Le problème de la somme d'un ensemble

Johanne Cohen

Johanne.Cohen@loria.fr

Laboratoire LORIA

Énoncé du problème

Instance:

 $S = \{a_1, \dots, a_n\}$ un ensemble d'entiers positif t un entier positif

Objectif:

Trouver un sous ensemble de S tel que sa somme est exactement t.

Théorème 1: Le problème de la somme d'un ensemble est NP-complet.

Notation

- $L + a = \{\ell + a : \ell \in L\}$
- $union(L, L') = \{\ell : \ell \in L \vee L'\}$
- $union trie(L, L') = \{\ell_i : (\ell \in L \lor L') \land (\ell_i \le \ell_{i+1})\}$ avec L' et L deux listes triées.
 - Complexité = O(|L'| + |L|)
 - Si $L' = \{2, 15\}$ et $L = \{1, 16, 20\}$, alors $union trie(L, L') = \{1, 2, 15, 16, 20\}$

Algorithme pseudo-polynomial (B)

Description de l'algorithme Entrée: $S = \{a_1, \ldots, a_n\}$, t

Sortie: un entier

Algorithme:

- 1. $L_0 := <0>$
- 2. Pour i allant de 1 à |S| faire
 - (a) $L_i := union trie(L_{i-1}, L_{i-1} + a_i)$
 - (b) supprimer tout les éléments a de L_i tel que a > t
- 3. retourner le plus grand élément de $L_{|S|}$

Complexité: $=O(t \times |S|)$

Illustration de l'algorithme (B)

Entrée:
$$S = \{2, 3, 6\}, t = 10$$

- 1. $L_0 := <0>$
- **2.** $L_1 := <0, 2>$
- 3. $L_2 := <0, 2, 3, 5>$
- **4.** $L_3 := <0, 2, 3, 5, 6, 8, 9, 11 >$
- 5. Suppression d'éléments a tel que a > 10:

$$L_3 := <0, 2, 3, 5, 6, 8, 9 >$$

6. retournez 9

Comment réduire la complexité.

Objectif:

- ullet Réduire le nombre d'éléments dans la liste $L_|S|$
- Construire une liste J où chaque solution (élément de L|S|) de l'instance a un réprésentant de J.

Liste épurée de L par rapport à δ : Une liste épurée L' de L par rapport à δ est une liste telle que

$$\forall y \in L, \exists z \in L', (1 - \delta)y \le z \le y$$

Exemple:

- $L = <0, 2, 3, 5, 6, 8, 9 > \text{avec } \delta = 0.2$
- Liste épurée de L = <0, 3, 6, 9 >

Algorithme d'épuration

Entrée: $L = \{\ell_1, \dots, \ell_n\}$ triée, un réel δ

Sortie: une liste $L' = \{z_1, \ldots, z_m\}$

Algorithme:

- 1. $L' := <\ell_1 >$
- **2.** $dernier := \ell_1$
- 3. Pour i allant de 2 à |L| faire
 - (a) Si ($dernier < (1 \delta)\ell_i$) alors
 - i. $L' := L' \cup \{\ell_i\}$
 - ii. $dernier := \ell_i$
- 4. retourner L'

Complexité: =O(|L|)

Illustration d'algorithme d'épuration

Entrée:
$$L = <0, 2, 3, 5, 6, 8, 9 > \text{avec } \delta = 0.2$$

$$L'_1 := <0 > dernier_1 := 0$$

1.
$$(0 < (1 - 0.2) \times 2)$$
, $L'_2 := < 0, 2 >$, $dernier_2 := 2$

2.
$$(2 < (1 - 0.2) \times 3)$$
, $L'_3 := < 0, 2, 3 >$, $dernier_3 := 3$

3.
$$(3 < (1 - 0.2) \times 5)$$
, $L'_4 := < 0, 2, 3, 5 >$, $dernier_4 := 5$

4.
$$(5 > (1 - 0.2) \times 6)$$
, $L'_5 := < 0, 2, 3, 5 >$, $dernier_5 := 5$

5.
$$(5 < (1 - 0.2) \times 8)$$
, $L'_6 := < 0, 2, 3, 5, 8 >$, $dernier_6 := 8$

6.
$$(8 > (1 - 0.2) \times 9)$$
, $L'_7 := <0, 2, 3, 5, 8 >$, $dernier_7 := 8$

Algorithme FPTAS nommé A

Entrée: $S = \{a_1, \ldots, a_n\}$, t, un réel ϵ

Sortie: un entier ℓ

Algorithme:

1. $S_0 := <0>$

2. Pour i allant de 1 à n faire

- (a) $S_i := union trie(S_{i-1}, S_{i-1} + a_i)$
- **(b)** $S_i := epuration(S_i, \frac{\epsilon}{n})$
- (c) supprimer tous les éléments a de L_i tel que a > t
- 3. retourner le plus grand élément de S_n

$\mathbf{Ex:}S = <204, 101, 5, 200>, t=320, \epsilon=0.2$

- 1. $S_0 := <0>$ et $\frac{\epsilon}{n}=0.05$
- 2. i = 1;(2.a) $S_1 := <0,204>$;(2.b), (2.c) $S_1 := <0,204>$
- 3. i = 2;(2.a),(2.b), (2.c) $S_2 := <0, 101, 204, 305 >$;

4.
$$i=3$$
; (2.a) $S_3:=<0,5,101,106,204,209,305,310>$ (2.b,c) $S_3:=<0,5,101,204,305>$

(2.a)
$$< 0, 5, 101, 200, 204, 205, 304, 305, 505 >$$

5.
$$i = 4$$
; (2.b,c) $S_4 = <0, 5, 101, 200, 204, 304, 505 >$ (2.b,c) $S_4 = <0, 5, 101, 200, 204, 304 >$

Conclusion: rés. = 304, rés. opt. = 310, \rightarrow 310(1 - 0.2) \leq 304

Qualité de la solution

Théorème 1: Soit C la solution de l'algo: $C^* \times (1 - \epsilon) \leq C$

Preuve:

Soit S_i la ieme liste épuré par l'algorithme

Soit L_i la ieme liste de toutes les solutions possibles pour les iemes premiers éléments de S.

• on a $\forall y \in L_i$, $\exists z \in S_i$ tell que $(1 - \frac{\epsilon}{n})^i y \le z \le y$.

Qualité de la solution

Théorème 1: Soit C la solution de l'algo: $C^* \times (1 - \epsilon) \leq C$

Preuve:

Soit S_i la ieme liste épuré par l'algorithme

Soit L_i la ieme liste de toutes les solutions possibles pour les iemes premiers éléments de S.

- on a $\forall y \in L_i$, $\exists z \in S_i$ tell que $(1 \frac{\epsilon}{n})^i y \leq z \leq y$.
- Comme $C^* \in L_n$, il existe C tel que

$$(1 - \frac{\epsilon}{n})^n C^* \le C \le C^*$$

Comme la fonction $(1 - \frac{\epsilon}{n})^n$ est \nearrow en fonction de n ,

$$C^* \times (1 - \epsilon) \le (1 - \frac{\epsilon}{n})^n C^* \le C$$

Plus en détail,

Proposition 2: Soit S_i la ieme liste épurée par l'algorithme A. Soit L_i la liste de toutes les solutions possibles pour les iemes premiers éléments de S. On a

$$\forall y \in L_i$$
, $\exists z \in S_i$ tel que $(1 - \frac{\epsilon}{n})^i y \leq z \leq y$.

Preuve: Par induction

- pour i = 1, $S_1 = <0$, $a_1 >$, $L_1 = <0$, $a_1 >$
- HI: pour $\forall k < i$, $\forall y \in L_k$, $\exists z \in S_k/(1-\frac{\epsilon}{n})^k y \leq z \leq y$.
- soit $y' \in L_i$, il existe $y \in L_{i-1}$ to y' = y ou $y' = y + a_i$
 - 1. Soit $y \in L_{i-1}$, par HI, $\exists z \in S_{i-1}$ tq $(1 \frac{\epsilon}{n})^{i-1}y \leq z \leq y$.
 - 2. par A, avant l'épuration on a $z \in S_i$ et $z + a_i \in S_i$
 - 3. Faire une étude de cas en fct du résultat de l'épuration.

Compléxité de l'algorithme A.

- Compléxité= $O(n \times \text{compléxité la boucle for})$.
- compléxité la boucle for) dépendant de la cardinalité $de S_i$.
 - 1. si $z \in S_i$, alors $z \leq t$ (implique $|S_i| \leq t$).
 - 2. Après chaque épuration, quelle est la distance entre deux élément consécutifs z' et z de S_i :

$$z'/z > 1/(1 - \frac{\epsilon}{n})$$

3. majoration du nombre d'eléments de S_i

$$\log_{1/(1-\frac{\epsilon}{n})} t = \frac{\log(t)}{-\log(1-\frac{\epsilon}{n})}$$

• Compléxité total = $O(n \times \log(t))$ (comme l'entier t est codé en binaire).

En conclusion

Théorème 1: L'algorithme \mathcal{A} est un algorithme entièrement polynomial d'approximation pour le problème de la somme d'un ensemble.

Car:

- Soit C la solution de l'algorithme A: $C^* \times (1 \epsilon) \leq C$ avec C^* la solution optimale.
- Compléxité total = $O(n \times \log(t))$