilibrium (NE) is a vector of strategies $s=\left(s_{1}, \cdots, s_{n}\right)$ such that
$\forall i, \forall s_{i}^{\prime}$, we have $c_{i}\left(s_{1}, \cdots, s_{i}, \cdots, s_{n}\right) \leq c_{i}\left(s_{1}, \cdots, s_{i}^{\prime}, \cdots, s_{n}\right)$.

Nash Equilibrium

Consider a game with a set of n players $\{1, \ldots, n\}$

- Each player has a set of possible strategies S_{i}
- $s=\left(s_{1}, \cdots, s_{n}\right)$ is a vector of strategies selected by the players

A pure strategy Nash Equilibrium (NE) is a vector of strategies $s=\left(s_{1}, \cdots, s_{n}\right)$ such that
$\forall i, \forall s_{i}^{\prime}$ we have $c_{i}\left(s_{i}, s_{-i}\right) \leq c_{i}\left(s_{i}^{\prime}, s_{-i}\right)$.

Back to example

- 2 pure strategy Nash Equilibria :
(Cross, Stop) and (Stop, Cross)

Back to example

	Bob	
	Cross	Stop
	Cross	$(60,60)$
	$(1,2)$	
Stop	$(2,1)$	$(5,5)$

- 2 pure strategy Nash Equilibria :
(Cross, Stop) and (Stop, Cross)
- But which equilibrium should be selected? Which one will be selected by the system if its converges?

Back to example

	Bob	
	Cross	Stop
	Cross	$(60,60)$
	$(1,2)$	
	$(2,1)$	$(5,5)$

- 2 pure strategy Nash Equilibria :
(Cross, Stop) and (Stop, Cross)
- But which equilibrium should be selected? Which one will be selected by the system if its converges?

One solution

Outline

The game of Chicken
 Definitions Nash Equilibrium

Rock-paper-scissors Game Mixed strategy
Mixed Nash Equilibrium

Prisoner's dilemma

Bonus: Toward learning equilibria

Rock-paper-scissors Game

Rules: 2 players select one strategy from

> Rock/Paper/scissors.

Standard form :

@wikipedia

- No pure strategy Nash equilibrium.

Rock-paper-scissors Game

Rules: 2 players select one strategy from

> Rock/Paper/scissors.

Standard form :

	Scissors	Paper	Rock
Scissors	$(0,0)$	$(-1,1)$	$(1,-1)$
Paper	$(1,-1)$	$(0,0)$	$(-1,1)$
Rock	$(-1,1)$	$(1,-1)$	$(0,0)$

- No pure strategy Nash equilibrium.
- But if players select strategies at random,

$$
p_{i}(\text { Rock })+p_{i}(\text { Paper })+p_{i}(\text { Scissors })=1
$$

Rock-paper-scissors Game

Rules: 2 players select one strategy from Rock/Paper/scissors.

Standard form :

	Scissors	Paper	Rock
Scissors	$(0,0)$	$(-1,1)$	$(1,-1)$
Paper	$(1,-1)$	$(0,0)$	$(-1,1)$
Rock	$(-1,1)$	$(1,-1)$	$(0,0)$

- No pure strategy Nash equilibrium.
- But if players select strategies at random,

$$
p_{i}(\text { Rock })+p_{i}(\text { Paper })+p_{i}(\text { Scissors })=1
$$

And if one player prefers one strategy (Paper) to the others then his opponent prefers the corresponding winning strategy (Scissors) :

Rock-paper-scissors Game

Rules: 2 players select one strategy from
Rock/Paper/scissors.
Standard form :

	Scissors	Paper	Rock
Scissors	$(0,0)$	$(-1,1)$	$(1,-1)$
Paper	$(1,-1)$	$(0,0)$	$(-1,1)$
Rock	$(-1,1)$	$(1,-1)$	$(0,0)$

- No pure strategy Nash equilibrium.
- But if players select strategies at random,

$$
p_{i}(\text { Rock })+p_{i}(\text { Paper })+p_{i}(\text { Scissors })=1
$$

- If each player picks each of his 3 strategies with probability $1 / 3$,
then nobody can improve its payoff. Nash equilibrium of mixed strategies.

Using the random selection method.

Consider a game with a set of n players $\{1, \ldots, n\}$

- Each player has a set of possible pure strategies S_{i}
- a cost function $c_{i}: S_{1} \times \cdots \times S_{n} \rightarrow \mathbb{N}$

A mixed strategy is a probability distribution p_{i} over his set of possible pure strategies (actions).

$$
\forall i, \sum_{s \in S_{i}} p_{i}(s)=1
$$

A mixed profile p is a vector of n elements $\left(p_{1}, \ldots, p_{n}\right)$ such that player i selects actions using probability p_{i}.

Expected cost

The expected cost C_{i} of player i with the game profile p is

$$
C_{i}(p)=E\left[c_{i}(p)\right]
$$

		Bob	
		Cross	Stop
	Cross	$(60,60)$	$(1,2)$
<	Stop	$(2,1)$	$(5,5)$

Assume
that player Bob decides to pick Cross with probability $1 / 3$, that player Alice decides to pick Cross with probability $1 / 2$
$C_{\text {Bob }}\left(p_{\text {Bob }}, p_{\text {Alice }}\right)=$

Expected cost

The expected cost C_{i} of player i with the game profile p is

$$
C_{i}(p)=E\left[c_{i}(p)\right]
$$

	Bob	
	Cross	Stop
	Cross	$(60,60)$
	$(1,2)$	
Stop	$(2,1)$	$(5,5)$

Assume
that player Bob decides to pick Cross with probability $1 / 3$, that player Alice decides to pick Cross with probability $1 / 2$
$C_{\text {Bob }}\left(p_{\text {Bob }}, p_{\text {Alice }}\right)=\frac{1}{3} \times \frac{1}{2} \times 60+$

Expected cost

The expected cost C_{i} of player i with the game profile p is

$$
C_{i}(p)=E\left[c_{i}(p)\right]
$$

	Bob	
	Cross	Stop
	Cross	$(60,60)$
	$(1,2)$	
Stop	$(2,1)$	$(5,5)$

Assume
that player Bob decides to pick Cross with probability $1 / 3$, that player Alice decides to pick Cross with probability $1 / 2$
$C_{\text {Bob }}\left(p_{\text {Bob }}, p_{\text {Alice }}\right)=\frac{1}{3} \times \frac{1}{2} \times 60+\frac{1}{6} \times 1+\frac{1}{3} \times 2+\frac{1}{3} \times 5$

Expected cost

The expected cost C_{i} of player i with the game profile p is

$$
C_{i}(p)=E\left[c_{i}(p)\right]
$$

	Bob	
	Cross	Stop
	Cross	$(60,60)$
	$(1,2)$	
Stop	$(2,1)$	$(5,5)$

Assume
that player Bob decides to pick Cross with probability $1 / 3$, that player Alice decides to pick Cross with probability $1 / 2$
$C_{\text {Bob }}\left(p_{\text {Bob }}, p_{\text {Alice }}\right)=\frac{75}{6}$

Best response of a mixed strategy

	Bob	
	Cross	Stop
Cross	$(60,60)$	$(1,2)$
	$(2,1)$	$(5,5)$

Bob picks $\begin{cases}\text { Cross } & \text { with probability } q \\ \text { Stop } & \text { with probability } 1-q\end{cases}$
What happens for Alice?

When does Alice select the action Cross?

Best response of a mixed strategy

	Bob	
	Cross	Stop
$\stackrel{\cup}{<}$	Cross	$(60,60)$
	$(1,2)$	
	$(2,1)$	$(5,5)$

Bob picks $\begin{cases}\text { Cross } & \text { with probability } q \\ \text { Stop } & \text { with probability } 1-q\end{cases}$
What happens for Alice?
if Alice selects the action Cross, then

$$
\text { expected cost }=60 q+1(1-q)
$$

if Alice selects the action Stop, then expected cost $=2 q+5(1-q)$

When does Alice select the action Cross?

Best response of a mixed strategy

	Bob	
	Cross	Stop
$\stackrel{\cup}{<}$	Cross	$(60,60)$
	$(1,2)$	
	$(2,1)$	$(5,5)$

Bob picks $\begin{cases}\text { Cross } & \text { with probability } q \\ \text { Stop } & \text { with probability } 1-q\end{cases}$
What happens for Alice?
if Alice selects the action Cross, then

$$
\text { expected cost }=60 q+1(1-q)
$$

if Alice selects the action Stop, then

$$
\text { expected cost }=2 q+5(1-q)
$$

When does Alice select the action Cross ?
if $60 q+1(1-q)<2 q+5(1-q)$, in others words

Best response of a mixed strategy

	Bob	
	Cross	Stop
$\stackrel{\cup}{<}$	Cross	$(60,60)$
	$(1,2)$	
	$(2,1)$	$(5,5)$

Bob picks $\begin{cases}\text { Cross } & \text { with probability } q \\ \text { Stop } & \text { with probability } 1-q\end{cases}$
What happens for Alice?
if Alice selects the action Cross, then

$$
\text { expected cost }=60 q+1(1-q)
$$

if Alice selects the action Stop, then

$$
\text { expected cost }=2 q+5(1-q)
$$

When does Alice select the action Cross ?

$$
\text { if } q<2 / 31
$$

Using the random selection method...

1. Alice selects Cross if $q<2 / 31$

Using the random selection method...

Using the random selection method...

1. Alice selects Cross if $q<2 / 31$

Using the random selection method...

1. Alice selects Cross if $q<2 / 31$
2. Using the same argument as previously : Assume that Alice selects
$\left\{\begin{array}{ll}\text { Cross } & \text { with probability } p \\ \text { Stop } & \text { with probability } 1-p\end{array}\right.$,
Bob selects Cross if $p<2 / 31$
3. Nash Equilibrium $=$ intersection of the both lines.

Two Nash Equilibria of pure strategies

Using the random selection method...

1. Alice selects Cross if $q<2 / 31$
2. Using the same argument as previously : Assume that Alice selects
$\left\{\begin{array}{ll}\text { Cross } & \text { with probability } p \\ \text { Stop } & \text { with probability } 1-p\end{array}\right.$,
Bob selects Cross if $p<2 / 31$
3. Nash Equilibrium $=$ intersection of the both lines.

Two Nash Equilibria of pure strategies
0 2/31
One Nash Equilibrium of mixed strategies

Mixed Nash equilibrium

Consider a game with a set of n players $\{1, \ldots, n\}$

- Each player has a set of possible pure strategies S_{i}
- a cost function $c_{i}: S_{1} \times \cdots \times S_{n} \rightarrow \mathbb{N}$

A mixed Nash equilibrium is a profile $p^{*}=\left(p_{1}^{*}, \cdots, p_{n}^{*}\right)$ such that

$$
\forall i, \forall p_{i}^{\prime} \in \mathcal{P}_{i} \text { we have } C_{i}\left(p_{i}^{*}, p_{-i}^{*}\right) \leq C_{i}\left(p_{i}^{\prime}, p_{-i}^{*}\right)
$$

\mathcal{P}_{i} the set of mixed strategies of i.

Nash's Theorem

Théorème [Nash51]
Every finite game (with a finite set of players and finite set of strategies) has a mixed strategy Nash equilibrium

Recall : there is a game without pure strategy Nash equilibrium.

Outline

The game of Chicken
Definitions
Nash Equilibrium

Rock-paper-scissors Game
Mixed strategy
Mixed Nash Equilibrium

Prisoner's dilemma

Bonus: Toward learning equilibria

Prisoner's dilemma : statement

Bob and Alice that committed a crime are interviewed separately by the police.

The offer of the police is the following :

1. If only one of them confess, then he/she will be relaxed and the other will get a sentense of 10 years.
2. If they both remain silent, then they both will have to serve prison sentences of 1 year.
3. if they both confess then they both will get a sentense of 8 years.

They have two strategies: Confess or Silent.

Standard form

Two strategies: Confess or Silent.

	Bob	
	Confess	Silent
$\stackrel{\cup}{\overline{<}}$	Confess	$(8,8)$
	Silent	$(0,10)$

- The strategy Confess dominates strategy Silent.

$$
\forall s \in S_{i} c_{i}\left(s, s_{-i}\right) \geq c_{i}\left(\text { Confess }, s_{-i}\right)
$$

Standard form

Two strategies: Confess or Silent.

		Bob	
		Confess	Silent
	Confess	$(8,8)$	$(0,10)$
交	Silent	$(10,0)$	$(1,1)$

- The strategy Confess dominates strategy Silent.

$$
\forall s \in S_{i} c_{i}\left(s, s_{-i}\right) \geq c_{i}\left(\text { Confess, } s_{-i}\right)
$$

- (Confess, Confess) is a Nash equilibrium
- (Silent, Silent) is more favorable than (Confess, Confess)

Domination in the sense of Pareto

	Bob	
	Confess	Silent
$\stackrel{\otimes}{\overline{<}}$	Confess	$(8,8)$
	$(0,10)$	
Silent	$(10,0)$	$(1,1)$

Definition: Profile \hat{s} Pareto-dominates profile s if

$$
\begin{aligned}
& \text { 1. } \forall i, c_{i}(\hat{s}) \leq c_{i}(s), \\
& \text { 2. } \exists j, c_{j}(\hat{s})<c_{j}(s),
\end{aligned}
$$

Remark: (Silent, Silent) Pareto-dominates
(Confess, Confess).

Domination in the sense of Pareto

Notion of cooperation

Definition: Profile \hat{s} Pareto-dominates profile s if

$$
\begin{aligned}
& \text { 1. } \forall i, c_{i}(\hat{s}) \leq c_{i}(s), \\
& \text { 2. } \exists j, c_{j}(\hat{s})<c_{j}(s),
\end{aligned}
$$

Remark: (Silent, Silent) Pareto-dominates
(Confess, Confess).

And if games are repeated?

- a fixed number k of times,
- Confess dominates Silent at step k of the repeated game; the two players hence play Confess.
- same reasoning for the last but one step.
- players play Confess at time $k, k-1, \cdots, 1$

And if games are repeated?

- a fixed number k of times,
- Confess dominates Silent at step k of the repeated game; the two players hence play Confess.
- same reasoning for the last but one step.
- players play Confess at time $k, k-1, \cdots, 1$

Introduction of a probability δ
that the game continues for one more step

And if games are repeated?

- a fixed number k of times,
- Confess dominates Silent at step k of the repeated game; the two players hence play Confess.
- same reasoning for the last but one step.
- players play Confess at time $k, k-1, \cdots, 1$

Introduction of a probability δ that the game continues for one more step

- in a infinite number of steps,
- Strategies $=$ mixed strategies in the static game.
- Construction of a strategy of behaviors that correspond to a simulation of mixed strategy S and if a player i deviates, then it is punished

Outline

The game of Chicken
Definitions
Nash Equilibrium

Rock-paper-scissors Game
Mixed strategy
Mixed Nash Equilibrium

Prisoner's dilemma

Bonus: Toward learning equilibria

Toward learning equilibria

- The same game is repeated at each step.
- At every step t, player i has to solve the following problem :

Which action to play at time t, given the past history of the game?
that is to say
for all players i, $v_{i}(t)=f(Q)$,
where f_{i} is a function that gives the behavior of i in function of history Q.

A dynamic: fictitious player

A player is a fictitious player if the player has the following behavior:
the player will play a best response in function of the past statistic of of strategies of his/her adversary,

That is to say
If player 2 used n_{j} times the action j between step 1 and $t-1$, then player 1 will estimate that player 2 will play the action i with probability $q_{2, j}(t)=\frac{n_{j}}{t-1}$ at time t.

A dynamic: fictitious player

- Going from a discrete time to a continuous time
- The system $=$ the couple $\left(q_{1,1}, q_{2,1}\right)$ with $q_{i, 1}=$ probability that player i plays strategy 1.

A dynamic: fictitious player

direction of the dynamic in zone A

example of behavior of the dynamic

For zone A :

- player 1 will be willing to use pure strategy 2 , and player 2 pure strategy 1.
- the dynamic $\left(q_{1,1}, q_{2,1}\right)$ will stay in A up to time $t+\tau$ for small $\tau>0$.
So $q_{2,1}(t+\tau)=\frac{t q_{2,1}(t)}{t+\tau}$. By making converging $\tau \rightarrow 0$, we obtain

$$
q_{2,1}^{\prime}(t)=\frac{q_{2,1}(t)}{t}
$$

Questions?

Prisoner's dilemma (other interpretation)

	J 2		
\rightarrow	transmit	$\overline{\text { transmit }}$	
\rightarrow	transmit	$(1-c, ~ 1-c)$	$(-c$,
transmit	$(1$,	$-c)$	$(0$,

- $c>0$ is the cost of traffic,
- " 1 " represents the fact that packets reach the destination.

Domination in the sense of Pareto

Remark:
(transmit,transmit) is more favorable than

$$
\text { (transmit, } \overline{\text { transmit }}) .
$$

Definition: The profile \hat{s} Pareto-domine the profil s si

$$
\begin{aligned}
& \text { 1. } \forall i, u_{i}(\hat{s}) \geq u_{i}(s), \\
& \text { 2. } \exists j, u_{j}(\hat{s})>u_{j}(s),
\end{aligned}
$$

Domination in the sense of Pareto

Notion of cooperation

Remark:
(transmit, transmit) is more favorable than (transmit, transmit).
Definition: The profile \hat{s} Pareto-domine the profil s si

$$
\begin{aligned}
& \text { 1. } \forall i, u_{i}(\hat{s}) \geq u_{i}(s) \\
& \text { 2. } \exists j, u_{j}(\hat{s})>u_{j}(s)
\end{aligned}
$$

Questions?

