Optimal Linear Arrangement of Interval Graphs

Johanne Cohen¹ Fedor Fomin² Pinar Heggernes² Dieter Kratsch³ Gregory Kucherov⁴

¹LORIA/CNRS, Nancy, France.

²Department of Informatics, University of Bergen, Norway.

³LITA, Université de Metz, France.

⁴LIFL/CNRS, Lille, France

MFCS, August, 31 2006

Outline

Introduction

Optimal linear arrangements Interval graphs

Preliminaries

OLA problem on simple graphs. Remarks

The complexity of the OLA problem

Approximation algorithm

Conclusions

Outline

Introduction Optimal linear arrangements Interval graphs

Preliminaries OLA problem on simple graphs. Remarks

The complexity of the OLA problem

Approximation algorithm

Conclusions

Definition

Definition

A *linear layout* (or simply *layout*) of a given graph G = (V, E) is a linear ordering of its vertices.

Optimal linear arrangements

Definition

The weight of L on G is $\mathcal{W}(G, L) = \sum_{(u,v)\in E} |L(u) - L(v)|$.

Definition

An optimal linear arrangement (OLA) of G is a layout with the minimum weight, i.e., $\operatorname{argmin}_{L} \mathcal{W}(G, L)$. We denote $\mathcal{W}(G) = \min_{L} \mathcal{W}(G, L)$ and call it the *minimum weight* on G.

Previous work

- Computing an OLA is NP-hard (for general graphs [Garey, Johnson 1979], for bipartite graphs [Even, Shiloach 1975]).
- But the problem is polynomial for trees [Goldberg, Klipker 1976], for grids, for hypercubes [Diaz and al 2002].
- There exists an approximation algorithm with performance ratio $O(\log(n))$ [Rao, Richa 1998].

Interval graphs

Definition

A graph G = (V, E) is an *interval graph* if there is an one-to-one correspondence between V and a set of intervals of the real line such that, for all $u, v \in V$, $(u, v) \in E$ if and only if the intervals corresponding to u and v have a nonempty intersection.

FIG.: An interval graph G

FIG.: Its interval representation

Linear arrangements and interval graphs

- The bandwidth (b(G, L) = max_{(u,v)∈E} |L(u) L(v)|) minimization problem is polynomial for interval graphs [Kleitman, Vohra1990].
- Interval graphs are used in bioinformatic (reconstruction of relative positions of DNA fragments, gene structure prediction, model of temporal relations in protein-protein interactions).
- An optimal linear arrangement of an interval graph models an "optimal" molecular pathway [Farach-Colton and al 2004].

Our results

- a proof of NP-hardness of the optimal linear arrangement (OLA) problem on interval graphs.
- a 2-approximation algorithm for interval graphs.
- a 8-approximation algorithm for cocomparability graphs.

Outline

Introduction Optimal linear arrangements Interval graphs

Preliminaries OLA problem on simple graphs. Remarks

The complexity of the OLA problem

Approximation algorithm

Conclusions

OLA problem on complete graphs.

Lemma Let K_n be the complete graph on n vertices. Then

$$\mathcal{W}(\mathcal{K}_n) = \frac{(n-1)n(n+1)}{6}.$$

OLA problem on complete graphs.

Lemma Let K_n be the complete graph on n vertices. Then

$$\mathcal{W}(\mathcal{K}_n)=\frac{(n-1)n(n+1)}{6}.$$

OLA problem on star graphs.

Lemma

Let S_{α} be the star with a center vertex c and α leaves. Then,

1. a permutation L is an optimal linear arrangement if and only if L places c at the middle position.

$$\mathcal{W}(S_{\alpha}) = \left\lceil \frac{\alpha}{2} \right\rceil \left(\left\lfloor \frac{\alpha}{2} \right\rfloor + 1 \right)$$

2. $W(S_{\alpha}) \leq W(S_{\alpha}, L) \leq 2W(S_{\alpha})$ for any layout L

Proof of Lemma

Let S_{α} be a star with a center vertex *c* and α leaves (α even).

Proof of Lemma

Let S_{α} be a star with a center vertex *c* and α leaves (α even).

Case where L(c) = 1:

•
$$\mathcal{W}(S_{\alpha}, L) = \sum_{i=1}^{n} (i+1-1) = \sum_{i=1}^{n} i = \frac{\alpha(n+1)}{2}$$

Proof of Lemma

Let S_{α} be a star with a center vertex *c* and α leaves (α even).

Case where L(c) = 1: the worst case $(\mathcal{W}(S_{\alpha}, L) = \frac{\alpha(\alpha+1)}{2})$. Case where L(c) = k:

•
$$\mathcal{W}(S_{\alpha}, L) = \sum_{i=1}^{k-1} i + \sum_{i=1}^{\alpha+1-k} i.$$

Case where $L(c) = \alpha/2 + 1$: the better case $(\mathcal{W}(S_{\alpha}, L) = \frac{\alpha}{2}(\frac{\alpha}{2} + 1)).$

Simple graphs

Remark

The stars and the complete graphs are interval graphs.

Some results :

Lemma

Let G = (V, E) be a graph, $E = E_1 \cup E_2$ and $E_1 \cap E_2 = \emptyset$. Then $\mathcal{W}(G) \geq \mathcal{W}(G_1) + \mathcal{W}(G_2)$, where $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Some results :

Lemma

Let G = (V, E) be a graph, $E = E_1 \cup E_2$ and $E_1 \cap E_2 = \emptyset$. Then $\mathcal{W}(G) \ge \mathcal{W}(G_1) + \mathcal{W}(G_2)$, where $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

More generally,

Corollary

Let G = (V, E), $V = V_1 \cup \cdots \cup V_n$, and $E = E_1 \cup \cdots \cup E_n$, where E_1, \cdots, E_n are pairwise disjoint. Then $\mathcal{W}(G) \geq \mathcal{W}(G_1) + \ldots + \mathcal{W}(G_n)$, where $G_i = (V_i, E_i)$, $1 \leq i \leq n$.

Outline

Introduction Optimal linear arrangements Interval graphs

Preliminaries OLA problem on simple graphs. Remarks

The complexity of the OLA problem

Approximation algorithm

Conclusions

The NP-completeness result

Theorem

The problem of deciding, for an interval graph G = (E, V) and a constant K, whether $\mathcal{W}(G) \leq K$ is NP-complete.

- This problem belongs to NP.
- The proof is by reduction from the 3-PARTITION problem : Instance : A finite set A of 3m integers {a₁,..., a_{3m}}, a bound B ∈ Z⁺ such that ∑_{i=1}^{3m} a_i = mB. Question : Can A be partitioned into m disjoint sets A₁, A₂,..., A_m such that, for all 1 ≤ i ≤ m, ∑_{a∈Ai} a = B?

Let f be the following reduction from *PARTITION* problem to *OLA* problem

$$f(A,B) = (G,k) \text{ with } \begin{cases} G \leftarrow \cup_{i=1}^{|A|} K_{a_i} \cup S_{2B} \text{ with a center } v \\ k \leftarrow \mathcal{W}(S_{2B}) + \sum_{i=1}^{|A|} \mathcal{W}(K_{a_i}) \end{cases}$$

Let f be the following reduction from *PARTITION* problem to *OLA* problem

$$f(A,B) = (G,k) \text{ with } \begin{cases} G \leftarrow \bigcup_{i=1}^{|A|} K_{a_i} \cup S_{2B} \text{ with a center } v \\ k \leftarrow \mathcal{W}(S_{2B}) + \sum_{i=1}^{|A|} \mathcal{W}(K_{a_i}) \end{cases}$$

G is an interval graph.

Let f be the following reduction from *PARTITION* problem to *OLA* problem

$$f(A,B) = (G,k) \text{ with } \begin{cases} G \leftarrow \cup_{i=1}^{|A|} K_{a_i} \cup S_{2B} \text{ with a center } v \\ k \leftarrow \mathcal{W}(S_{2B}) + \sum_{i=1}^{|A|} \mathcal{W}(K_{a_i}) \end{cases}$$

Let f be the following reduction from *PARTITION* problem to *OLA* problem

$$f(A,B) = (G,k) \text{ with } \begin{cases} G \leftarrow \cup_{i=1}^{|A|} K_{a_i} \cup S_{2B} \text{ with a center } v \\ k \leftarrow \mathcal{W}(S_{2B}) + \sum_{i=1}^{|A|} \mathcal{W}(K_{a_i}) \end{cases}$$

A can be partitioned into 2 \Leftrightarrow there exists a linear layout Ldisjoint sets A_1, A_2 such thatwith $\mathcal{W}(G, L) \leq k$ $\sum_{a \in A_1} a = \sum_{a \in A_2} a = B$

A polynomial-time reduction from 3 - PARTITION problem to OLA problem is based on the same idea.

Outline

Introduction Optimal linear arrangements Interval graphs

Preliminaries OLA problem on simple graphs. Remarks

The complexity of the OLA problem

Approximation algorithm

Conclusions

Right endpoint orderings

Definition

The layout of G consisting of vertices ordered by the right endpoints of their corresponding intervals is called the *right endpoint ordering* (*reo*) of G with respect to \mathcal{I} .

an interval graph G

its interval representation

Right endpoint orderings

Definition

The layout of G consisting of vertices ordered by the right endpoints of their corresponding intervals is called the *right endpoint ordering* (*reo*) of G with respect to \mathcal{I} .

an interval graph G

its interval representation

Right endpoint orderings

Definition

The layout of G consisting of vertices ordered by the right endpoints of their corresponding intervals is called the *right endpoint ordering* (*reo*) of G with respect to \mathcal{I} .

an interval graph G

its interval representation

2-Approximation algorithm

Remark

In a right endpoint ordering *reo*, for every pair of adjacent vertices reo(u) < reo(w), each vertex between u and w is adjacent to w.

2-Approximation algorithm

Remark

In a right endpoint ordering *reo*, for every pair of adjacent vertices reo(u) < reo(w), each vertex between u and w is adjacent to w.

Theorem

Let G = (V, E) be an interval graph, and let \mathcal{I} be an interval model of G. Then, $\mathcal{W}(G, reo) \leq 2\mathcal{W}(G)$.

• *E* is split : $E_i = \{(u, v) \mid reo(u) = i \land reo(v) < i\} \cap E(G)$

• *E* is split : $E_i = \{(u, v) \mid reo(u) = i \land reo(v) < i\} \cap E(G)$

• *E* is split : $E_i = \{(u, v) \mid reo(u) = i \land reo(v) < i\} \cap E(G)$

• For $G_i = (V, E_i)$: $W(G_i, reo) = \sum_{v \in V(G_i)} |reo(u) - reo(v)|$

• *E* is split : $E_i = \{(u, v) \mid reo(u) = i \land reo(v) < i\} \cap E(G)$

• For $G_i = (V, E_i)$: $W(G_i, reo) = \sum_{v \in V(G_i)} |reo(u) - reo(v)|$ can be the worst case for the star of n_i leaves. $2 \times W(S_{n_i}) \ge W(G_i, reo) \ge W(S_{n_i})$

• *E* is split : $E_i = \{(u, v) \mid reo(u) = i \land reo(v) < i\} \cap E(G)$

- For $G_i = (V, E_i) : W(G_i, reo) = \sum_{v \in V(G_i)} |reo(u) reo(v)|$ can be the worst case for the star of n_i leaves. $2 \times W(S_{n_i}) \ge W(G_i, reo) \ge W(S_{n_i})$
- For $G : W(G) \ge \sum_{i=1}^{n} W(G_i) \ge \sum_{i=1}^{n} W(S_{n_i})$ • So $W(G, reo) = \sum_{i=1}^{n} W(G_i, reo)$ and $2W(G) \ge W(G, reo)$

Outline

Introduction Optimal linear arrangements Interval graphs

Preliminaries OLA problem on simple graphs. Remarks

The complexity of the OLA problem

Approximation algorithm

Conclusions

Conclusion

- Optimal linear arrangement of interval graphs is NP-hard.
- There exists a fast 2-approximation algorithm based on any interval model of the input graph.
- In the paper, we extend this result to cocomparability graphs (NP-completeness, 8-approximation polynomial-time algorithm)
- The complexity of several other linear layout problems, like CUTWIDTH is not resolved for the class of interval graphs.