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ABSTRACT

We focus on the problem of learning equilibria in a particular routing game similar to
the Wardrop traffic model. We describe a routing game played by a large number of
players and present a distributed learning algorithm that we prove to (weakly) converge
to equilibria for the system. The proof of convergence is based on a differential equation
governing the global evolution of the system that is inferred from all the local evolutions
of the agents in play. We prove that the differential equation converges with the help of
Lyapunov techniques.

Keywords: learning algorithm, Nash equilibria, weak convergence, Lyapunov stability,
routing game

1. Introduction

We consider here a problem that could very well arise in different kinds of networks,
phone, computer, etc... Where the issue of optimizing the flows (of information or
physical) in the network can become crucial. In the early fifties, Wardrop intro-
duced, in a study on road transportation networks (see [32]), a model for helping to
apprehend road traffic variations, observing patterns and other things. The goal of
his study was to understand how to improve the road network in general, in terms
of traveling time for drivers, queuing time at critical points, road congestion, danger
for pedestrians and so forth. An alternative presentation of the model can be found
in [29]. This model, that has proved to be solid, has been conceived to represent
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various road transportation problems with infinitely many users, each one of them
being responsible for an infinitesimal amount of traffic. A user was seen as belonging
to, or assigned to, what is called a commodity and for each of several commodities,
a certain amount of traffic, or low demand, has to be routed from a given source to
a given destination via a collection of paths. A flow in which, for all commodities,
the latencies of all used paths are minimal, with respect to the commodity they are
linked to, is called a Wardrop equilibrium of the network. Whereas it is well-known
that such equilibria can be solved by centralized algorithms in polynomial time, as
in [30], we are interested in distributed algorithms to compute Wardrop equilibria.

Actually, our model is slightly different from the original Wardrop model [32]
(and similar to the one considered in [30]) in the sense that we consider the flow
to be incurred by a finite number N of users. Also, while each one of the players
remains responsible for a fraction of the entire flow of their respective commodity, we
will not be approaching the eventual convergence of the system from a commodity
angle. Any player has a set of admissible paths among which he aims at balancing
his own strategy, which consists in a choice policy over his set of paths, such that,
after some time, he finds a strategy that would assure him the highest utility. In
some cases, the jointly computed allocation will be both a Nash equilibrium and a
Wardrop equilibrium for the system.

Our motivation is to understand if, how and when equilibria can be learned in
games. The dynamic considered here has both the advantage of being decentralized
and of requiring partial and very limited informations. We have indeed a discrete
stochastic dynamic with N players playing a repeated game, at each time step they
all choose between a finite number of strategies (paths) they can use. After each
play, players get to know the result of the path they chose, or its latency. Players
want to learn the optimal strategy which will be the one that keeps their latency
as low as possible. After each play, each player updates his strategy based solely on
his current action and the latency he experienced. We want to design a distributed
algorithm that learns equilibria in games while requiring minimal informations for
players to use.

In [26], Thathachar et al. presented a dynamic for learning Nash equilibria in
multiperson games. This dynamic is such that, for general games and under certain
strong conditions, all stable stationary points are Nash equilibria. Whereas the
dynamic is not necessarily convergent for general games (see [26]), we show here
that it is convergent for linear Wardrop networks. We call linear Wardrop networks
the case where latency functions are affine.

Our approach is based on what can be seen as a macroscopic abstraction of the
microscopic evolution rules of the involved agents, in terms of differential equations
governing the global state of the system. We prove that this dynamic converges to
some stable state for linear Wardrop networks with the help of Lyapunov techniques.
We give a short hint of non converging settings in the last part of the paper.
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2. Related Work

In the history of game theory, various algorithms for learning equilibrium states have
been proposed: centralized and decentralized (or distributed) algorithms, games
with perfect, complete or incomplete information, with a restricted number of play-
ers, etc... See e.g. [20] for an introduction to the learning automata model, and the
general references in [26] for specific studies for zero-sum games, N-person games
with common payoff, non-cooperative games, etc...

Wardrop traffic model was introduced in [32] to apprehend road traffic. More
recently, it has often been considered as a model of computer network traffic. The
price of anarchy, introduced by [19] in order to compare costs of Nash equilibria to
costs of optimal (social) states has been intensively studied on these games: see e.g.
[29, 28, 4, 13, 5].

There are a few works considering dynamical versions of these games, where
agents try to learn equilibria, in the spirit of this paper.

In [10], extending [11] and [12], Fischer and al. consider a game in the original
Wardrop settings, i.e. a case where each user carries an infinitesimal amount of
traffic. At each round, each agent samples an alternative routing path and compares
the latency on its current path with the sampled one. If an agent observes that it
can improve its latency, then it switches with some probability that depends on the
improvement offered by the better paths, otherwise, it sticks to its current path.
Upper bounds on the time of convergence were established for asymmetric and
symmetric games. A symmetric game is made of one single commodity, asymmetric
games are with more than one commodity.

In [30] Fischer and al. consider a more tractable version of this learning algo-
rithm, considering a model with a finite number of players, similar to ours. The
considered algorithm, based on a randomized path decomposition in every commu-
nication round, is also very different from ours.

Nash equilibria learning algorithms for other problems have also been considered
recently, in particular for load balancing problems.

Note that the proof of existence of a pure Nash equilibria for the load balancing
problem of [19] can be turned into a dynamics: players play in turn, and move to
machines with a lower load. Such a strategy can be proved to lead to a pure Nash
equilibrium. Bounds on the convergence time have been investigated in [7, 8]. Since
players play in turns, this is often called the Elementary Step System. Other results
of convergence in this model have been investigated in [14, 22, 25].

Concerning models that allow concurrent redecisions, we can mention the follow-
ings works. In [9], tasks are allowed in parallel to migrate from overloaded to under-
loaded resources. The process is proved to terminate in expected O(loglogn+logm)
rounds.

In [3] is considered a distributed process that avoids that latter problem:
only local knowledge is required. The process is proved to terminate in expected
O(loglog n+m?*) rounds. The analysis is done only for unitary weights and identical
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machines. Techniques involved in the proof, relying on martingale techniques, are
somehow related to techniques for studying the classical problem of allocating balls
into bins games as evenly as possible.

The dynamics considered in our present paper has been studied in [26] for gen-
eral stochastic games where Thathachar & al. proved that the dynamics is weakly
convergent to some function, solution of an ordinary differential equation. This or-
dinary differential equation turns out to be a replicator equation. While a sufficient
condition for convergence is given, no error bounds are provided and no potential
function is established.

Replicator equations have been deeply studied in evolutionary game theory
[17, 33]. Evolutionary game theory isn’t restricted to these dynamics but considers
a whole family of dynamics that satisfy a so called folk theorem in the spirit of
Theorem 2.

Bounds on the rate of convergence of fictitious play dynamics have been estab-
lished in [15], and in [18] for the best response dynamics. Fictitious play has been
proved to be convergent for zero-sum games using numerical analysis methods or,
more generally, stochastic approximation theory: fictitious play can be proved to be
a Euler discretization of a certain continuous time process [17].

A replicator equation for allocation games has been considered in [1], where
authors establish a potential function for it. Their dynamics is not the same as
ours: we have a replicator dynamics where fitnesses are given by true costs, whereas
for some reason, marginal costs are considered in [1].

3. Wardrop’s Traffic Model

We consider a routing game as given by a directed acyclic graph G = (V, E) with
V the set of nodes and E the set of edges (directed connexion between 2 nodes).
To each edge e € F is associated a continuous and non decreasing latency function
l. : RT — R*T. We are given [C] = {1,2,...,C} a set of commodities, each of which
is specified by a triplet consisting, for commodity ¢, in: a source-destination pair
of nodes denoted by (s,t.), a subgraph G, = (V, E.) of G connecting s. and t.
with all possible paths between these 2 nodes, and a flow demand R. > 0. The
total low demand in the network is R = Ece[q R.. We may assume without loss
of generality that R = 1. Let P, denote the admissible paths of commodity c, i.e.
all paths connecting s. and t.. We may assume that the sets P, for all ¢ € [C] are
disjoint and define cp to be the unique commodity to which path P belongs.

A non-negative path flow vector (fp)pep is feasible if it satisfies the flow de-
mands ) | pcp fp = R, for all ¢ € [C]. A path flow vector (fp)pep induces an edge
flow vector f = (fe,c)eer,cejc) With fe.c =D pep..ccp fP- The total flow on edge e
is fo = ZCE[C] fe,c. The latency of an edge e is given by £.(f.) and the latency of a
path P is given by the sum of the latencies of its edges.

EP(f) = Zﬂe(fe)' (1)

ecP
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A flow vector in this model is considered stable when no fraction of the flow (which
is a player’s flow in our case) can improve his latency by moving unilaterally to
another path. It is easy to see that this implies that all used paths in the same
commodity must have the same (minimal) latency.

Definition 3.1. A feasible flow vector f is at a Wardrop Equilibrium if for
every commodity ¢ € [C] and paths Py, P, € P, with fp, > 0, ¢p, (f) < €p,(f)
holds.

We now eztend the original Wardrop model [32] to an N player game (similar
settings have been considered in [30]). We assume that we have a finite set [NV]
of players, each of which is associated to one commodity. Players represent a small
fraction of the total flow of their fixed commodity and they want to find the strategy
with the lowest latency in the sense of Nash which is formally defined in Definition
3.2.

In this present work, we narrowed down our investigations to the case of linear
cost functions. We assume here that for every edge e, there are some constants
@, and B, > 0 such that the associated latency function is of the form £.(f.) =
Qe fe+ Be. As we said previously, we study the evolution of the system from a player
perspective. In order to ease the notation we denote com(i) the commodity player
1 plays in.

3.1. Game Theoretic Settings

Players are selfish and they play without any centralized control, they also have a
very local - restricted - view of the system.

Every player i € [N] has the finite set of actions, or paths, Pon ;). For every
player i, choosing an element of Pc,,,(;) can be considered as playing a pure strategy.
For player i we note m; = [Pcom(;)| the number of paths available to him.

As already said, we suppose that the game is played repeatedly. At each elemen-
tary time step t, players know their latency and the path they choose. Each one of
them selects a path at each game according to his mixed strategy that we note g;(t)
for player i. Vi € [N],Vs € [1,m;], ¢; s denotes the probability for player i to select
path s at step t.

More precisely, at the end of each game, players are rewarded with random
payoffs which are function of all the latencies of all the paths they chose for the
game and what it cost them (here, the latency they experience). This notion of
payoff is often referred to as utility or also fitness in evolutionary game theory. This
indicates how satisfied - happy - players are about the game they just played and
what the result is for them. Here we note r;(¢) the utility for player 7 at game ¢ with

ri(t)=1- fpi(t), Vi, Vt, ri(t) €[0,1] (2)

where P;(t) is the path player ¢ chose at time t.
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Remark 3.1. We assume here that latencies are always greater than (or equal to)
0 and always smaller than (or equal to) 1. We do so without loss of generality in what
follows, in order to simplify the reasoning. If latencies don’t fit these requirements
and under certain conditions on the latency functions, they can be normalized by
players while attributing the utility value to the latency they get. A normalized
utility for player ¢ would be of the form r; =1 — eﬂ% with X big enough.

The result of a game for any player i depends on all the choices made by the
other players. We define the payoff function d; : H;\le Peom(jy — 10,1],1 <i < N,
by:

di(a1,as,...,an) =r; | player j chose action a; € P,1 < j <N (3)

where (aq,...,an) is the set of pure strategies played by all the players.

Recall that we defined ¢p to be the latency of path P and that Vi, a;(t) corre-
sponds to one specific path in Py ;) at each time ¢. From now on, we will write
Ca,t)(f) as the latency of the path implied by a;(t).

di(a17 ag, ..., aN) = gai (f)7

where f is the flow induced by a1, as, ...,an.

Now, we want to extend the payoff function - or the utility function - to mixed
strategies. To do so, let S,,, denote the simplex of dimension m,; which is the set of
my;-dimensional probability vectors:

Smi = {Qi = (Qi,la ---;Qi,mi) S [07 1]m1 : ZQi,s = 1}' (4)
s=1

For a player associated to commodity ¢, we write abusively S for S,,,, i.e. the
set of its mixed strategies.

We denote by K = SN the space of mixed strategies.

The payoff function d; defined on pure strategies in equation (3) can be extended
to function g; on the space of mixed strategies K. Note that we consider this function
as an expectation on the utility. This is because we assume that flows of information
can not be split in our model.

We define the mean expected payoff function g; : vazl Sm; — [0,1,1<i <N,
by:

9i(q1, -, qn) = E[r| player j employs strategy q;, 1 < j < N]
N
= Zjl,-«~7jN di(a,...,an) X [[,—1 @j.q,

where (g1, ..., qn) is the set of mixed strategies played by the set of players and E
denotes a conditional expectation.

Now that we have defined the mean utility value, we can formally define Nash
equilibria.

(5)
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Definition 3.2. The N-tuple of mixed strategies (q1, ..., Gn) is said to be a Nash
equilibrium (in mixed strategies), if for each i, 1 <4¢ < N, we have:

i (G -oes Gie1s Gis Git1s s GN) < dil 1y ooes Gim1, G5 Git1s - GN) VG € S (6)

It is well known that every n-person game has at least one Nash equilibrium in
mixed strategies [24].

We define K* = (§*) where S* = {Vi, ¢; € Sp,| ¢; is a m;-dimensional prob-
ability vector with 1 component unity} as the corners of the strategy space K.
Clearly, K* can be put in one-to-one correspondence with pure strategies. A N-
tuple of actions (aj, ..., axn) can be defined to be a pure Nash Equilibrium similarly.

Now the learning problem can be stated as follows: Assume that we play a
stochastic repeated game with incomplete information. g;[t] is the strategy employed
by the i*" player at instant ¢. Let a;[t] and ¢;[t] be the action selected and the payoff
obtained by player i respectively at time ¢ (¢ = 0,1,2,...). Find a decentralized
learning algorithm T;, where ¢;[t + 1] = T;(q;[t], a;[t], ¢;[t]), such that ¢;[t] — ¢; as
t — +oo where (g1, ...,4n) is a Nash equilibrium of the game.

4. Distributed Algorithm

We consider the following learning algorithm, already considered in [20, 26]. The
way of doing the update is also called the Linear Reward-Inaction (Lg_1) algorithm.

Definition 4.1 (Considered Algorithm)

(1) At every time step, each player chooses an action according to its current Action
Probability Vector (APV). Thus, the i'" player selects path s = a;(t) at instant
t with probability g; s(t).

(2) Each player gets to know his utility, based on the set of all actions, for the
game. 75(t) € [0,1] = 1 — Ly, 1) (f(2)).

(8) FEach player updates his APV according to the rule:

¢i(t+1)=qi(t) +bxri(t) X (€a,) — a(t),i =1,..., N, (7)

where 0 < b < 1 is a precision parameter and e, () is a unit vector of dimension

m; with a;(t)™ component unity.

It is easy to see that decisions made by players are completely decentralized, at
each time step player ¢ only needs r; and a;, respectively his utility and last action,
to update his APV.

Notice that, componentwise, Equation (7) can be interpreted as the following 2
case scenario:

qi,s(t) —b x ri(t) X ¢; s(t) if a; #s

Gis () +b % 73(8) x (1 = qis(t)) if a5 = s (8)

Gis(t+1)= {
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4.1. Evolution over time

Let Q[t] = (q1(t),...,qn(t)) € K denote the state of all the players at instant ¢.
Our interest is in the asymptotic behavior of Q[t] and its convergence to a Nash
Equilibrium. Clearly, under the learning algorithm specified by (7), {Q]t],t > 0} is
a Markov process.

Observe that this dynamic can also be put in the form

Qlt +1] = Q[t] + b G(Q[t], alt], r[t]), (9)

where alt] = (a1(t),...,an(t)) denotes the actions selected by all the players at

time ¢t and r[t] = (r1(t), ..., n(t)) their resulting utilities, for some function G(.,.,.)

representing the updating, specified by equation (7), that does not depend on b.
Consider the piecewise-constant interpolation of Q[t], Q%(.), defined by

Q"(k) = QIt], k € [tb, (t + 1)b], (10)

where b is the parameter used in (7).

Q"(.) belongs to the space of all functions from R into K. These functions are
right continuous and have left hand limits. Now consider the sequence {Q%(.) : b >
0}. We are interested in the limit Q(.) of this sequence as b — 0.

4.2. Approximating the trajectory
The following is proved in [26]:

Proposition 4.1. The sequence of interpolated processes {Q°(.)} converges
weakly, as b — 0, to Q(.), which is the (unique) solution of the Cauchy problem

dq
= 0(@),Q(0) = Qu (1)

where Qo = Q°(0) = Q[0], and ¢ : K — K is given by
$(Q) = E[G(Q[t]; alt], c[t)|Q[t] = Q),

where G is the function in Equation (9).

Recall that a family of random variable (Y;);cg weakly converges to a random
variable Y, if E[h(X;)] converges to E[h(Y)] for each bounded and continuous
function h. This is equivalent to convergence in distributions.

The proof of Proposition 4.1 in [26], that works for general (even with stochas-
tic payoffs) games, is based on constructions from [21], in turn based on [31], i.e.
on weak-convergence methods, non-constructive in several aspects, and does not
provide error bounds.

It is actually possible to provide a bound on the error between Q(¢) and the
expectation of Q°(.) in some cases. We will say a few words about that before
getting back to the evolution of the system over time in section 5.
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4.3. Bounds on the approximation error

Theorem 1. Let Q[.] be a process defined by an equation of type (9), and let Q°(.)
be the corresponding piecewise-constant interpolation, given by (10). Assume that
E[G(Q[t], alt], c[t])] = ¢(E[Q][t]]) for some function ¢ of class C!.

Let €(k) be the error in approximating the expectation of Q°(k) by Q(t):

e(k) = || E[Q" (k)] — Q(K)Il,

where Q(.) is the (unique) solution of the Cauchy problem

% — 5(Q).00) = Qv (12)
where Qo = Q"(0) = Q[0].
We have
et —1
(k) < MHE

for k of the form k = tb, t € N, where A = max; ¢ || 22 Pas H and M is a bound on the
_ d(Q(k))
norm of Q" (k) = ==7-.

Proof. The general idea of the proof is to consider the dynamic (9), as an Euler
discretization method of the ordinary differential equation (12), and then use some
classical numerical analysis techniques to bound the error at time ¢.

Indeed, by hypothesis we have

E[Q[t + 1]} = E[Q[tl] +b- E|G(Q[t], at], c[t])]
= E[Q[t)] + bo(E[QLH]))-

Suppose that ¢(.) is A-Lipschitz, then we know that for some positive A,
l¢(z) — ¢(2")]| < Az — 2/

From Taylor-Lagrange inequality, we can suppose A = max; ¢ || 8q¢ ||, if ¢ is of class
ct.
We can write,

e((t+1)b) = || E[Q"((t + 1)b)] — Q((t + 1>b>||
< ||E[QV((t + 1)b)] — E[Qb(th)] — b(Q(th))]|
HIE[QY ()] — Q(th)]] + |Q(th) — Q((t + 1)b) + b(Q(tb))]|
= [|bo(EIQV(th)]) — bo(Q(tb)| + e(tb) + [[bo(Q(th)) — [T p(Q(#'))dt'||
< AD||E[QP(th)] — Q(th)|| + €(th) + e(tb)
< (14 Ab)e(tb) + e(th)

1)b
where e(th) = |[ba(Q(th)) — [, ™" S(Q())dt.
2
From Taylor-Lagrange inequality, we know that e(tb) < H = MY, where M is

a bound on the norm of Q" (k) = %~
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From an easy recurrence on t, (sometimes called Discrete Gronwall’s Lemma,
see e.g. [6]), using inequality €((t + 1)b) < (1 4+ Ab)e(tb) + H, we get that

e(th) < (1+ Ab)te(0) + H AV L

THAb—1
< He“”’fl
AD
_ MbetAb
using that (1 + u)? < e for all u > 0, and €(0) = 0. O

5. Expected utilities and variation of the system over time

We defined in section 3 the utility functions d;(a[t]) and g;(Q[t]) respectively on
pure and mixed strategies. In our settings, players use one unique path at each
game, for considering that, we define a function that expresses the expected utility
on a certain path for a player at a given game.

Let h; s(Q) be the expected utility for player i if he decides to play the pure
strategy (path) s, and players j # ¢ play (mixed) strategy ¢;. Formally,

hi,s(qh vy @i—15 5, 4i+1, 7Qn) = E[TZ | Q_i7ai = 8] (13)

where Q% stands the set of actions of all players but player 1.
Let h;(Q) be the mean value of h; 5(Q) according to ¢;, in the sense that

W@ = gishis (Q)

5.1. FEvolution of players over time

By Theorem 1, the limit @ of the interpolated process Q° given by (10) satisfies
the ODE (11). Recall that @ consists of N probability vectors. Solutions of the
ODE live in the set K defined previously. As discussed in section 3, the points in
K* represent pure strategies and are referred to as corners of K. If we note m; the
number of paths available to player i, we have that @ contains m, 4+ ms + ... + my
components which are denoted by ¢; 5,1 <¢ < N,1 < s < m;. ¢ also has the same
number of components which we denote as ¢; 5.
Using (8), we can rewrite ¢; s in the general case as follows.

qz,s(]- qi, s z s 23/753 Qi,s/Qi,shi,s’
( s'#s 44, 5/hl s Es’;ﬁs Qias/hi’s/>
PN

=dis ( — qi, s’hz s’ )
using the fact that 3° ., qis =1~ qis-
We obtain
dqi,s 7
Qsi,s = = Qi,s(hi,s(Q) - hz(Q)) (14)

dt
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Hence, the dynamics given by the ODE (11) can be rewritten, componentwise
as:

d 1,8
Ut — g S 0 Q) — i () (15)

Note that this is a replicator equation, a well-known and studied dynamic in evo-
lutionary game theory [17, 33].

5.2. Convergence in linear Wardrop games

The following so-called folk theorem characterizes the solutions of the ODE and
hence characterizes the long term behavior of the learning algorithm [17, 26].

Theorem 2. The following are true for the solutions of the replicator equation
(15):

e All corners of space K are stationary points.

e All Nash equilibria are stationary points.

e All strict Nash equilibria are asymptotically stable.
e All stable stationary points are Nash equilibria.

From this theorem, we can conclude that, if we put aside the case of trivial
(constant) dynamics, the dynamic (15), and hence the learning algorithm when b
goes to 0, will never converge to a point in K which is not a Nash equilibrium.

However, for general games, there is no convergence in the general case [26].

We will now show that for linear Wardrop games, there is always convergence.
It will then follow that the learning algorithm we are considering here converges
towards Nash equilibria, i.e. solves the learning problem for linear Wardrop games.

First, we specialize the dynamic for our routing games, regarding latency func-
tions, we have

la, (f) = Z ée(/\e) = Z [ﬂe + Qew; + Qe Z 1e€aj wj] (16)
eca; eca; J#i

where leeq, is 1 whenever e € a;, 0 otherwise. e € a; means edge e belongs to
the sequence of edges - or path - induced by a;. Let us also introduce the following
notation:

m;
ple,qi) =Y gis X Lecs (17)
s=1

which denotes the probability for player i of using edge e according to his probability
vector g;.
Using this, we can write the expected utility for player ¢ when using path s as:

@ = X[ (w14 ey ) 5.

eEs e
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Now let us provide a sufficient condition on Q(t) for the game to converge to
some point in K with the following theorem.

Theorem 3 (Extension of Theorem 3.3 from [26]) Suppose there is a non-
negative function

F:K—-R

such that for some constants x; > 0, for alli, s, Q,

oF
aqi,s

(Q) =i x his(Q). (18)

Then the learning algorithm, for any initial condition in K — K*, always converges
to a Nash Equilibrium.

Proof. Consider the variation of F' along the trajectories of the ODE. We have

aFQ@)) _ OF dgi,s
a Zm dqi. dt

Zz s dz?th (Q)Qi,s Zs' qi,s’ [hz 9(@) — I ( )]

Zl’ xzhz,s(Q)Qi,s Es/ qi,s’ [hz s( ) — Iy s’( )] (19)
Zi L ZS Zs/ qi,sqi,s’ [hz,s(Q) ( )hl ’( )]

DoiTid s D
0

,>5qi,sqi,s/[hi,s<c2>— Q)P

AVAN|

Thus F' is non decreasing along the trajectories of the ODFE and, due to the nature
of the learning algorithm, all solutions of the ODFE (15), for initial conditions in K
will be confined to K.

Hence from the Lyapunov Stability theorem (see e.g. [16], page 194), if we note
Q* an equilibrium point, we can define L(Q) = F(Q) — F(Q*) as a Lyapunov
function of the game. Asymptotically, all trajectories will be in the set K’ = {Q* €
K QD — oy,

From (19), we know that dF(Q 4EQT) — 0 implies Gi,59i,5'[Ni,s(Q) — hi e (Q)] = 0 for
all 7,s,s’. Such a Q* is consequently a stationary point of the dynamics.

Since from Theorem 2, all stationary points that are not Nash equilibria are
unstable, the theorem follows. D

Given its nature, this kind of function is often referred to as a potential function
in game theory [2, 27, 23]. In what follows, we call that function F' a potential
function for our game.

5.3. A potential function

We now provide a potential function for our game that satisfies Equation (18).
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Proposition 5.1. For the definition we gave in this paper of linear Wardrop
games, the following function F satisfies the hypothesis of the previous theorem:

PQ) = Sece| 0 (Saw xateiay) )+
2
o N
(S v ples)) + 20)
e (S0 % plesqy) x (1 e )|
Notice that the hypothesis of affine cost functions is crucial here.

Proof. We first rewrite the potential function F as F(Q) = Y . Ac(Q) in order

to lighten the next few lines.

L () = 02ecn (@ _ =D ecE Og;i(‘?), which can be rewritten as

3(11‘,5 3(11 s
oF _ 0A.(Q) ., Op(e.qi)
8qi,s @ = EEEE ap(e,qi) x 8qi,s °

From (17), we get that ap(e"h) = 1.¢s, We can rewrite

6% é Z ap (e, q:) Z 8p (e, qi) 21)

ecs

Let us now develop the derivative of each term of the sum and come back to
(21) in the end, we have

G = Bexw; + ae x wi( X1, wy x ple, q5) + ae(w?(1 — ple, 1))

= fe X w;+ Xwi(2j¢iwj Xp(e7qj))+a€wi27

(22)
which corresponds to the expected price on edge e for player ¢ when he knows he is
going to use this edge (it belongs to the path he chooses).

For f this finally leads to:

Bq Zapeq Z/Bexweraexwzijxpeqj))qLae
1,8 Z

ecs YE)
Q) = wi % 1y (@) (29)

We showed that Equation (18) holds here. The constants x; of the theorem are
simply, in this case, the weights w; of the players. This completes the proof and
confirms that F' is a convenient function for the game. O
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We now provide a short example on why latency functions need to be linear
with these settings.

Proposition 5.2. Suppose for example that cost functions were quadratic :
ge(/\e) = aeAg + 66)\6 + Ve,

with ae, Be,Ye > 0, ae # 0.
There can not exist a function F of class C* that satisfies (18) for all i, s, Q,
and general choice of weights w;.

Proof. By Schwartz theorem, we must have

o OF 9  OF
8qi/,5/ 6qi,s o 8%‘,3 66]1",5’ ’

and hence
ah ah/ ’
Wi hs Wi/ i, s ’
3%” ,8! 8%‘,5
for all 4,7, s, s', for some constants W;, W;. It is easy to see that this doesn’t hold
for general choice of @ and weights (w;); in this case. ]

Coming back to our model (with affine costs), we obtain the following result:

Theorem 4. For linear Wardrop games, for any initial condition in K — K*, the
considered learning algorithm converges to a (mixed) Nash equilibrium.

6. Conclusion

In this paper we considered a game based on the classical Wardrop traffic model,
with finitely any players and we introduced some specific dynamical aspects.

We considered an update algorithm proposed by [26] and we proved that the
learning algorithm depicted is able to learn mixed Nash equilibria of the game,
extending several results of [26].

To do so, we proved that the learning algorithm is asymptotically equivalent
to an ordinary differential equation, which turns out to be a replicator equation.
Using a folk theorem from evolutionary game theory, one knows that if the dynamics
converges, it will be towards some Nash equilibria. We proved using a Lyapunov
function argument that the dynamic converges in our considered settings.

We established some bounds on the error in approximating the discrete process
by a continuous function, based on the analysis of the dynamics and numerical
analysis arguments in some special cases. Our next intent is to be more specific
about the convergence time and to lower it.

We believe that this paper exhibits a very nice example of distributed systems
whose study is done through a continuous view of a discrete system. With the
analysis of the distributed learning algorithm players use and considering how they
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adapt their strategies, we obtain a trajectory for the whole system. Whereas the
agents’ rules are quite simple and based on local views, we showed that if they all

apply the learning algorithm, the system will eventually reach an equilibrium state.

We also intend to pursue our investigations on the computational properties of

distributed systems through similar continuous time dynamical system views.
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