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Definition

Definition
A linear layout (or simply layout) of a given graph G = (V,E) is a
linear ordering of its vertices.

b 1 3
a c d 4 3 2 4 2 1

graph G linear layout L linear layout Ly
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Optimal linear arrangements

Definition
The weight of Lon G is W(G, L) =3, ,yeg |L(u) — L(v)].

3 3
4 f : 1 2 4 f : 2 1
linear layout L; linear layout L;
W(G,L1))=1+3+2+ W(G,L)=1+1+2+
Definition

An optimal linear arrangement (OLA) of G is a layout with the
minimum weight, i.e., argmin; W(G, L). We denote
W(G) = ming W(G, L) and call it the minimum weight on G.



Previous work

e Computing an OLA is NP-hard (for general graphs [Garey,
Johnson 1979], for bipartite graphs [Even, Shiloach 1975]).

e But the problem is polynomial for trees [Goldberg, Klipker
1976], for grids, for hypercubes [Diaz and al 2002].

e There exists an approximation algorithm with performance
ratio O(log(n)) [Rao, Richa 1998].
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Interval graphs

Definition

A graph G = (V,E) is an interval graph if there is an one-to-one
correspondence between V and a set of intervals of the real line

such that, for all u,v € V, (u,v) € E if and only if the intervals

corresponding to u and v have a nonempty intersection.

b [ b 2 [ g ']
a d 9 [ } a it d ) |L|
[ C 2
F1G.: An interval graph G F1G.: Its interval representation



Linear arrangements and interval graphs

e The bandwidth (b(G, L) = max(, yee |L(u) — L(v)])
minimization problem is polynomial for interval graphs
[Kleitman, Vohral990].

e Interval graphs are used in bioinformatic (reconstruction of
relative positions of DNA fragments, gene structure prediction,
model of temporal relations in protein-protein interactions).

e An optimal linear arrangement of an interval graph models an
“optimal” molecular pathway [Farach-Colton and al 2004].

8/25



Our results

e a proof of NP-hardness of the optimal linear arrangement
(OLA) problem on interval graphs.

e a 2-approximation algorithm for interval graphs.

e a 8-approximation algorithm for cocomparability graphs.
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OLA problem on complete graphs.

Lemma
Let K,, be the complete graph on n vertices. Then
(n—1n(n+1)

W(K,) = 6 .
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OLA problem on complete graphs.

Lemma
Let K,, be the complete graph on n vertices. Then

W(K,) = (n—1)n(n+ 1)‘
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OLA problem on star graphs.

Lemma
Let S, be the star with a center vertex ¢ and a leaves. Then,

1. a permutation L is an optimal linear arrangement if and only
if L places c at the middle position.

wis) =53]+ v
2. W(Sa) < W(Sa, L) <2W(S,) for any layout L

Cc

PZINS
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Proof of Lemma

Let S, be a star with a center vertex ¢ and « leaves (« even).

c
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Proof of Lemma

Let S, be a star with a center vertex ¢ and « leaves (« even).
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Proof of Lemma

Let S, be a star with a center vertex ¢ and « leaves (« even).

k

Case where L(c) = 1 : the worst case (W/(S,, L) = 2oy,
Case where L(c) =k :
)
(

o W(Sa, L) =30 i+ 00
Case where L(c) = /2 + 1 : the better case
(W(SarL) = 2(3 +1)).
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Simple graphs

Remark

The stars and the complete graphs are interval graphs.
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Partition of edge set.
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Partition of edge set.

can be split into 2 graphs : G; and Gy

c

C
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Partition of edge set.

W(G, L) =W(Gy, L) + W(Gy, L)

7
Gy = ° Gy =

W(Gy, L)

6 8 9 10 11 12 13

W(Gy, L)
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Partition of edge set.

W(G) > W(Gy) + W(Gy)

7
G = [ Gy =

ﬁ?@mm e
W(G1)

4

5 6 8§ 9 10 11 12 13

W(G2)
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Some results :

Lemma
Let G =(V,E) be a graph, E = E; UE; and E; N E; = (). Then
W(G) > W(G1) + W(Gp), where Gy = (V, E1) and G, = (V, E).

16
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Some results :

Lemma
Let G =(V,E) be a graph, E = E; UE; and E; N E; = (). Then
W(G) > W(G1) + W(Gp), where Gy = (V, E1) and G, = (V, E).

More generally,

Corollary
Let G=(V,E), V=ViU---UV,, and E=E;U---UE,, where
Eq,---, E, are pairwise disjoint. Then

W(G) > W(G1)+ ...+ W(G,), where G; = (V;, E;), 1 <i<n.

16
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The NP-completeness result

Theorem
The problem of deciding, for an interval graph G = (E, V) and a
constant K, whether W(G) < K is NP-complete.

e This problem belongs to NP.

e The proof is by reduction from the 3-PARTITION problem :
Instance : A finite set A of 3m integers {a1,...,a3m}, a
bound B € Z+ such that Y37, a; = mB.

Question : Can A be partitioned into m disjoint sets
A1, Ao, ..., Ay such that, for all 1 </ < m, ZaeA;a: B?

18



Sketch of proof :

Let f be the following reduction from PARTITION problem to
OLA problem

G — U!‘ill Ka, U Sap with a center v

f(A, B) = (G, k) with { k — W(S.) + Z!'i‘l W(K)

A={2,433} —
B=6
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A
B

Sketch of proof :

Let f be the following reduction from PARTITION problem to
OLA problem

G — U!‘ill K, U S with a center v
k= W(S8) + L2 W(K)
G is an interval graph.

f(A,B) = (G, k) with {

= {274a3a3} -
6
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Sketch of proof :

Let f be the following reduction from PARTITION problem to
OLA problem

f(A, B) = (G, k) with {

G «— U!-illKai U Sog with a center v
k= W(Ss) + L WI(K)

A=1{2,4,3,3} —

B=6 7=(B+1)
Al - {274} ' )
A = {3,3} — 13
= ==
\\\\ Al ’/// \\\\ A2 ’///
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Sketch of proof :

Let f be the following reduction from PARTITION problem to
OLA problem
G «— U!-illKa,. U S, with a center v

f(A, B) = (G, k) with { k — W(S.) + XL W(K,)

A can be partitioned into 2 < there exists a linear layout L
disjoint sets Aj, Ay such that with W(G, L) < k

ZaeAl a= ZaeAz a=8B

A polynomial-time reduction from 3 — PARTITION problem
to OLA problem is based on the same idea.

19/25
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Right endpoint orderings

Definition

The layout of G consisting of vertices ordered by the right
endpoints of their corresponding intervals is called the right
endpoint ordering (reo) of G with respect to Z.

an interval graph G

b g .

i ¢ i —

its interval representation

21



Right endpoint orderings

Definition
The layout of G consisting of vertices ordered by the right
endpoints of their corresponding intervals is called the right

endpoint ordering (reo) of G with respect to Z.

[ 2 2 [ b ']
L) 1 '4' .
¢ i | i lii
[ 3 2
an interval graph G its interval representation
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Right endpoint orderings

Definition
The layout of G consisting of vertices ordered by the right
endpoints of their corresponding intervals is called the right

endpoint ordering (reo) of G with respect to Z.

[ 2 2 [ 6 ']
L) 1 '4' .
¢ i | i lii
[ 3 2
an interval graph G its interval representation
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2-Approximation algorithm

Remark
In a right endpoint ordering reo, for every pair of adjacent vertices
reo(u) < reo(w), each vertex between u and w is adjacent to w.

[ 2 2 8 6 d
:1 ::34 :lii
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2-Approximation algorithm

Remark
In a right endpoint ordering reo, for every pair of adjacent vertices
reo(u) < reo(w), each vertex between u and w is adjacent to w.

Theorem
Let G = (V, E) be an interval graph, and let Z be an interval
model of G. Then, W(G, reo) < 2W(G).

[ 2 2 8 6 d
:1 ::34 :lii
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Proof of the Theorem :

o Eissplit: E; = {(u,v) | reo(u) =i Areo(v) <i}NE(G)

TR

G and reo
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Proof of the Theorem :

e Eis split c Ei ={(u,v) | reo(u) =i Areo(v) < i}NE(G)

= is composed of a star of n;j(=| E; |) leaves
2

e v s

G and reo E4 and graph Gy Eg and graph Gg
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e Eis split :

Proof of the Theorem :

Ei = {(u,v) | reo(u) =i Areo(v) < i} NE(G)

is composed of a star of n;j(=| E; |) leaves

e v s

G and reo

e For G;=(V

E4 and graph Gy Eg and graph Gg

Ei) W(Gi, reo) =3 ey (g, Ireo(u) — reo(v))|
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Proof of the Theorem :

e Eis split c Ei ={(u,v) | reo(u) =i Areo(v) < i}NE(G)

= is composed of a star of n;j(=| E; |) leaves

e v s

G and reo E4 and graph Gy Eg and graph Gg

e For Gi = (V, Ej) W(Gj,reo) =3 c (g, |reo(u) — reo(v)|
can be the worst case for the star of n; leaves.
2 X W(Sp,) > W(G;, reo) > W(Sy,)
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e Eis split' i

Proof of the Theorem :

= {(u,v) | reo(u) =i Areo(v) < i} NE(G)

is composed of a star of n;j(=| E; |) leaves

e v s

G and reo

e For Gi = (V

E4 and graph Gy Eg and graph Gg

Ei) W(Gi, reo) =3 ey (g, Ireo(u) — reo(v)|

can be the worst case for the star of n; leaves.

e For G :2W(G)

e So W(G, reo) =

2 X W(Sp,) > W(G;, reo) > W(Sy,)

> i W(G) = 321 W(Sh)
o1 W(G, reo) and 2W(G) > W(G, reo)
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Conclusion

Optimal linear arrangement of interval graphs is NP-hard.

There exists a fast 2-approximation algorithm based on any
interval model of the input graph.

In the paper, we extend this result to cocomparability graphs
(NP-completeness, 8-approximation polynomial-time
algorithm)

The complexity of several other linear layout problems, like
CUTWIDTH is not resolved for the class of interval graphs.
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