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Abstract

We study the problem of redistributing in parallel data between clusters in-

terconnected by a backbone. We suppose that at most k communications can be

performed at the same time (the value of k depending on the characteristics of

the platform).Given a set of communications between two parallel machines in-

terconnected by a backbone, we aim at minimizing the total time required for the

completion of all communications assuming that communications can be preempted

and that preemption comes with an extra cost. Our problem, called k-Preemptive

Bipartite Scheduling (KPBS) is proven to be NP-complete. We study a lower bound

of the problem. We propose two 2-approximation algorithms with low complexity

and fast heuristics. Simulation results show that both algorithms perform very

well compared to the optimal solution and to the heuristics. These algorithms have
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been implemented using MPI. Experimental results show that both algorithms out-

perform a brute-force TCP based solution, where no scheduling of the messages is

performed.

Keywords: Message scheduling ; data redistribution ; grid computing ; approximation

algorithm ; code coupling.

1 Introduction

In recent years, the emergence of cluster computing, coupled with fast wide area

networks has allowed the apparition of grid computing, enabling parallel algorithms to

take advantage of various distant ressources, be it computing power, software or data.

However the classical problem of minimizing the communications / computations ratio

remains and is even more difficult in most cases since communication times increase

on slower networks. It is therefore important to try to minimize communication times.

In this work we concentrate on the scheduling of the messages when a parallel data

redistribution has to be realized on a network, called a backbone. Two parallel machines

are involved in the redistribution: the one that holds the data and the one that will

receive the data. If the parallel redistribution pattern involves a lot of data transfers,

the backbone can become a bottleneck. Thus, in order to minimize the parallel data

redistribution time and to avoid the overloading of the backbone it is required to schedule

each data transfer.

The message scheduling problem appears in the context of data redistribution but

also in the context of packet switching for wavelength-division multiplexed (WDM) op-

tical network [7, 13, 22, 25, 27] or for satellite-switched time division multiple access

(SS/TDMA) [4, 15, 16]. The solution proposed in the article works for these two con-

texts.

Data redistribution has mainly been studied in the framework of high performance

parallel computing [1, 8, 10]. In this paper we study a generalization of the parallel
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data redistribution. Indeed, contrary to some previous works that only deal with block-

cyclic redistribution [3, 10, 23], here no assumption is made on the redistribution pattern.

Moreover, contrary to other works which assume that there is no bottleneck [1, 8], we

suppose that the ratio between the throughput of the backbone and the throughput of

each of the n nodes of the parallel machines is k. Hence, at most k communications can

occur at the same time. We study the problem for all values of k. We focus on the case

k < n (the backbone is a bottleneck) whereas the case k ≥ n has been tackled in [1, 8].

Redistributing data between clusters has recently received considerable attention as

it occurs in many applications framework. We provide here three examples of such

frameworks taken from distributed code-coupling, parallel task execution and persistence

and redistribution for metacomputing:

1. Distributed code coupling: Code coupling applications [20] are composed of sev-

eral codes that interact with each other. They are used for simulating complex

system. Such a system is composed of several models, each model being simulated

by one parallel code or component [29]. Moreover, in distributed code coupling,

each code/component is run on different parallel machine or cluster [2, 24]. During

the simulation the models interact with each-other and therefore the parallel codes

need to exchange data. This exchange of data is therefore a redistribution between

distant clusters.

2. Parallel task execution: Recent work in the field of mixed parallelism [30, 26, 5],

have shown the potential of executing data parallel tasks concurrently on different

clusters. In some cases, these tasks need to communicate with each other and data

has to be redistributed between each cluster that host the task.

3. Persistence and redistribution for metacomputing: Several metacomputing environ-

ments implement the client-agent-server model [6], such as Netsolve or Ninf [18].

In this model the agent has in charge to map a client request to a server, the request

is then being processed in an RPC way. One of the drawback of this approach is
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that data are sent back to the client at the end of every computation. This implies

unnecessary communications when computed data are needed by an other server

in further computations. Some recent enhancements of this model deal with data

management and allow data to be persistent on the server [9, 11]. As the service

can be parallel the data can be distributed among the node of the cluster and when

this data is required for further computation on a distant server. In this case a

parallel data redistribution occurs between distant clusters.

The contribution of this paper is the following. We prove that the problem of schedul-

ing any parallel data redistribution pattern is NP-Complete for any value of k(k < n).

We exhibit a lower bound for the number of steps of the redistribution as well as a lower

bound for the sum of the duration of each step. Next, we propose two algorithms (called

GGP and OGGP) that have a low complexity and a 2-approximation bound. On the

other hand we study simple and fast heuristics that achieve a good average performance.

Simulation results show that both GGP and OGGP outperform the heuristics and are

close to the optimal solution. Moreover, we have implemented these algorithms and

tested them on real examples using MPI. Results show that we outperform a TCP-based

brute-force solution that consists in letting the transport layer doing the scheduling and

managing alone the congestion.

2 Description of the Problem

2.1 Modelization of the Problem

We consider the following heterogeneous architecture made of two clusters of work-

stations C1 and C2 connected together by a backbone of throughput D. Let n1 be the

number of nodes of C1 and n2 be the number of nodes of C2. All the nodes of the first

cluster have a throughput d1 and the nodes of the second have a throughput d2.

Let us consider a parallel application that must execute the first part of its computa-

tion on C1 and the second part on C2. This is the case where an application is made of
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several parallel components, data parallel tasks or requests with dependencies. During

the execution of the application parallel data must be redistributed from the first cluster

to the second one.

We assume that the communication pattern of the redistribution is computed by the

application. We focus on efficiently transmitting the data, not on computing the pattern

itself. For computing the pattern in the case of block-cyclic redistribution see [17]. This

pattern is modeled by a traffic matrix T = (ti,j)1≤i≤n1,1≤j≤n2
, where ti,j represents the

amount of information that must be exchanged between node i of cluster C1 and node j

of cluster C2.

For a given traffic pattern and for a particular architecture our goal is to minimize

the total transmission time. In order to perform the redistribution, one naive solution

consists in sending all the data from all the nodes of C1 to all the nodes of C2 at the same

time and let the transport layer (for instance TCP) schedule the segments. This solution,

as we will show in the results section, is suboptimal for many reasons. If the traffic matrix

is very large, dense with high coefficient a lot of traffic is generated at the same time.

This traffic cannot be handled either by the backbone (when the aggregated bandwidth

of the emitting card is greater than the bandwidth of the backbone) or by the cards

themselves (when the incoming traffic has a throughput greater than the throughput of a

given card). In both cases, TCP segments will be dropped. TCP will detect the problem

and start to control the congestion by reducing the window size and therefore reduce the

amount of data sent at a given time. To avoid these problems, we use the knowledge we

have (i.e. the traffic matrix) to perform optimizations at the application level and control

by ourselves the congestion by defining a schedule for all the communications.

We consider two constraints relative to the communications:

1. the 1-port constraint. A transmitter (resp. a receiver) cannot perform more than

one communication at a given moment. However, more than one communication

can occur at the same time as long as the receiver/transmitter pair is different. A

parallel transmission of messages between different pairs is called a step.
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2. the k constraint. The maximum number of communications that can occur during

a step is denoted by k. This number depends mainly on the ratio D/d1 and D/d2.

It comes from the fact that no congestion occurs when the aggregated bandwidth

generated by cluster C1 or received by C2 is not larger than the bandwidth D of the

backbone. Therefore, k must respect the following equations: (a) k × d1 ≤ D, (b)

k × d2 ≤ D, (c) k ≤ n1 and (d) k ≤ n2.

We denote by d the speed of each communication. For instance let us assume that n1 =

200, n2 = 100, d1 = 10Mbit/s, d2 = 100Mbit/s and D = 1GBbit/s (D = 1000Mbit/s).

In that case, k = 100 because C1 can send 100 outgoing communications at 10 Mbit/s

generating a total of 1 Gbit/s aggregated bandwidth (which is supported by the backbone)

and each network card of C2 can receive the data at d =10 Mbit/s.

A common approach to minimize the overall transmission time is to enable preemp-

tion, i.e. the possibility to interrupt the transmission of a message and complete it later.

In practice, this involves a non-negligible cost, called startup delay and denoted here by

β, which is the time necessary to start a new step.

2.2 Formulation of the Problem

Let T be a traffic matrix, k be the maximum number of communications at each step,

β be the startup delay and d be the speed of each communication.

We can normalize the problem by d and β as follows: (1) The traffic matrix T , can be

replaced by the matrix Q = (qi,j) = (
ti,j
d

)1≤i≤n1,1≤j≤n2
that represents the communication

times for each message. (2) The matrix Q can be replaced by the matrix M = (mi,j) =

(
qi,j

β
)1≤i≤n1,1≤j≤n2

that represents the fraction of startup delay required for sending each

message.

In the following we will always consider the normalized problem (β = 1).

The matrix M can be represented by a bipartite graph G = (V1, V2, E) (see Figure 1)

and a positive edge-weight function w : E → Q. Each node of cluster C1 (resp. C2) is
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represented by a node of V1 (resp. V2). Hence, |V1| = n1 and |V2| = n2. The weight of an

edge between node i and j is equal to mi,j .

1’ 2’ 3’ 4’
1 8 3 0 0
2 2 3 0 0
3 0 4 0 0
4 0 0 2 5

1 1’

2 2’

3 3’

4 4’

3 2
8

3
4

2
5

Figure 1: A Communication Matrix Seen as a Bipartite Graph

We use the 1-port model for the communication and at most k communications can

occur during one step. Hence, a communication step is a weighted matching of G with

at most k edges. The weights refer to the amount of exchanged data. We denote the

matching corresponding to a communication step by a valid weighted matching (for the

remaining, a valid weighted matching contains at most k edges).

We call this problem k-Preemptive Bipartite Scheduling (KPBS), formally defined as

follows:

Given a weighted bipartite graph G = (V1, V2, E, w) where w : E → Q , an integer

k ≥ 21, find a collection {(M1, W1), (M2, W2), . . . , (Ms, Ws)} of valid weighted matchings

such that:

1. Let wi be the edge weight function of each matching Mi. It must respect the

following inequalities: for any e ∈ E,
∑s

i=1 wi(e) ≥ w(e). If e 6∈ Mi then wi(e) = 0.

2. For any 1 ≤ i ≤ s, the matching Mi has at most k edges (|Mi| ≤ k) and its cost is

equal to the rational number Wi = maxe∈Mi
wi(e).

3. (
∑s

i=1 Wi) + s is minimized. In the normalized form of the problem, each step has

a cost equal to Wi plus 1 for the startup cost.

1the case k = 1 is not interesting because the backbone is saturated by one communication
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In the remainder of this paper, we use the following notation: for any solution S of

KPBS, if the cost of S is α+ s, the number of steps is s and the useful transmission cost

equals α. See Figure 2 for an example.
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Figure 2: An example for KPBS problem (k = 2). The cost of the solution is 8 + 3 = 11

3 Related Work

This problem has been partially studied in the context of Satellite-Switched Time-

Division Multiple access systems (SS/TDMA) [4, 15, 16]. In [4], the problem with β = 0

is studied and an optimal algorithm with O(mn) steps is described. In [15] an optimal

algorithm that finds the minimal number of steps is described. In [16] the problem

without preemption is studied. It is shown NP-Complete and a heuristic is given.

The KPBS problem partially falls in a field originated by packet switching in com-

munication systems for optical network called wavelength-division multiplexed (WDM)

broadcast network [7, 13, 22, 25, 27]. The problem of minimizing the number of steps

is studied in [13, 15], and the problem of minimizing the total cost is studied in [22].

In [7] and in [25], the authors consider a version of the KPBS problem where the number

of receivers is equal to the number of messages that can be transmitted at the same

time (k = n2) and where the setup delay can be overlapped by the communication time

(In [25] authors also assume that all messages have the same size). In that case, a list-

scheduling algorithm is proven to be a 2-approximation algorithm [7]. The case where

the backbone is not a constraint (k ≥ min(n1, n2)) has been studied in [1, 8] and it is
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known as the preemptive bipartite scheduling (PBS). PBS was proven to be NP-complete

in [12, 16]. Approximating the PBS problem within a ratio number smaller than 7
6

has

been proven impossible unless P = NP [8]. Several approximation algorithms for the

PBS problem have been proposed in the literature. In [8], two different polynomial time

2-approximation algorithms for PBS have been proposed and in [1], an improvement of

this result is given.

In [19] the problem of mapping the data to the processors for minimizing the com-

munications is studied in the context of local block cyclic redistributions. It aims at

minimizing the amount of data to transfer and not the communication time.

In the context of block cyclic redistribution many works exist (see [3, 10, 23] for

example). In this case the backbone is not a constraint and the redistribution pattern is

not arbitrary. Hence, all these problems are less general than KPBS.

4 Complexity Results

This problem has already been proven NP-complete for the particular case where

k ≥ min(n1, n2) [12, 16]. We prove that it remains NP-complete for any fixed k ≥ 2

(with a different reduction than in [12, 16]). The decision problem KPBS is defined as

follow:

Instance: A weighted bipartite graph G = (V1, V2, E, w) where w : E → Q, an integer k

a rational number B.

Question: Is there a collection {(M1, W1), (M2, W2), . . . , (Ms, Ws)} of valid weighted

matchings such that G =
∑s

i=1 Mi, and
∑s

i=1 w(Mi) + s ≤ B.

Theorem 1 Let k ≥ 2 be a fixed integer. KPBS is NP-complete in the strong sense.

Proof of Theorem 1: It is easy to see that KPBS belongs to NP. We show that the

3-Partition problem [14] can be reduced to it:
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v1v2. . .. . .v3mx1xm ...

• g• h

u1u2
u3m

s(U)
m

s(U)
m

Figure 3: An example of graph G from an instance (U, s) of Partition Problem.

Instance: A finite set U = {u1, u2, . . . , u3m} and a size s(u) ∈ Z+ for each u ∈ U .

Question: Can U be partitioned into m disjoint sets U1, . . . , Um such that:

For 1 ≤ i ≤ m,
∑

u∈Ui
s(u) = 1

m

∑

u∈U s(u) ?

Let s(U) =
∑m

i=1 s(ui). We transform 3-partition to KPBS: Let U = {u1, u2, . . . , um}

be a finite set and a size s(u) ∈ Z+ for each u ∈ U in an arbitrary instance of 3-Partition.

We must construct an instance of KPBS. We set B = s(U)+3m and k = 2. We consider

the following weighted bipartite graph G = (V1, V2, E, w):

• V1 = {v1, v2, . . . , v3m, x1, . . . , xm} and V2 = {g, h}

• E = {(xi, h) : 1 ≤ i ≤ m} ∪ {(vi, g) : 1 ≤ i ≤ 3m}

• w(xi, h) = s(U)/m for 1 ≤ i ≤ m

• w(vi, g) = s(ui) for 1 ≤ i ≤ 3m

Figure 3 gives an example of this transformation. Since 3-Partition is NP-complete

in the strong sense, G can clearly be constructed in polynomial time. We claim that

the instance of KPBS admits a solution if and only if the instance of 3-Partition has a

solution.

(⇒) Let {U1, . . . , Um} be a solution of the 3-Partition instance. Then for 1 ≤ j ≤ m,

1 ≤ i ≤ 3m, valid matchings {(vi, g)(xj, h)} having weights s(ui) such that ui ∈ Uj are a
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solution of KPBS. Indeed the sum of these matchings is s(U)(
∑m

j=1

∑

ui∈Uj
s(ui) = s(U)).

The cost of this solution is exactly B.

(⇐) Conversely, we suppose that the instance of KPBS admits a solution. Then

the useful transmission cost is at least equal to s(U) because of the edges incident to

vertex h. There are at least 3m steps, because vertex g has 3m neighbors. Since the

cost is lower than or equal to B, both previous inequalities are equalities. Therefore, for

1 ≤ i ≤ 3m, no edge incident to vi can be split and the solution of the instance of KPBS

is composed of m valid matchings. Thus the solution having the desired properties. can

be written (Ci)1≤i≤3m. Since the size of a matching is at most 2(= k), for 1 ≤ i ≤ 3m,

Ci of the solution contains only one edge incident to g and to uj (w.l.g. we assume that

j = i) such that w(C) ≤ s(ui). Necessarily Ci contains an edge incident to one vertex

belonging to {x1, . . . , xm}, having the weight s(ui) (the same weight as the other edge of

the matching).

For 1 ≤ j ≤ m, let Uj be the set of the ui such that Ci contains an edge adjacent

to xj . Then, since for 1 ≤ j ≤ m,w(xj, h) = s(U)
m

, we have
∑

u∈Uj
s(ui) = s(U)

m
. So sets

U1, . . . , Um (such that for 1 ≤ j ≤ m,
∑

u∈Uj
s(u) = 1

m
S(u)) is a partition of U .

Since for any k fixed, we have the same proof, Theorem 1 is proven.

5 Lower Bounds

Before giving a lower bound for the optimal solution, we give some graph notations.

We define the weight w(v) of a node v of G to be the sum of weights of all edges incident

to vertex v. We denote the maximum of w(v) over all vertices by W (G). Let P (G) be

the sum of the weights of all edges of graph G. We denote the maximum degree of the

bipartite graph G by ∆(G), its number of edges by m(G) and its number of vertices by

n(G). For example, in Figure 1, W (G) = 8, P (G) = 27 and ∆(G) = 3.

Proposition 1 Let G = (V1, V2, E, w) be a weighted bipartite graph. Let k be an integer.

The cost of the optimal solution for the instance 〈G, k〉 of KPBS is at least η(G) =

11



ηd(G) + ηs(G) where

ηd(G) = max

(

W (G),

⌈

P (G)

k

⌉)

and ηs(G) = max

(

∆(G),

⌈

m(G)

k

⌉)

Proof of Proposition 1 ηs(G) is a lower bound for the number of steps. The first

term of the maximum accounts for the fact that two edges incident to the same node

cannot appear in the same step and the second term for the fact that a step contains at

most k edges. ηd(G) is a lower bound for the useful transmission cost and is obtained

similarly. The total cost is therefore minimized by ηd(G) + ηs(G).

6 Algorithms

In this section we present two algorithms we propose to use for the KPBS problem.

We start by presenting the GGP algorithm (Generic Graph Peeling) which is a polyno-

mial time 2-approximation. This algorithm is relatively complex hence we describe it

relying on a subalgorithm called weight-regular extension algorithm in order to simplify

the presentation.

We first introduce the main ideas behind these algorithms together with a more formal

description of the different steps.

We then continue this section by an analysis of the different properties of GGP. Three

key properties are studied: approximation ratio, worst case complexity and algorithm

correctness. Study of the approximation ratio is difficult and we need to introduce an-

other algorithm called multigraph algorithm. We prove that this algorithm is a pseudo

polynomial 2-approximation and that GGP can always give better results than it.

Finally we introduce the OGGP algorithm (Optimized GGP) which is a direct en-

hancement of GGP and compute its worst case complexity.
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Input: A bipartite graph G = (V1, V2, E, wG), an integer k.
Output:A set of valid weighted matchings S.

1. Build a graph H = (V1, V2, E, wH) such that ∀e ∈ E, wH(e) = dwG(e)e

2. Build a graph I with P (I)
k

≥ W (I) and P (I)
k

∈ N:

If P (H)
k

< W (H)
build graph I = (V1I

, V2I
, EI , wI) such that:

- E ⊂ EI , V1 ⊂ V1I
, V2 ⊂ V2I

- ∀e ∈ E, wI(e) = wH(e)
- P (I) = W (H) × k with:

- ∃e = (s1, s2) ∈ EI : s1 /∈ V1, s2 /∈ V2, wI(e) ≤ max
(

W (H),
⌈

P (H)
k

⌉)

= P (I)
k

- ∀d = (s1, s2) ∈ EI : s1 /∈ V1, s2 /∈ V2, d 6= e

we have wI(d) = max
(

W (H),
⌈

P (H)
k

⌉)

= P (I)
k

- ∀v ∈ V1I
\V1 the degree of v is 1, the edge e incident to v is incident

to v2 ∈ V2I
\V2

Else if P (H)
k

/∈ N

build graph I = (V1I
, V2I

, EI , wI) such that:
- E ⊂ EI , V1 ⊂ V1I

, V2 ⊂ V2I

- ∀e ∈ E, wI(e) = wH(e)

- P (I)
k

=
⌈

P (H)
k

⌉

with:

- ∃e = (s1, s2) ∈ EI : s1 /∈ V1, s2 /∈ V2, wI(e) ≤ max
(

W (H),
⌈

P (H)
k

⌉)

= P (I)
k

- ∀d = (s1, s2) ∈ EI : s1 /∈ V1, s2 /∈ V2, d 6= e

we have wI(d) = max
(

W (H),
⌈

P (H)
k

⌉)

= P (I)
k

- ∀v ∈ V1I
\V1 the degree of v is 1, the edge e incident to v is incident

to v2 ∈ V2J
\V2

Else I = H
3. Transform I into a weight-regular graph:

Build a P (I)
k

-weight-regular graph J = (V1J
, V2J

, EJ , wJ) using the algorithm
described in Figure 7.
4. S = ∅
5. While EJ 6= ∅ do:

5.1. Choose a perfect matching M in J
5.2. Change wM such that ∀e ∈ M, wM(e) = s(M) the smallest weight
of the edges of M
5.3. Add M to S, the set of solution matchings
5.4. ∀e ∈ M change wJ(e) to wJ(e) − wM(e)
5.5. Remove from EJ all edges of weight 0

6. Remove all edges e in S such that e /∈ E

Figure 4: GGP algorithm
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6.1 GGP Algorithm

6.1.1 Simple Case

Solving the KPBS problem is easy in the case where there is no constraint on k (i.e.

k = n) and the input graph G holds the following properties: G is weight-regular, with

all edges of integer weights. A weight-regular graph is a graph such that for each of its

nodes the sum of all weights of adjacent edges is the same.

An interesting propriety of weight-regular graph is that there always exists a perfect

matching on any of them [8]. We are then able to pick a perfect matching which will

be stored in the set of solutions. But as we want all communications in a given step to

end simultaneously (to minimize waiting and therefore overall cost) we cut the duration

of all communications (i.e. the weight of any edge in the matching) to the smallest

one. By doing this we can see that the graph left after removing the matching is still

weight-regular because we removed the same amount of weight on each edge and since the

matching was perfect, on each node. We then start again, removing another matching

out of the graph. In the remaining of this paper, we call peeling the graph this procedure

of step by step removing perfect matchings from it. The algorithm ends when the graph

is empty. An illustration of this peeling procedure is shown on Figure 5.

1 1’

2 2’

3 3’

22

1

3

1

=

1 1’

2 2’

3 3’

22
2 ∪

1 1’

2 2’

3 3’

1

1

1

Figure 5: Peeling a weight-regular graph

6.1.2 General Case

For the general case, we start by modifying the input graph to obtain a weight-

regular graph as in the simple case. We do so while taking into account latency and the
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k-constraint.

The difficulty of the KPBS problem comes from the startup delay cost associated to

each step. This means that in order to be efficient we should avoid generating a too high

number of steps and therefore avoid cutting any edge into too little pieces. In particular

we do not want to subdivise an edge with a cost already lower than the startup delay

cost (which has a value of 1 due to normalization). To achieve that, the first step of the

GGP algorithm is to round all weights on all edges to their next upper integers and after

that considering only matchings with integer costs in the algorithm.

The other main objective of the GGP algorithm is to avoid having more than k edges

in a matching. In order to do that, we add some virtual edges in the input graph. By

choosing them carefully we can ensure that any perfect matching will contain at most k

real edges (i.e. edges from the original graph): see Proposition 3.

Consider the example of Figure 6. The input of GGP is the first graph on the left,

with k = 1. We can quickly see that peeling this graph directly would give as results one

matching with all two edges. Therefore we first add the edges shown as dashed lines to

the initial graph. After that we start peeling the graph and in any perfect matching you

can take (for example the graph on the right) the number of real edges is always 1 and

the number of virtual edges 2.

1 1’

2 2’

⇒

1 1’

2 2’

3 3’

⇒

1 1’

2 2’

3 3’

Figure 6: Example of k constraint solving

Hence if we put all that into order, GGP is divided into these 4 large steps:

1. Round all weights (step 1 in the formal description of Figure 4),

2. Prepare the graph for step 3 (step 2 in the formal description),
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3. Build a weight-regular graph while also adding virtual edges taking care of the k

constraint (step 3 in the formal description),

4. Peel the graph (steps 4, 5 and 6 in the formal description).

To build the weight-regular graph of step 3 we need to define the function mw :

V1 ∪ V2 → N the function assigning to a node s the missing weight mw(s) of this node

for the graph to be P (I)
k

weight-regular. We have mw(s) = P (I)
k

− w(s). The algorithm

building the weight-regular graph is shown in Figure 7.

Input: The weighted bipartite graph I = (V1I
, V2I

, EI , wI) of step 2 of GGP,
an integer k.

Output:A weighted bipartite graph J such that J is a P (I)
k

weight-regular bipartite graph.

1. Copy the graph I in J : V1I
= V1J

, V2I
= V2J

, EI = EJ , and ∀e ∈ EJ , wJ(e) = wI(e).
2. We use a variable cn which is a node. cn starts being undefined.
3. Now foreach s ∈ V1I

(s also in V1J
) do:

3.1 Compute mw(s). If cn is undefined or mw(cn) = 0 then
3.1.1 add a new node n to V2J

3.1.2 cn = n
3.1.3 add an edge (s, cn) to EJ with wJ(s, cn) = mw(s)

else
3.1.4 if mw(cn) ≥ mw(s) then

3.1.4.1 add an edge (s, cn) to EJ with wJ(s, cn) = mw(s)
else

3.1.4.2 add an edge (s, cn) to EJ with wJ(s, cn) = mw(cn)
3.1.4.3 add a new node n to V2J

3.1.4.4 cn = n
3.1.4.5 add an edge (s, cn) to EJ with wJ(s, cn) = mw(s)

4. Do the same for all nodes in V2J
.

Figure 7: Weight-regular extension algorithm

6.2 Properties

6.2.1 Approximation Ratio

We start by proving that the weight-regular extension algorithm of Figure 7 is correct.
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Proposition 2 J is P (I)
k

-weight-regular.

Proof of Proposition 2 We need to prove ∀s ∈ V1J
∪ V2J

, w(s) = P (I)
k

. We consider

two cases: the case where s was already in I and the case where s is a new node.

If s was already in I, the algorithm implies mw(s) = 0 and therefore w(s) = P (I)
k

.

If s was not in I: the weights on the added edges is the sum of the missing weights for

all nodes of one side, that is
∑

t∈V1I
mw(t) and

∑

t∈V2I
mw(t). We know that

∑

t∈V1I
mw(t) =

∑

t∈V 1I

P (I)
k

− w(t) It is therefore equal to |V1I
|× P (I)

k
−P (I) = (|V1I

|−k)P (I)
k

since there

is no edge between two nodes on the same side. This value divided by P (I)
k

gives (|V1I
|−k)

which means it is possible to add edges to (|V1I
| − k) new nodes s with w(s) = P (I)

k
. The

same reasoning holds for V2I
. As we build all nodes sequentially, never leaving a node s

with w(s) < P (I)
k

we have ∀s ∈ V1J
∪ V2J

, w(s) = P (I)
k

.

We define the trans function which takes a weighted bipartite graph G = (V1, V2, E, wG)

as argument and returns the corresponding multigraph G′ = (V ′
1 , V

′
2 , E

′) by spliting all

edges such that an edge e ∈ E of weight wG(e) is turned into wG(e) edges of weight 1.

With this function we can now define the Multigraph algorithm (Figure 8). Basically

this algorithm starts by constructing the same graph J as GGP but is different in the

ways it peels the graph. We build J ′ = trans(J) which is a regular graph and peel it

into perfect matchings using the property that there always exist a perfect matching on

a regular graph. Thus we obtain a set of matchings whose costs are always 1, solution of

KPBS. However, as the number of edges in J ′ depends on the weights of the edges of J

the algorithm is only pseudo-polynomial and therefore not useful in practice.

Theorem 2 proves that the multigraph algorithm is a 2-approximation one. Before that

we need the following lemma. It proves that the lower bound of the useful transmission

time remains unchanged when building graph H from graph I.

Lemma 1 ηd(I) = ηd(H)

Proof of Lemma 1 ηd(H) = max(
⌈

P (H)
k

⌉

, W (H)). We have three possibilities:
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Input: A bipartite graph G = (V1, V2, E, wG), an integer k.
Output:A set of matchings S.

1. Build the graph J as described in steps 1, 2 and 3 of GGP
2. Build J ′ = trans(J)
3. S ′ = ∅
4. While EJ ′ 6= ∅ do:

5.1. Choose a perfect matching M ′ in J ′ with ∀e ∈ MwM(e) = 1
5.2. Add M ′ to S ′, the set of solution matchings
5.3. Remove from EJ ′ all edges of M ′

6. Remove all edges e in S ′ such that e /∈ E

Figure 8: Multigraph algorithm

1. P (H)
k

≥ W (H) and P (H)
k

∈ N: I = H and therefore ηd(H) = ηd(I).

2. P (H)
k

≥ W (H) and P (H)
k

6∈ N: we add no edge of weight greater than W (H) and

P (I)
k

=
⌈

P (H)
k

⌉

hence, ηd(H) = ηd(I).

3. P (H)
k

< W (H): as we do not add any edge of weight greater than W (H), W (I) =

W (H). Moreover we add edges until P (I)
k

= W (H) hence, ηd(I) = ηd(H) = W (H).

Theorem 2 The Multigraph algorithm is a 2-approximation.

Proof of Theorem 2 We name I ′ the graph obtained by trans(I).

Take a weighted bipartite graph G = (V1, V2, E, wG) with k an integer as an input

pattern. We apply the multigraph algorithm on G and obtain S ′ as the solution set of

matchings. Since J is, by construction, a P (I)
k

-weight-regular graph, and all weights are

integers, we know that J ′ = trans(J) is a P (I)
k

regular multigraph. As P (I) = m(I ′)

we have J ′ a m(I′)
k

regular graph. Since at each step we remove a perfect matching and

therefore an edge on each vertex of J ′ we know that |S ′| = m(I′)
k

= ηs(I
′). Therefore

the cost of the solution S ′ is c(S ′) = ηs(I
′) + ηs(I

′) × 1 = 2ηs(I
′) since each step has a
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duration of 1 and an startup delay of 1. As P (I)
k

= m(I′)
k

and W (I) = ∆(I ′) we know that

ηs(I
′) = max(∆(I ′), m(I′)

k
) = max(W (I), P (I)

k
) = ηd(I) Therefore c(S ′) = 2ηd(I). We can

now use Lemma 1 to deduce that c(S ′) = 2ηd(H).

Now consider ηd(H). We have ηd(H) = max
(

W (H),
⌈

P (H)
k

⌉)

≤ max (W (G) + ∆(G),
⌈

P (G)+m(G)
k

⌉)

since no edge can see its weight increase by more than 1 when build-

ing H from G. Therefore ηd(H) ≤ max
(

W (G),
⌈

P (G)
k

⌉)

+ max
(

∆(G),
⌈

m(G)
k

⌉)

=

ηd(G) + ηs(G) = η(G). So we finally have c(S ′) = 2ηd(H) ≤ 2η(G).

Theorem 3 GGP is a 2-approximation algorithm.

Proof of Theorem 3 We prove that for any schedule S obtained by GGP of cost

c(S) it exists a schedule S ′ obtained by the multigraph algorithm of cost c(S ′) such that

c(S) ≤ c(S ′). By construction, a solution S obtained by GGP can be decomposed into

a solution S ′ where ∀Mi ∈ S of cost c(Mi) there exists c(Mi) identical matchings M ′
j of

cost 1 in S ′. We therefore have
∑|S|

i=1 c(Mi) =
∑|S′|

j=1 c(M ′
j) and |S| ≤ |S ′|.

The cost of S is: |S|×1+
∑|S|

i=1 c(Mi). Similarly the cost of S ′ is: |S ′|×1+
∑|S′|

j=1 c(M ′
j).

Therefore c(S) ≤ c(S ′).

6.2.2 Correctness

The correctness of GGP follows from the respect of the 1-port and the k-constraint.

The 1-port constraint is ensured by choosing matchings. The respect of the k-constraint

is proven by Proposition 3. It requires the following lemma.

Lemma 2 Any perfect matching on J contains k edges belonging to I.

Proof of Lemma 2 Let M be a perfect matching on J . We have from proof of

Proposition 2 that V1J
is V1I

with |V2I
| − k new nodes. Similarly V2J

is V2I
with |V1I

| − k

new nodes. Therefore we have |V1J
| = |V2J

| = |V1I
| + |V2I

| − k which is the number of

edges in M . We know that none of the nodes added are connected together and also that
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any edge connected to a new node is not in EI . Therefore we have one edge for each

node added that is in M and not in EI . Since we added |V1I
| − k and |V2I

| − k nodes the

number of nodes in M and in EI is |V1I
| + |V2I

| − k − (|V1I
| − k) − (|V2I

| − k) = k.

Proposition 3 ∀M ∈ S, the solution given by GGP, |M | ≤ k.

Proof of Proposition 3 We know from Lemma 2 that a perfect matching M on J

contains k edges belonging to I. Since I is builded by adding edges from H , M has at

most k edges belonging to G. Since S is builded from perfect matchings on J from which

all edges not belonging to G are removed we can directly conclude that |M | ≤ k.

6.2.3 Complexity

We have shown that the Multigraph algorithm is pseudo-polynomial. Here we show

that GGP is polynomial and compute its worst-case complexity.

Proposition 4 GGP has a worst case complexity in O(
√

n(G)(m(G) + n(G))2).

Proof of Proposition 4 We can see that steps 1,2,3,4 and 6 of GGP are computed

in linear time. However steps 5 requires finding a perfect matching which is done in

O(
√

n(J)m(J)) using the hungarian method [21]. At each step we remove at least

one edge (the edge of the matching with the lowest weight) hence we iterates at most

m(J) times finding matchings. Therefore the worst case complexity of step 5 is in

O(
√

n(J)m(J)2).

Now to build H no edges or nodes are added, hence n(H) = n(G) and m(H) = m(G).

To build I we add at most k edges and therefore 2k nodes hence n(I) ≤ n(G) + 2k

and m(I) ≤ m(G) + k. Since it has no sense allowing to select in a matching more

edges than node, we limit here k to n(G) We can then deduce that n(I) ≤ 3n(G) and

m(I) ≤ m(G) + n(G).
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In the weight-regular extension algorithm, for each node in I (each iteration) we add

at most one new node in J . Therefore n(J) ≤ 2n(I). Similarly for each node in I we add

at most 2 new edges in J and therefore m(J) ≤ m(I) + 2n(I). Hence, n(J) ≤ 6n(G) and

m(J) ≤ m(G) + 7n(G).

This leads to a worst case complexity of step 5 of O(
√

n(G)(m(G) + n(G))2).

6.3 OGGP

6.3.1 Algorithm

GGP is relatively fast, and gives good results. However, it is possible to find a family

of graphs on which the 2-approximation ratio may be reached. We developed a modified

version of GGP called OGGP which gives good results on this family of graphs, and

better results than GGP in the general case. Being a direct extension of GGP, OGGP

inherits the 2-approximation ratio. It should be noted however, that we have no proof

that OGGP could have a lower approximation ratio than 2.

The principle is the following. In GGP, when choosing a perfect matching, the weight-

regular graph guarantees that there exists a perfect matching. However, there is often

more than one perfect matching and GGP doesn’t specify which one to choose, but uses

a random one. In OGGP we simply try to choose the matching that might give the best

results among all matchings. Intuitively, we would like to issue as much communications

as possible. By taking the longest possible communication steps, we might reduce the

total number of steps, and therefore the communication time. A communication step

time is given by the smallest weight of all edges in the matching. To have the largest

communication step, we need to find the perfect matching whose smallest weight is max-

imal.

The greedy algorithm depicted in Figure 9 finds a perfect matching which smallest

edge’s weight is maximal. It is based on the algorithm described in [4] that maximizes

the minimum weight of a matching.
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Input: A bipartite graph G.
Output:M : the perfect weighted matching with maximal minimum weight.

1. G′ = ∅, M = ∅, G′′ = G
2. while M is not perfect in G do:

2.1. choose e ∈ E(G′′)|∀e′ ∈ E(G′′), w(e) ≥ w(e′)
2.2. E(G′) = E(G′) ∪ e
2.3. E(G′′) = E(G′′)\e
2.4. M = a maximal matching in G′

Figure 9: Algorithm for extracting a matching with maximal minimum weight

Proposition 5 Algorithm of Figure 9 returns a matching of maximal minimum weight.

Proof of Proposition 5 Let l be the last edge added at the previous step in G′, we

have l ∈ M because without l it was not possible to find a perfect matching in G. We

also have ∀e ∈ G, w(e) > w(l) ⇒ e ∈ G′. Suppose that M ′ is a maximal matching

better than M (it’s minimum weight is larger than the one of M). M ′ is such that:

∀e ∈ M ′, f(e) > f(l). Therefore, we have: M ′ ⊂ G′. This is a contradiction, hence M is

a perfect matching maximizing the minimum weight.

6.3.2 Complexity

The new matching algorithm complexity is O(m(J)×
√

n(J)m(J)) = O(m(J)2
√

n(J)).

Therefore, the complexity of OGGP is O(
√

n(G)(m(G) + n(G))3).

7 Heuristics

Here are two heuristics that appear to work well in practice (a heuristic on weights

and a heuristic on degrees). They are faster than GGP and OGGP but are not 2-

approximation algorithms as will show the simulation results. The heuristic on degrees
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Input: A bipartite graph G.
Output:A set of valid weighted matchings.

1. Find a maximal matching.
2. Keep only the k (or less if there are less than k edges) edges

whose weights are the largest.
3. Set all the weights of the matching equal to the lowest one.
4. Subtract the matching from G.
5. Loop until there is no more edge left in G.

Figure 10: Heuristic on weights

is the same as the heuristic on weights except that line 2. is changed into “2. Keep only

the k (or less if there are less than k edges) edges with highest degrees.”.

Complexity: We use the Hungarian method of complexity O(m(G) × n(G)1/2) for

finding a maximum cardinality matching in a bipartite graph. For both heuristics, at

each step, at least one edge is removed from G. Therefore, the complexity of both

heuristics is O(m(G)2 × n(G)1/2) which is better than the complexity of GGP.

8 Experiments

8.1 Simulation of the Heuristics

We have tested each heuristic (with k fixed) on a sample of 100 000 random graphs

(the number of edges, the edges, and finally the weights were chosen randomly with a

uniform distribution) with 20 nodes on each side. We made a difference between lightly

and heavily weighted graphs. Small weights were taken between 1 and 20, whereas large

weights were taken between 1 and 100 000. The result of a heuristic is calculated as the

solution cost divided by the lower bound η. We call this ratio the evaluation ratio.

In Figures 11, 12, 13 and 14 the plots show the average and the maximum calculated

over the samples.
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For these tests, the maximum is always below 2.4, even 1.8 for small weights, and the

average is always below 2, and even 1.3 in case of large weights. Unfortunately, we did

not succeed into giving an evaluation ratio for these two heuristics.

We explain the convex shape of the plots as follows:

• when k = 1 the two heuristics obtain the optimal solution which consists in one

communication per steps;

• when k is greater than 2 and lower than a certain value (close to n/2), the quality

of the solution degrades (compared to the lower bound); We believe that this is due

to the fact that, at each step, the number of valid matchings increases;

• When k is greater than n/2 the quality of the solution tends to improve. At each

stage of the two heuristics the choice of valid matchings decreases, therefore the

heuristics are less likely to select bad valid matchings.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2 4 6 8 10 12 14 16 18 20

ev
al

ua
tio

n 
ra

tio

value of k

average
maximum

Figure 11: Heuristic on weights. Simu-
lation with small weights.
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Figure 12: Heuristic on weights. Simu-
lation with large weights.

8.2 Simulation of GGP and OGGP

The simulation of GGP and OGGP has been conducted under the same conditions as

the simulation of the heuristics. OGGP and GGP have been implemented into a C++

library, and executed on random graphs as described in the previous section.
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Figure 13: Heuristic on edges. Simula-
tion with small weights.
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Figure 14: Heuristic on edges. Simula-
tion with large weights.

8.2.1 Comparing GGP and OGGP

Tests on Small Weights. Figure 15 displays how the evaluation ratio varies when k

grows. The weights are generated randomly between 1 and 20.

We can see that as k grows the evaluation ratio grows and stabilizes. OGGP gives

better results than GGP even when comparing the worst case obtained with OGGP and

the average obtained with GGP.

Tests on Large Weights. Figure 15 displays how the evaluation ratio varies when k

grows. The weights are generated randomly between 1 and 100000.
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Figure 15: GGP and OGGP for Small Weights / Large Weights graphs

Results are similar but with an evaluation ratio far closer to 1 on large weights. On

these cases, the difference between GGP and OGGP is smaller.
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8.2.2 Comparing GGP and Heuristics

We can clearly see that GGP is giving better results than the heuristics. Although

the difference is not extremely high on average, when comparing worst cases, heuristics

are taking 1.5 more time than GGP.

When comparing GGP and the heuristics on larger weights the gap between GGP

and heuristics widens The huge difference between the algorithm and the heuristics is

essentially given by the use of preemption. As the cost of splitting a communication (β)

is small when compared to the cost of communications, we can achieve far better results,

extremely close to the optimum.

8.3 Real-World Experiments with MPI

In order to validate theoretical results and simulations, we have conducted several

real-world experiments. We used two clusters of 10 1.5 GHz Pentium computers running

Linux. Network cards were 100Mbits Ethernet adapters and the two clusters were inter-

connected within a local network by two 100Mbits switches. In order to test interesting

cases, that is where k 6= 1, we limited the available incoming and outgoing bandwidth of

each network card to 100
k

Mbits per second. This was done using the rshaper [28] Linux

kernel module. This module implements a software token bucket filter thus enabling a

good control of the available bandwidth. We conduct experiments for k = 3, k = 5, k = 7.
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Figure 16: Brute-Force vs. GGP or OGGP (k = 3, 5, 7)

Two different types of redistribution have been implemented. First, a brute force
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TCP-only approach: we start all communications simultaneously and wait until all trans-

fers are finished. In this case the network transport layer (TCP) is responsible for the

congestion control. The second approach allows us to test our algorithms: we divide all

communications into different steps, synchronized by a barrier, and only one synchronous

communication can take place in each step for each sender. Both algorithms have been

implemented using MPICH. We have not implemented an exponential algorithm finding

the optimal solution (which could seem possible as the number of nodes and edges is not

very high) because designing such an algorithm is difficult, and anyway our algorithms

are already close enough to the optimum. All communication times have been measured

using the ntp gettime function call from the GNU libc.

In our tests, the 10 nodes of the first cluster have to communicate to each 10 nodes

of the second cluster. The size of the data to transfer between two given cluster nodes

is uniformly generated between 10 and n MB. We plot the total communication time

obtained when n increases as shown in Figure 16.

Several observations can be made:

• We achieve a 5% to 20% reduction of communications costs. Although we are alone

on a local network, where TCP is efficient, we are able to achieve better results.

• The barriers cost extremely little time. Although OGGP algorithm has 50% less

steps of communication, it gives the same result as GGP. However we believe the

cost of synchronizations may increase if we introduce some random perturbations

on the network.

• The brute-force approach does not behave deterministically. When conducting

several time the same experiments we see a time variation of up to 10 percents. It

is interesting to see that our approach on the opposite behaves deterministically.

• As the available bandwidth decreases (i.e. k increases) we increase the benefits of

using GGP or OGGP over the brute-force approach.

27



9 Conclusions

In this paper we have formalized and studied the problem (called KPBS) of redis-

tributing parallel data over a backbone. Our contribution is the following: We have

shown that KPBS remains NP-complete when k is constant. We have studied lower

bounds related to KPBS. We have proposed a polynomial time approximation algorithm

with ratio 2. We have then proposed an improvement of this algorithm. Two messages

scheduling algorithms called GGP and OGGP for the redistribution problem with a lower

complexity have been proposed. GGP and OGGP provide a solution at most twice longer

than the optimal. We then studied two fast heuristics. Simulations show that OGGP

outperforms GGP that outperforms the heuristics. We have performed real experiments

on two clusters. Results show that our scheduling algorithms outperform the brute-force

approach that consists in letting the network manage the congestion alone (redistribution

time can be reduced to up to 20%).

In our approach we set the maximum number of messages during one step. This is

especially useful when the redistribution is performed between two clusters interconnected

by a backbone and when this backbone is a bottleneck. However the algorithms we have

proposed can also be used when a redistribution happens on the same parallel machines

or in the context of SS/TDMA systems or WDM network.

In our future work, we want to extend the model to handle more complex redistri-

butions. First we would like to consider achieving a local pre-redistribution in case a

high-speed local network is available. This would enable to aggregate small communica-

tions together, or on the opposite to dispatch communications to all nodes in the cluster.

Second, we would like to study the problem when the throughput of the backbone varies

dynamically or when the redistribution pattern is not fully known in advance. We think

that our multi-step approach could be useful for these dynamic cases. The final goal of

this work is to produce (together with the people involved in the INRIA ARC redGRID

2) a fully working redistribution library.

2http://graal.ens-lyon.fr/~desprez/REDGRID
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