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Definition

Definition
A linear layout (or simply layout) of a given graph G = (V ,E ) is a
linear ordering of its vertices.
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Optimal linear arrangements

Definition
The weight of L on G is W(G , L) =

∑
(u,v)∈E |L(u)− L(v)|.
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linear layout L1 linear layout L2

W(G , L1) = 1 + 3 + 2 + 1 W(G , L2) = 1 + 1 + 2 + 1

Definition
An optimal linear arrangement (OLA) of G is a layout with the
minimum weight, i.e., argminLW(G , L). We denote
W(G ) = minLW(G , L) and call it the minimum weight on G .
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Previous work

• Computing an OLA is NP-hard (for general graphs [Garey,
Johnson 1979], for bipartite graphs [Even, Shiloach 1975]).

• But the problem is polynomial for trees [Goldberg, Klipker
1976], for grids, for hypercubes [Diaz and al 2002].

• There exists an approximation algorithm with performance
ratio O(log(n)) [Rao, Richa 1998].
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Interval graphs

Definition
A graph G = (V ,E ) is an interval graph if there is an one-to-one
correspondence between V and a set of intervals of the real line
such that, for all u, v ∈ V , (u, v) ∈ E if and only if the intervals
corresponding to u and v have a nonempty intersection.
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Fig.: An interval graph G
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Fig.: Its interval representation
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Linear arrangements and interval graphs

• The bandwidth (b(G , L) = max(u,v)∈E |L(u)− L(v)|)
minimization problem is polynomial for interval graphs
[Kleitman, Vohra1990].

• Interval graphs are used in bioinformatic (reconstruction of
relative positions of DNA fragments, gene structure prediction,
model of temporal relations in protein-protein interactions).

• An optimal linear arrangement of an interval graph models an
“optimal” molecular pathway [Farach-Colton and al 2004].
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Our results

• a proof of NP-hardness of the optimal linear arrangement
(OLA) problem on interval graphs.

• a 2-approximation algorithm for interval graphs.

• a 8-approximation algorithm for cocomparability graphs.
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OLA problem on complete graphs.

Lemma
Let Kn be the complete graph on n vertices. Then

W(Kn) =
(n − 1)n(n + 1)
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OLA problem on star graphs.

Lemma
Let Sα be the star with a center vertex c and α leaves. Then,

1. a permutation L is an optimal linear arrangement if and only
if L places c at the middle position.

W(Sα) =
⌈α

2

⌉
(
⌊α

2

⌋
+ 1)

2. W(Sα) ≤ W(Sα, L) ≤ 2W(Sα) for any layout L

c
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Proof of Lemma

Let Sα be a star with a center vertex c and α leaves (α even).

c

L(c) = 1 L(c) = 2 L(c) =
⌊

α
2

⌋
+ 1

W(Sα, L) α(α+1)
2 1 + α(α+1)

2

⌈
α
2

⌉
(
⌊

α
2

⌋
+ 1)

worst case better case
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Proof of Lemma

Let Sα be a star with a center vertex c and α leaves (α even).

1

2 3 i− 1 i i + 1 α + 1

Case where L(c) = 1 :

• W(Sα, L) =
∑α

i=1(i + 1− 1) =
∑α

i=1 i = α(α+1)
2
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Proof of Lemma

Let Sα be a star with a center vertex c and α leaves (α even).

k

1 2 k − 1 k + 1 k + 2 α + 1

Case where L(c) = 1 : the worst case (W(Sα, L) = α(α+1)
2 ).

Case where L(c) = k :

• W(Sα, L) =
∑k−1

i=1 i +
∑α+1−k

i=1 i .

Case where L(c) = α/2 + 1 : the better case
(W(Sα, L) = α

2 (α
2 + 1)).
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Simple graphs

Remark
The stars and the complete graphs are interval graphs.
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Partition of edge set.

G =
c

12

can be split into 2 graphs : G1 and G2

G1 =
c

12

G2 =
c

12

G1 G2
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Partition of edge set.

G =
c

12

W(G , L) =W(G1, L) +W(G2, L)

G1 =
7

1 2 3 4 5 6 8 9 10 11 12 13

G2 =
7

121 2 3 4 5 6 8 9 10 11 12 13

W(G1, L) W(G2, L)
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Partition of edge set.

G =
7

1 2 3 4 5 6 8 9 10 11 12 13

W(G ) ≥ W(G1) +W(G2)

G1 =
7

1 2 3 4 5 6 8 9 10 11 12 13

G2 =
7

121 2 3 4 5 6 8 9 10 11 12 13

W(G1) W(G2)

15/25 15



Some results :

Lemma
Let G = (V ,E ) be a graph, E = E1 ∪ E2 and E1 ∩ E2 = ∅. Then
W(G ) ≥ W(G1) +W(G2), where G1 = (V ,E1) and G2 = (V ,E2).

More generally,

Corollary

Let G = (V ,E ), V = V1 ∪ · · · ∪ Vn, and E = E1 ∪ · · · ∪ En, where
E1, · · · ,En are pairwise disjoint. Then
W(G ) ≥ W(G1) + . . . +W(Gn), where Gi = (Vi ,Ei ), 1 ≤ i ≤ n.
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The NP-completeness result

Theorem
The problem of deciding, for an interval graph G = (E ,V ) and a
constant K , whether W(G ) ≤ K is NP-complete.

• This problem belongs to NP.

• The proof is by reduction from the 3-Partition problem :
Instance : A finite set A of 3m integers {a1, . . . , a3m}, a
bound B ∈ Z+ such that

∑3m
i=1 ai = mB.

Question : Can A be partitioned into m disjoint sets
A1,A2, . . . ,Am such that, for all 1 ≤ i ≤ m,

∑
a∈Ai

a = B ?
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Sketch of proof :

Let f be the following reduction from PARTITION problem to
OLA problem

f (A,B) = (G , k) with

{
G ← ∪|A|

i=1Kai ∪ S2B with a center v

k ←W(S2B) +
∑|A|

i=1W(Kai )

G is an interval graph.

A = {2, 4, 3, 3}
B = 6

A1 = {2, 4}
A2 = {3, 3}

→

G =
c

12
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Sketch of proof :

Let f be the following reduction from PARTITION problem to
OLA problem

f (A,B) = (G , k) with

{
G ← ∪|A|

i=1Kai ∪ S2B with a center v

k ←W(S2B) +
∑|A|

i=1W(Kai )

G is an interval graph.

A = {2, 4, 3, 3}
B = 6
A1 = {2, 4}
A2 = {3, 3}

→
7=(B+1)
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Sketch of proof :

Let f be the following reduction from PARTITION problem to
OLA problem

f (A,B) = (G , k) with

{
G ← ∪|A|

i=1Kai ∪ S2B with a center v

k ←W(S2B) +
∑|A|

i=1W(Kai )

G is an interval graph.

A can be partitioned into 2
disjoint sets A1,A2 such that∑

a∈A1
a =

∑
a∈A2

a = B

⇔ there exists a linear layout L
with W(G , L) ≤ k

A polynomial-time reduction from 3− PARTITION problem
to OLA problem is based on the same idea.
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Right endpoint orderings

Definition
The layout of G consisting of vertices ordered by the right
endpoints of their corresponding intervals is called the right
endpoint ordering (reo) of G with respect to I.

a

b

c

d fg a
b g

c
d f

an interval graph G its interval representation
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Definition
The layout of G consisting of vertices ordered by the right
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Right endpoint orderings

Definition
The layout of G consisting of vertices ordered by the right
endpoints of their corresponding intervals is called the right
endpoint ordering (reo) of G with respect to I.
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2-Approximation algorithm

Remark
In a right endpoint ordering reo, for every pair of adjacent vertices
reo(u) < reo(w), each vertex between u and w is adjacent to w .

1

2

3

4 56 1
2 6

3
4 5

Theorem
Let G = (V ,E ) be an interval graph, and let I be an interval
model of G . Then, W(G , reo) ≤ 2W(G ).
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Proof of the Theorem :

• E is split : Ei = {(u, v) | reo(u) = i ∧ reo(v) < i} ∩ E (G )

• Gi = (V ,Ei ) is composed of a star of ni (=| Ei |) leaves

1

2

3

4 56 1

2

3

4 56 1

2

3

4 56

G and reo E4

and graph G4

E6

and graph G6

• For Gi = (V ,Ei ) :W(Gi , reo) =
∑

v∈V (Gi )
|reo(u)− reo(v)|

can be the worst case for the star of ni leaves.
2×W(Sni ) ≥ W(Gi , reo) ≥ W(Sni )

• For G :W(G ) ≥
∑n

i=1W(Gi ) ≥
∑n

i=1W(Sni )

• So W(G , reo) =
∑n

i=1W(Gi , reo) and 2W(G ) ≥ W(G , reo)
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Conclusion

• Optimal linear arrangement of interval graphs is NP-hard.

• There exists a fast 2-approximation algorithm based on any
interval model of the input graph.

• In the paper, we extend this result to cocomparability graphs
(NP-completeness, 8-approximation polynomial-time
algorithm)

• The complexity of several other linear layout problems, like
Cutwidth is not resolved for the class of interval graphs.
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