Le problème du Bin Packing (remplissage de sacs)

Johanne Cohen

Johanne.Cohen@loria.fr

Laboratoire LORIA

Objectif de la présentation

METTRE un ensemble d'éléments fixés dans des sacs de même capacité en utilisant le moins possible de sacs.

Plan

- 1. Présentation du problème.
- 2. Algorithme glouton d'approximation.
- 3. Inapproximation.
- 4. Remarque sur le codage des données.

Petit rappel sur la compléxité:

Définition:

Un problème de décision $\Pi=(D_\Pi,Y_\Pi)$ correspond

à un ensemble d'instance D_{Π}

et à un sous-ensemble $Y_{\Pi} \subset D_{\Pi}$ d'instances positives.

REMARQUE:

Problème de décision \neq problème de construction.

Énoncé du problème Bin Packing:

INSTANCE:

un ensemble B de boites

une fonction taille $w: \mathcal{B} \to \mathbb{N}$

un entier c

un entier k

QUESTION:

Existe-t-il un rangement R des boites de B

dans k sacs de capacité c?

Remarque: Un rangement \mathcal{R} est une application $\mathcal{B} \to [1...k]$ tel que

- 1. $\mathcal{R}(b) = j$ signifie que la boite b est placée dans le sac j.
- **2.** $\forall j \in [1...k], \sum_{b \in \mathcal{B} | \mathcal{R}(b) = i} w(b) \leq c$

Definition de la classe NP

Définition: Une relation binaire R(x,y) est polynomiale

si il existe un polynome Poly tel que étant donnée x et y, on peut determiner si R(x,y)=1 en temps Poly(|x|)

Définition: Un problème de décision $\Pi=(D_\Pi,Y_\Pi)$ est dans NP si et seulement si il existe une relation binaire R(x,y) est polynomiale tel que

 $\forall x \in D_{\Pi}, x \in Y_{\Pi}$ si et seulement si $\exists y$ tel que R(x, y) = 1

Exemple d'un problème dans NP.

Le problème Bin packing est dans NP car:

x = une instance de Bin packing

y = un rangement.

R(x,y): $D_{\Pi} \times ens_de_rangement \rightarrow \{0,1\}$ vérifie en temps polynomiale que le rangement y est correct par rapport à l'instance x.

Rappel: Un problème de décision $\Pi=(D_\Pi,Y_\Pi)$ est dans NP si et seulement si il existe une relation binaire R(x,y) est polynomiale tel que

 $\forall x \in D_{\Pi}, x \in Y_{\Pi}$ si et seulement si $\exists y$ tel que R(x,y) = 1

Définition: Transformation polynômiale

Un problème Pb1 est plus simple qu'un problème Pb2 (noté $Pb1 \le Pb2$) : s'il existe une fonction $f: D_{Pb1} \to D_{Pb2}$ qui se calcule en temps polynômial telle que

$$x \in Y_{Pb1}$$
 ssi $f(x) \in Y_{Pb2}$

Résultats à venir.

- 1. Le problème du bin Packing est NP-complet.
- 2. Un algorithme glouton est une 2-approximation.
- 3. Il n'existe pas d'algorithmes polynômiaux. d'approximation pour le problème Bin Packing ayant un rapport de $3/2 \epsilon$.

Complexité

Théorème 1: Le problème du Bin Packing est NP-complet.

Preuve:

- Problème est dans NP.
- 2. Réduction avec le problème Partition:

INSTANCE:

un ensemble $S = \{s_1, \ldots, s_m\}$

une fonction de poids $W: S \to \mathbb{N}$

QUESTION:

Existe-t-il une partition de S en 2 sous-ens S_1 et S_2

$$\sum_{s \in S_1} \mathcal{W}(s) = \sum_{s \in S_2} \mathcal{W}(s)$$

Complexité

Théorème 1: Le problème du bin Packing est NP-complet.

Preuve:

- Problème est dans NP.
- 2. Réduction avec le problème Partition:

INSTANCE:

un ensemble $S = \{s_1, \ldots, s_m\}$

une fonction de poids $W: S \to \mathbb{N}$

QUESTION:

Existe-t-il une partition de S en 2 sous-ens S_1 et S_2

$$\sum_{s \in S_1} \mathcal{W}(s) = \sum_{s \in S_2} \mathcal{W}(s)$$

Complexité

Théorème 1: Le problème du bin Packing est NP-complet.

Preuve:

- Problème est dans NP.
- 2. Réduction avec le problème Partition: Définissons la transformation polynômial \mathcal{F}

$$\mathcal{B} = S$$

$$\forall s \in S, w(s) = \mathcal{W}(s)$$

$$c = \frac{\sum_{s \in S} \mathcal{W}(s)}{2}$$

$$k = 2$$

Illustration de la transformation

Partition

$$S = \{a_1, a_2, a_3, a_4, a_5\}$$

$$\mathcal{W}(a_1, a_2, a_3, a_4, a_5) = \{6, 7, 2, 4, 1\}$$

Réponse: oui car

$$S_1 = \{a_1, a_4\}$$

$$S_2 = \{a_2, a_3, a_5\}$$

Bin Packing

$$\mathcal{B} = \{a_1, a_2, a_3, a_4, a_5\}$$

$$c = 10, k = 2$$

Réponse: oui car

 a_1 a_4

Plan

- 1. Présentation du problème.
- 2. Algorithme glouton d'approximation.
- 3. Inapproximation.
- 4. Remarque sur le codage des données.

Comment résoudre un pb. NP-complet?

Difficulté à trouver un algorithme polynomiale si le problème est NP-complet.

Existance de 2 approches de résolutions: peut convenir

- 1. un algo. exponentiel si la taille de l'instance est petite.
- 2. un algo. polynomial trouvant une solution <u>"presque"</u> optimale.

Petit rappel sur la compléxité:

Un problème d'optimisation combinatoire de minimisation Π est défini de la facon suivante:

- D_{Π} : un ensemble d'instances.
- $S_{\Pi}(I)$: un ensemble fini non-vide de solutions pour chaque instance I de D_{Π}
- une fonction d'évaluation m_Π

Pour chaque instance I de D_{Π} , et pour chaque candidat $\sigma \in S_{\Pi}(I)$:

 $m_{\Pi}(I,\sigma)$ est la valeur de la solution (un rationnel).

Petit rappel sur la compléxité:

Si le problème Π est un problème de minimisation, alors la solution optimale pour l'instance I de D_{Π} est la ou une solution $\sigma^* \in S_{\Pi}(I)$ tel que

$$\forall \sigma \in S_{\Pi}(I), \ m_{\Pi}(I, \sigma^*) \leq m_{\Pi}(I, \sigma)$$

Notons $OPT_{\Pi}(I) = m_{\Pi}(I, \sigma^*)$

Un algorithme A est un algorithme d'optimisation de Π si pour toute instance I de D_{Π} , A retourne un $\sigma \in S_{\Pi}(I)$ optimal.

Notons dans ce cas $A(I) = m_{\Pi}(I, \sigma)$ pour le σ retourné.

Rapport d'approximation.

Soit Π un prob. de minimisation. Soit I une instance de D_{Π}

Le rapport d'un algorithme A est $R_A(I) = \frac{A(I)}{OPT_\Pi(I)}$.

Le rapport d'approximation absolu R_A pour un algorithme d'approximation est défini:

$$R_A = \inf\{r \ge 1 : R_A(I) \le r, \ \forall I \in D_\Pi\}$$

L'algorithme Next Fit.

ENTRÉE:

un ens. $\mathcal{B} = \{b_1, \dots, b_n\}$ de boites,

une fonction $w: \mathcal{B} \to \mathbb{N}$, un entier c

Sortie: un entier k

ALGORITHME:

1.
$$j = 1$$

- 2. Pour i allant de 1 à n faire
 - (a) Si b_i peut être mis dans S_j , $S_j \leftarrow S_j \cup \{b_i\}$
 - (b) Sinon

i.
$$j \leftarrow j+1$$

ii.
$$S_j \leftarrow \{b_i\}$$

3. retourner j

Illustration de l'algo. Next Fit.

deux entiers α , et n tel que $n=4\alpha$,

un ens. $\mathcal{B} = \{b_1, \dots, b_n\}$ de boites,

une fonction w tell que $w(\mathcal{B}) = \{\alpha, 1, \alpha, 1, \dots, \alpha, 1\}$

 $c=2\alpha$

INSTANCE:

Illustration de l'algo. Next Fit.

deux entiers α , et n tel que $n=4\alpha$,

un ens. $\mathcal{B} = \{b_1, \dots, b_n\}$ de boites,

INSTANCE:

une fonction w tell que $w(\mathcal{B}) = \{\alpha, 1, \alpha, 1, \dots, \alpha, 1\}$

$$c = 2\alpha$$

Solution optimale: $\alpha+1$

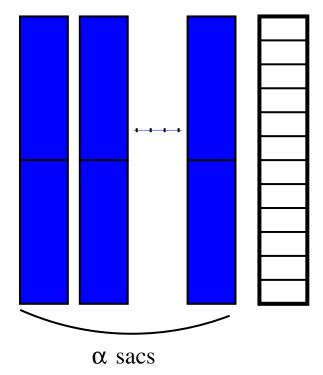


Illustration de l'algo. Next Fit.

deux entiers α , et n tel que $n=4\alpha$,

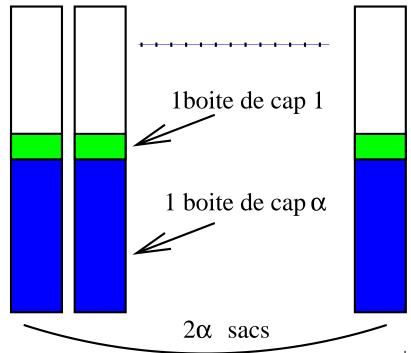
un ens. $\mathcal{B} = \{b_1, \dots, b_n\}$ de boites,

INSTANCE:

une fonction w tell que $w(\mathcal{B}) = \{\alpha, 1, \alpha, 1, \dots, \alpha, 1\}$

$$c = 2\alpha$$

Solution optimale: lpha+1 et solution fourni par l'algo: 2lpha



acteur d'approximation de l'algo. Next Fi

Théorème 2: L'algorithme Next Fit retourne une solution à un facteur 2 de l'optimal.

Preuve:

- Notons $\beta = \sum_{b \in \mathcal{B}} w(b)$ et k la valeur retournée par l'algo.
- $OPT \ge \beta/c$
- Considérons i tel que $b_i \in S_j$ et $b_{i+1} \in S_{j+1}$
 - il existe α tel que $\alpha \leq \ell \leq i, b_{\ell} \in S_j$
 - $\sum_{\ell=\alpha}^{i} w(b) \le c \text{ et } c < \sum_{\ell=\alpha}^{i+1} w(b) \le 2c$
- Globalement, $kc < 2\sum_{\ell=\alpha}^{i+1} w(b)$ donc $k \le 2\beta/c \le 2OPT$

Le problème du Bin Packing(remplissage de sacs) – p.20/6

L'algorithme First Fit Decreasing.

ENTRÉE:

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

un entier c

SORTIE: un entier k

ALGORITHME:

- 1. Trier $\mathcal{B} = \{b_1, \dots, b_n\}$ dans l'ordre décroissant en fct de w
- **2.** k := 1 , $S_1 := \emptyset$
- 3. Pour i allant de 1 à n faire
 - (a) Si b_i peut être mis dans un sac S_j avec $j \leq k$, insérer
 - (b) Sinon
 - i. créer un nouveau sac S_{k+1} ($S_{k+1} := \emptyset$)
 - ii. insérer b_i dans S_{k+1} et réactualiser k (k := k+1)
- 4. Retourner *k*

EXEMPLE: $c = 10, w(b_1) = 7, w(b_2) = 6, w(b_3) = w(b_4) = 3,$ $w(b_5) = w(b_6) = 2.$

$$S_1$$
 b_1

k=1

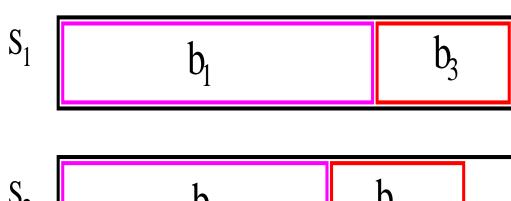
EXEMPLE: $c = 10, w(b_1) = 7, w(b_2) = 6, w(b_3) = w(b_4) = 3,$ $w(b_5) = w(b_6) = 2.$

$$S_2$$
 b_2

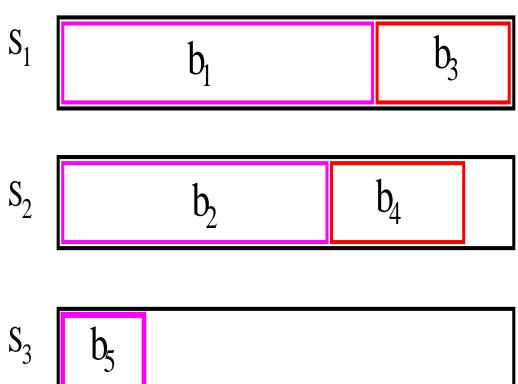
k=1

EXEMPLE: $c = 10, w(b_1) = 7, w(b_2) = 6, w(b_3) = w(b_4) = 3,$ $w(b_5) = w(b_6) = 2.$

EXEMPLE: $c = 10, w(b_1) = 7, w(b_2) = 6, w(b_3) = w(b_4) = 3,$ $w(b_5) = w(b_6) = 2.$

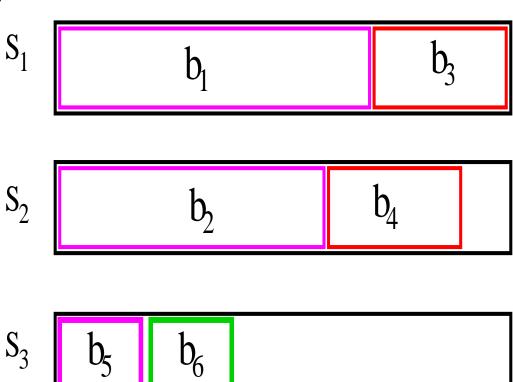


EXEMPLE: $c = 10, w(b_1) = 7, w(b_2) = 6, w(b_3) = w(b_4) = 3,$ $w(b_5) = w(b_6) = 2.$



k=3

EXEMPLE: $c = 10, w(b_1) = 7, w(b_2) = 6, w(b_3) = w(b_4) = 3,$ $w(b_5) = w(b_6) = 2.$



k=3

Théorème 3: L'algorithme First Fit Decreasing retourne une solution à un facteur 2 de l'optimal.

REMARQUE

Proposition 1: $OPT \ge (\sum_{i=1}^n w(b_i))/c$.

Car la borne inférieure correspond à une solution où tous les sacs sont pleins.

Théorème 3: L'algorithme First Fit Decreasing retourne une solution à un facteur 2 de l'optimal.

Preuve:

Cas 1 où $w(b_n) \ge c/2$: l'algorithme glouton est optimal.

$$S_1$$
 b_1

1 élément par sac.

Exemple:
$$c = 10, w(b_1) = 8, w(b_2) = 7, w(b_3) = 5, w(b_4) = 5$$

Théorème 3: L'algorithme First Fit Decreasing retourne une solution à un facteur 2 de l'optimal.

Preuve:

Cas 1 où $w(b_n) \ge c/2$: l'algorithme glouton est optimal.

$$S_1$$
 b_1 b_2

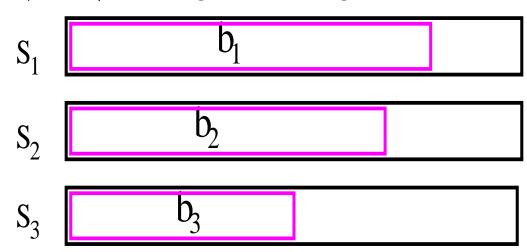
1 élément par sac.

Exemple:
$$c = 10, w(b_1) = 8, w(b_2) = 7, w(b_3) = 5, w(b_4) = 5$$

Théorème 3: L'algorithme First Fit Decreasing retourne une solution à un facteur 2 de l'optimal.

Preuve:

Cas 1 où $w(b_n) \ge c/2$: l'algorithme glouton est optimal.



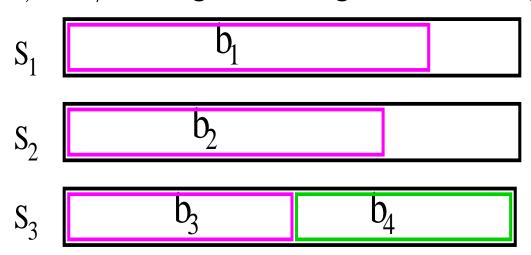
Au plus 2 éléments par sac.

Exemple:
$$c = 10, w(b_1) = 8, w(b_2) = 7, w(b_3) = 5, w(b_4) = 5$$

Théorème 3: L'algorithme First Fit Decreasing retourne une solution à un facteur 2 de l'optimal.

Preuve:

Cas 1 où $w(b_n) \ge c/2$: l'algorithme glouton est optimal.



Au plus 2 éléments par sac.

Exemple:
$$c = 10, w(b_1) = 8, w(b_2) = 7, w(b_3) = 5, w(b_4) = 5$$

Suite de la preuve.

Théorème 3: L'algorithme First Fit Decreasing retourne une solution à un facteur 2 de l'optimal.

Cas 2 où
$$w(b_n) < c/2$$
:

Soit b_j la boite pour laquelle le sac k a été crée.

- 1. capacité des k-1 premiers sacs remplis (= c(k-1)) = place vide (\mathcal{P}) + place occupée (\mathcal{O})
 - (a) $P < (k-1)w(b_j)$
 - (b) $\mathcal{O} < \sum_{i=1, i \neq j}^{n} w(b_i)$
- 2. $c(k-1) < \sum_{i=1}^n w(b_i) + w(b_j)(k-1) < OPTc + (k-1)c/2$ Considèrons uniquement le cas où $(w(b_j) < c/2)$
- 3. $k 1 < 2OPT \rightarrow k \le 2OPT$

Considérons l'exemple

deux entiers
$$\alpha$$
, et n tel que $n=5\alpha$,

un ens.
$$\mathcal{B} = \{b_1, \dots, b_n\}$$
 de boites,

une fonction
$$w$$
 tell que $\forall i, 1 \leq i\alpha w(b_i) = 1/2 + \epsilon$,

INSTANCE:

$$\forall i, 1 \leq i \leq \alpha, w(b_i) = 1/2 + \epsilon$$
,

$$\forall i, \alpha + 1 \leq i \leq 2\alpha, w(b_i) = 1/4 + 2\epsilon$$
,

$$\forall i, 2\alpha + 1 \leq i \leq 3\alpha, w(b_i) = 1/4 + \epsilon$$
,

$$\forall i, 3\alpha + 1 \leq i \leq 5\alpha, w(b_i) = 1/4 - 2\epsilon$$

$$c = 2\alpha$$

Solution optimale:
$$=\frac{3}{2}\alpha$$

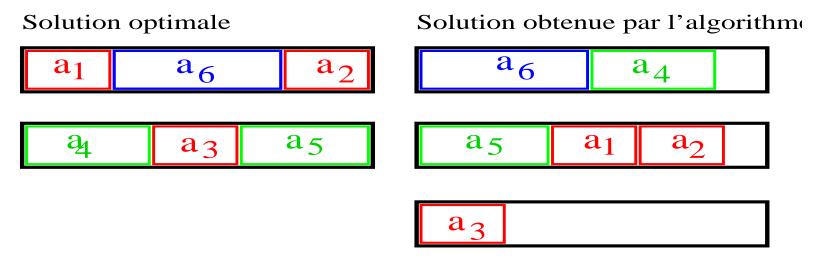
Solution fourni par l'algo:
$$=\frac{11}{6}\alpha$$

Plusieurs questions se posent alors...

- 1. Peut-on améliorer la borne inférieure de la prop.1?
- 2. Peut-on mieux évaluer le rapport d'approximation de l'algorithme First Fit Decreasing ?
- 3. Peut-on trouver un algorithme ayant un meilleur rapport d'approx.?

Plusieurs questions se posent alors...

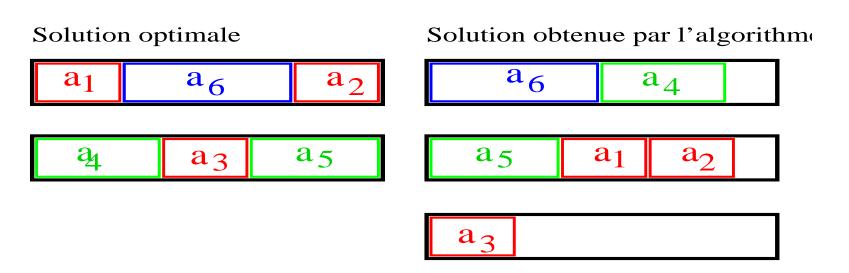
- 1. Peut-on améliorer la borne inférieure de la prop.1?non
- 2. Peut-on mieux évaluer le rapport d'approximation de l'algorithme First Fit Decreasing ?
- 3. Peut-on trouver un algorithme ayant un meilleur rapport d'approx.?



$$c=8, w(a_1)=w(a_2)=w(a_3)=2$$
 , $w(a_4)=w(a_5)=3$,
$$w(a_6)=4$$
 Le problème du Bin Packing(remplissage de Sacs) – p.27/62

Plusieurs questions se posent alors...

- 1. Peut-on améliorer la borne inférieure de la prop.1?non
- 2. Peut-on mieux évaluer le rapport d'approximation de l'algorithme First Fit Decreasing ?peut-être mais il est au moins égal à 3/2.
- 3. Peut-on trouver un algorithme ayant un meilleur rapport d'approx.?



$$c=8, w(a_1)=w(a_2)=w(a_3)=2$$
 , $w(a_4)$, $w(a_4)$, $w(a_4)$, $w(a_5)$, $w(a_6)$,

Plan

- 1. Présentation du problème.
- 2. Algorithme glouton d'approximation.
- 3. Inapproximation.
- 4. Remarque sur le codage des données.

Définition de gap-introducting reduction.

Soit Π un problème de minimisation.

Une gap-introducting réduction à partir de 3-SAT vers Π corresponds à 2 paramètres f et α . La réduction transforme une instance de 3-SAT, ϕ en une de Π noté x telle que

Si ϕ est satisfiable, $OPT(x) \leq f(x)$

Si ϕ n'est pas satisfiable, $OPT(x) > \alpha(|x|)f(x)$

Remarque: La réduction montre qu'il n'existe pas d'algorithme d'approximation de rapport $\alpha(|x|)$ si $P \neq NP$

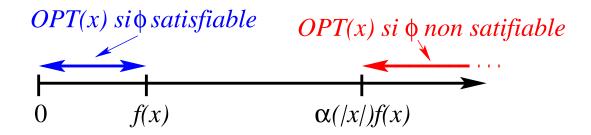
Explication de la remarque.

La réduction \mathcal{R} montre qu' il n'existe pas d'algorithme d'approximation de rapport $\alpha(|x|)$ si $P \neq NP$

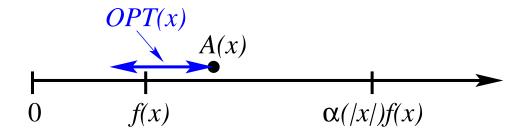
- 1. Soit A un algo. poly. d'approx. de rapport $r \leq \alpha(|x|)$ pour Π .
- 2. Construisons un algorithme A' pour 3-SAT
 - (a) $x \leftarrow \mathcal{R}(\phi)$
 - **(b)** $a(x) \leftarrow A(x)$
 - (c) Si $a(x) \leq \alpha(|x|) f(x)$, retourner VRAI
 - (d) Sinon $a(x) > \alpha(|x|)f(x)$ retourner FAUX .
- 3. Algo. \mathcal{A}' polynomial \Longrightarrow contradiction avec $P \neq NP$

Illustration

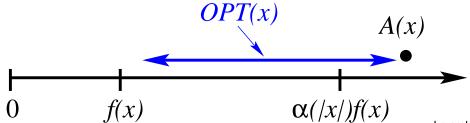
Par réduction,



Si $A(x) \leq \alpha(|x|)f(x)$, alors ϕ est satisfiable, car



Si $A(x) > \alpha(|x|)f(x)$, alors ϕ n'est pas satisfiable, car



Définition du problème Partition.

INSTANCE:

un ensemble $S = \{s_1, \ldots, s_m\}$

une fonction de poids $W: S \to \mathbb{N}$

QUESTION:

Existe-t-il une partition de S en 2 sous-ens S_1 et S_2

$$\sum_{s \in S_1} \mathcal{W}(s) = \sum_{s \in S_2} \mathcal{W}(s)$$

Transformation

OBJECTIF: Transformer 1 instance de Partition en 1 instance du Bin Packing.

Transformation
$$\mathcal{F}(S,\mathcal{W})=$$

$$\forall s\in S, w(s)=\mathcal{W}(s)$$

$$c=\frac{\sum_{s\in S}\mathcal{W}(s)}{2}$$

Proposition 1: Soit \mathcal{I} une instance du problème partition. Soit $\mathcal{I}' = \mathcal{F}(\mathcal{I})$ (instance du problème bin packing).

la solution de
$$\mathcal{I}'$$
 = 2 si $\mathcal{I} = (S, \mathcal{W})$ possède une partition, ≥ 3 sinon

Preuve

Transformation
$$\mathcal{F}(S,\mathcal{W})=$$

$$\forall s\in S, w(s)=\mathcal{W}(s)$$

$$c=\frac{\sum_{s\in S}\mathcal{W}(s)}{2}$$

Proposition 1: Soit \mathcal{I} une instance du problème partition. Soit $\mathcal{I}' = \mathcal{F}(\mathcal{I})$ (instance du problème bin packing).

la solution de
$$\mathcal{I}'$$
 = 2 si $\mathcal{I} = (S, \mathcal{W})$ possède une partition, ≥ 3 sinon

Preuve:

- 1. Si S peut se partitionner équitable en 2 sous ensembles, alors dans \mathcal{I}' , 1 sac = 1 partition.
- 2. Sinon, il faut au moins 3 sacs.

Résultat d'inapproximabilité.

Théorème 3: Si $P \neq NP$, il n'existe pas d'algorithme polynomiale d'approximation pour le problème Bin Packing ayant un rapport inferieure à $3/2 - \epsilon$.

Preuve: par l'absurde.

Soit \mathcal{A} un algo. poly. d'approx. pour Bin Packing ayant un rapport $\alpha \leq 3/2 - \epsilon$.

Construisons un algorithme \mathcal{A}' qui résoud le problème partition à partir de \mathcal{A} .

. . .

Algorithme A'.

ENTRÉE: un ens. S, une fonction \mathcal{W}

SORTIE: un booleen

ALGORITHME:

1.
$$\mathcal{I}' = \mathcal{F}(\mathcal{I})$$

- 2. Appliquer l'algo. A sur l'instance I'.
- 3. Si le nombre de sacs est ≥ 3 , retourner faux,
- 4. sinon, retourner vrai.

Complexité: ?

Algorithme A'.

ENTRÉE: un ens. S, une fonction \mathcal{W}

SORTIE: un booleen

ALGORITHME:

1. $\mathcal{I}' = \mathcal{F}(\mathcal{I})$

- 2. Appliquer l'algo. A sur l'instance I'.
- 3. Si le nombre de sacs est ≥ 3 , retourner faux,
- 4. sinon, retourner vrai.

Complexité: dépendant de la complexité de A et de F

Algorithme A'.

ENTRÉE: un ens. S, une fonction \mathcal{W}

SORTIE: un booleen

ALGORITHME:

1. $\mathcal{I}' = \mathcal{F}(\mathcal{I})$

2. Appliquer l'algo. A sur l'instance I'.

3. Si le nombre de sacs est ≥ 3 , retourner faux,

4. sinon, retourner vrai.

Complexité: polynomiale

Résultat d'inapproximabilité.

Théorème 3: Si $P \neq NP$, il n'existe pas d'algorithme polynomiale d'approximation pour le problème Bin Packing ayant un rapport inferieure à $3/2 - \epsilon$.

Preuve: par l'absurde.

Soit \mathcal{A} un algo. poly. d'appro. pour <u>Bin Packing</u> ayant un rapport $\alpha \leq 3/2 - \epsilon$.

 \mathcal{A}' est un algo. polynomial

Si
$$A(\mathcal{I}') \leq (3/2 - \epsilon)OPT(\mathcal{I}')$$
 alors,

- si $OPT(\mathcal{I}') < 3$ alors $A(I) \leq (3/2 \epsilon)2$
- si $OPT(\mathcal{I}') \geq 3$ alors $3 \leq A(I)$

Résultat d'inapproximabilité.

Théorème 3: Si $P \neq NP$, il n'existe pas d'algorithme polynomiale d'approximation pour le problème Bin Packing ayant un rapport inferieure à $3/2 - \epsilon$.

Preuve: par l'absurde.

Soit \mathcal{A} un algo. poly. d'appro. pour <u>Bin Packing</u> ayant un rapport $\alpha \leq 3/2 - \epsilon$.

 \mathcal{A}' est un algo. polynomial résolvant le prob. partition à partir de \mathcal{A} .

Contradiction avec l'hypothèse que $P \neq NP$.

Son appartenance à la classe PTAS?

Une conséquense du théorème pécédent:

Théorème 3: Si $P \neq NP$, le problème Bin Packing n'appartient pas à la classe PTAS.

RAPPEL: Soit \mathcal{P} un problème dans NPO. Un algorithme \mathcal{A} est un schéma d'approximation en un temps polynomial pour \mathcal{P} si pour n'importe quelle instance x de \mathcal{P} , et pour n'importe rationnel r>1, alors \mathcal{A} ayant comme entré (x,r) retourne une solution ayant un rapport inferieure à r. en un temps polynomial en |x|.

Plan

- 1. Présentation du problème.
- 2. Algorithme glouton d'approximation.
- 3. Inapproximation.
- 4. Remarque sur le codage des données.

lgo. résouvant le prob. Bin packing (k = 2)

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

Entrée: un entier c

SORTIE: un booléen

ALGORITHME DYNAMIQUE:

Soit $T: n \times c \times c$ un tableau booléen initialisé à F.

 $T[i, w_1, w_2] = V$ signifie qu'il existe un rangement des i premieres boites telle que

- 1. les boites du sac 1 occupe w_1 de capacité.
- 2. les boites du sac 2 occupe w_2 de capacité.

$$T[i,w_1,w_2]=V \text{ ssi } \frac{T[i-1,w_1-w(b_i),w_2]=V}{\text{ou } T[i-1,w_1,w_2-w(b_i)]=V}$$

lgo. résouvant le prob. Bin packing (k = 2)

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

Entrée: un entier c

SORTIE: un booléen

ALGORITHME:

- 1. Soit $T: n \times c \times c$ un tableau booléen initialisé partout à F.
- **2.** $T[1, w(b_1), 0] := T[1, 0, w(b_1)] := V$
- 3. Pour i allant de 2 à n faire
 - (a) Pour j, k allant de 0 à c faire
 - i. Si T[i-1,j,k] == V alors $T[i,j+w(b_i),k] := V \text{ si } j+w(b_i) \leq c$ $T[i,j,k+w(b_i)] := V \text{ si } k+w(b_i) \leq c$
- 4. Retourner vrai si T[n,*,*]=V sinon faux problème du Bin Packing (remplissage de sacs) p.42/68

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

Entrée:

un entier c

SORTIE: un booléen

ALGORITHME:

- 1. Soit $T: n \times c \times c$ un tableau initialisé à F.
- **2.** $T[1, w(b_1), 0] := T[1, 0, w(b_1)] := V;$
- 3. Pour i allant de 2 à n faire
 - (a) Pour j, k allant de 0 à c faire
 - i. Si T[i-1,j,k] == V alors $T[i,j+w(b_i),k] := V \text{ si } j+w(b_i) \leq c$ $T[i,j,k+w(b_i)] := V \text{ si } k+w(b_i) \leq c$
- 4. Retourner vrai si T[n,*,*]=V sinon faux problème du Bin Packing (remplissage de sacs) p.43/68

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

Entrée: un entier c

SORTIE: un booléen

ALGORITHME:

- 1. Soit $T: n \times c \times c$ un tableau initialisé à $F. 0(n \times c^2)$ op.
- **2.** $T[1, w(b_1), 0] := T[1, 0, w(b_1)] := V; 0(1)$ opérations.
- 3. Pour i allant de 2 à n faire
 - (a) Pour j, k allant de 0 à c faire
 - i. Si T[i-1,j,k] == V alors $T[i,j+w(b_i),k] := V \text{ si } j+w(b_i) \leq c$ $T[i,j,k+w(b_i)] := V \text{ si } k+w(b_i) \leq c$
- 4. Retourner vrai si T[n,*,*]=V sinon faux problème du Bin Packing (remplissage de sacs) p.43/68

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

Entrée:

un entier c

SORTIE: un booléen

ALGORITHME:

- 1. Soit $T: n \times c \times c$ un tableau initialisé à $F. 0(n \times c^2)$ op.
- **2.** $T[1, w(b_1), 0] := T[1, 0, w(b_1)] := V; 0(1)$ opérations.
- 3. Pour i allant de 2 à n faire
 - (a) Pour j, k allant de 0 à c faire
 - i. Si T[i-1,j,k] == V alors O(1) opérations.

$$T[i, j + w(b_i), k] := V \operatorname{si} j + w(b_i) \le c$$

$$T[i, j, k + w(b_i)] := V \operatorname{si} k + w(b_i) \le c$$

4. Retourner vrai si T[n,*,*]=V sinon faux problème du Bin Packing (remplissage de sacs) – p.43/68

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

Entrée:

un entier c

SORTIE: un booléen

ALGORITHME:

- 1. Soit $T: n \times c \times c$ un tableau initialisé à $F. 0(n \times c^2)$ op.
- **2.** $T[1, w(b_1), 0] := T[1, 0, w(b_1)] := V; 0(1)$ opérations.
- 3. Pour i allant de 2 à n faire
 - (a) Pour j, k allant de 0 à c faire $0(c^2)$ opérations.
 - i. Si T[i-1,j,k] == V alors O(1) opérations.

$$T[i, j + w(b_i), k] := V \operatorname{si} j + w(b_i) \le c$$

$$T[i, j, k + w(b_i)] := V \operatorname{si} k + w(b_i) \le c$$

4. Retourner vrai si T[n,*,*]=V sinon faux problème du Bin Packing (remplissage de sacs) – p.43/68

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

Entrée: un entier c

SORTIE: un booléen

ALGORITHME:

- 1. Soit $T: n \times c \times c$ un tableau initialisé à $F. 0(n \times c^2)$ op.
- **2.** $T[1, w(b_1), 0] := T[1, 0, w(b_1)] := V; 0(1)$ opérations.
- 3. Pour i allant de 2 à n faire $0(n \times c^2)$ opérations.
 - (a) Pour j, k allant de 0 à c faire $0(c^2)$ opérations.
 - i. Si T[i-1,j,k] == V alors O(1) opérations.

$$T[i, j + w(b_i), k] := V \operatorname{si} j + w(b_i) \le c$$

$$T[i, j, k + w(b_i)] := V \operatorname{si} k + w(b_i) \le c$$

4. Retourner vrai si T[n,*,*]=V sinon faux problème du Bin Packing (remplissage de sacs) – p.43/68

un ens. \mathcal{B} de boites, une fonction $w:\mathcal{B}\to\mathbb{N}$

Entrée:

un entier c

SORTIE: un booléen

ALGORITHME:

- 1. Soit $T: n \times c \times c$ un tableau initialisé à $F. 0(n \times c^2)$ op.
- **2.** $T[1, w(b_1), 0] := T[1, 0, w(b_1)] := V; 0(1)$ opérations.
- 3. Pour i allant de 2 à n faire $0(n \times c^2)$ opérations.
 - (a) Pour j, k allant de 0 à c faire $0(c^2)$ opérations.
 - i. Si T[i-1,j,k] == V alors O(1) opérations.

$$T[i, j + w(b_i), k] := V \operatorname{si} j + w(b_i) \le c$$

$$T[i, j, k + w(b_i)] := V \operatorname{si} k + w(b_i) \le c$$

4. Retourner vrai si T[n,*,*]=V sinon faux problem () Pin Packing () Pin

$$w(a_1) = w(a_2) = w(a_3) = 2, w(a_4) = w(a_5) = 3, w(a_6) = 1$$

$$c = 8$$

$$T[1,*,*] = 4$$

$$2$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$4$$

$$3$$

$$4$$

$$4$$

$$5$$

$$6$$

$$7$$

$$8$$

$$w(a_1) = w(a_2) = w(a_3) = 2, w(a_4) = w(a_5) = 3, w(a_6) = 1$$
 $c = 8$
 $T[2,*,*] = 4$
 0
 0
 1
 2
 3
 4
 3
 4
 3
 4
 4
 4
 5
 6
 7
 8

$$w(a_1) = w(a_2) = w(a_3) = 2, w(a_4) = w(a_5) = 3, w(a_6) = 1$$

$$c = 8$$

$$T[3,*,*] = 4$$

$$2$$

$$1$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$

$$3$$

$$2$$

$$1$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$

$$3$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$5$$

$$6$$

$$7$$

$$8$$

$$w(a_1) = w(a_2) = w(a_3) = 2, w(a_4) = w(a_5) = 3, w(a_6) = 1$$

$$c = 8$$

$$T[4,*,*] = 4$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$

$$3$$

$$2$$

$$1$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$3$$

$$4$$

$$5$$

$$6$$

$$7$$

$$8$$

$$w(a_1) = w(a_2) = w(a_3) = 2, w(a_4) = w(a_5) = 3, w(a_6) = 1$$

$$c = 8$$

$$T[5,*,*] = 4$$

$$3$$

$$2$$

$$1$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$

$$3$$

$$2$$

$$1$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$4$$

$$3$$

$$4$$

$$5$$

$$6$$

$$7$$

$$8$$

$$w(a_1) = w(a_2) = w(a_3) = 2, w(a_4) = w(a_5) = 3, w(a_6) = 1$$
 $c = 8$
 $T[6,*,*] = 4$
 0
 0
 1
 2
 3
 4
 3
 2
 1
 0
 1
 1
 2
 3
 4
 3
 4
 3
 4
 3
 4
 4
 3
 4
 4
 4
 5
 6
 7
 8

En résumé

Il existe un algorithme qui effectue $0(n \times c^2)$ opérations et qui résout le problème de décision Bin Packing:

INSTANCE:

un ensemble B de boites

une fonction capacité $w: \mathcal{B} \to \mathbb{N}$

un entier c et un entier k=2

QUESTION:

Existe-t-il un rangement des boites de \mathcal{B} dans k sacs de capacité c?

En résumé

Il existe un algorithme qui effectue $0(n \times c^2)$ opérations et qui résout le problème de décision Bin Packing:

INSTANCE:

un ensemble B de boites

une fonction capacité $w: \mathcal{B} \to \mathbb{N}$

un entier c et un entier k=2

QUESTION:

Existe-t-il un rangement des boites de \mathcal{B}

dans k sacs de capacité c?

Est-il polynômial?

Comment coder les entiers?

Entiers: n

- 1. codage en binaire : |n| = log n.
- 2. codage exceptionnellement en unaire: |n| = n.

Représentation

décimal 13

binaire 1011

unaire • • • • • • • • • • • •

Il existe un algorithme qui effectue $0(n \times c^2)$ opérations et qui résout le problème Bin Packing (avec k=2).

EST-IL POLYNÔMIAL?

1. Évaluation de la taille de l'instance:

Il existe un algorithme qui effectue $0(n \times c^2)$ opérations et qui résout le problème Bin Packing (avec k=2).

EST-IL POLYNÔMIAL?

1. Évaluation de la taille de l'instance:

INSTANCE:

un ensemble B de boites

une fonction capacité $w: \mathcal{B} \to \mathbb{N}$

un entier c et un entier k=2

- (a) Si entier codé en binaire : $|I| = O(n \times log_2 c)$
- (b) Si entier codé en unaire : $|I| = O(n \times c)$

Il existe un algorithme qui effectue $0(n \times c^2)$ opérations et qui résout le problème Bin Packing (avec k=2).

EST-IL POLYNÔMIAL?

- 1. Évaluation de la taille de l'instance:
 - (a) Si entier codé en binaire : $|I| = O(n \times log_2c)$
 - (b) Si entier codé en unaire : $|I| = O(n \times c)$
- 2. Évaluation de $O(n \times c^2)$:

Il existe un algorithme qui effectue $0(n \times c^2)$ opérations et qui résout le problème Bin Packing (avec k=2).

EST-IL POLYNÔMIAL?

- 1. Évaluation de la taille de l'instance:
 - (a) Si entier codé en binaire : $|I| = O(n \times log_2c)$
 - (b) Si entier codé en unaire : $|I| = O(n \times c)$

2.
$$O(n \times c^2) = \begin{tabular}{ll} O(c \times |I|) \le O(|I|^2) & {\rm codage\ unaire} \\ O(c \times e^{|I|}) & {\rm codage\ binaire} \end{tabular}$$

Il existe un algorithme qui effectue $0(n \times c^2)$ opérations et qui résout le problème Bin Packing (avec k=2).

EST-IL POLYNÔMIAL?

- 1. Évaluation de la taille de l'instance:
 - (a) Si entier codé en binaire : $|I| = O(n \times log_2c)$
 - (b) Si entier codé en unaire : $|I| = O(n \times c)$
- 2. $O(n \times c^2) = \begin{tabular}{ll} O(c \times |I|) \le O(|I|^2) & {\rm codage\ unaire} \\ O(c \times e^{|I|}) & {\rm codage\ binaire} \end{tabular}$
- 3. Il est polynômial si les entiers sont codés en unaire. Mais pas polynômial si le codage binaire des entiers.

Plan

- 1. Présentation du problème.
- 2. Algorithme glouton d'approximation.
- 3. Inapproximation.
- 4. Remarque sur le codage des données.
- 5. Divers.

Algo. d'approx. sur le bin packing

SQUELETTE DE L'ALGORITHME

- 1. Elimininer les boites de petites tailles.
- 2. Regrouper les boites telles que le nombre de types de boites soit constant
- 3. Trouver l'optimal pour l'instance restreinte.
- 4. Dégrouper les boites.
- 5. Inserer les boites de petites tailles

Algo. sur un ens restreint d'instances.

Proposition 1: Soit un rational $1 \ge \delta > 0$ fixé, soit K un entier positif fixé. Considérons une restriction du problème bin packing

- 1. dans laquelle un élément est de taille au plus $\delta \times c$ avec c la capacité d'un sac.
- 2. et dans laquelle le nombre d'éléments distincts est K.

Il existe un algorithme polynômial tel que résoud optimalement ce problème restreint.

Notation: le problème de bin packing (K, δ) -restreint.

Preuve de la Proposition 1.

- Soit \mathcal{I} une instance du problème (K, δ) -restreint.
- 1. Une instance peut être défini par un entier c et par un vecteur $\overrightarrow{I} = (s_1: n_1, s_2: n_2, \dots, s_K: n_K)$
 - n_i : nombre de boites de type s_i .
 - c est la capacité d'un sac.
- 2. Exemple d'une instance (3,3/8)-restreinte. Une instance définit par $\overrightarrow{I}=(3:4,5:2,7:1)$ et c=8
 - Cette instance contient 3 types d'éléments
 - 4 éléments de taille 3
 - 2 éléments de taille 5
 - 1 élément de taille 7

Preuve de la Proposition 1.

Soit \mathcal{I} une instance du problème (K, δ) -restreint.

- 1. Une instance peut être défini par un entier c et par un vecteur $\overrightarrow{I} = (s_1: n_1, s_2: n_2, \dots, s_K: n_K)$
 - n_i : nombre de boites de type s_i .
 - c est la capacité d'un sac.
- 2. Un type de sac peut être défini par un vecteur d'entiers $\overrightarrow{t}=(t_1,t_2,\ldots,t_K)$ tel que
 - Ce sac contient t_i boites de type s_i .

 - $\forall i: 1 \leq i \leq K, \delta \times c \leq s_i$

Preuve: Type de sac

- 1. Un type de sac peut être défini par un vecteur d'entiers $\overrightarrow{t}=(t_1,t_2,\ldots,t_K)$ tel que
 - Ce sac contient t_i boites de type s_i .

 - $\forall i: 1 \leq i \leq K, \delta \times c \leq s_i$
- 2. remarque pour chaque \overrightarrow{t} ,

$$\forall i : 1 \le i \le K, 1 \le \frac{s_i}{\delta \times c} \Rightarrow \sum_{i=1}^K t_i \le \frac{1}{\delta} \sum_{i=1}^K t_i \frac{s_i}{c} \le \frac{1}{\delta}$$
$$\sum_{i=1}^K t_i \le \frac{1}{\delta}$$

Preuve de la Proposition 1.

- 1. Remarque: pour chaque \overrightarrow{t} : $\sum_{i=1}^{K} t_i \leq \frac{1}{\delta}$.
- 2. Donc le nombre q de manière pour choisir K entiers tel que la somme est inferieure ou égal à $\lfloor 1/\delta \rfloor$ est:

$$q = \begin{pmatrix} K + \lfloor 1/\delta \rfloor \\ \lfloor 1/\delta \rfloor \end{pmatrix}$$

3. Inst. (3,3/8)-restreinte: $\overrightarrow{I} = (3:4,5:2,7:1)$ et c=8

•
$$K=3$$
, $\lfloor 1/\delta \rfloor = 2$, donc $q=\left(\begin{array}{c} 5 \\ 2 \end{array}\right)=10$

• En fait, il existe 6 types de sacs possibles: (0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,1,0),(2,0,0)

Preuve de la Proposition 1.

- 1. q (nb de types de sacs) dépends de K et de δ
- 2. Une solution acceptable $\overrightarrow{y} = (y_1, \dots, y_q)$ où
 - y_i représente un sac du type i.
 - $0 \le y_i \le n$ avec n nombre d'éléments (boîtes).
- 3. Nombre de solutions acceptables borné par $O(n^q)$ avec n =nbre de boîtes
- 4. Algorithme= Enumérer toutes les solutions possibles et selectionner l'optimale.

Compléxité: $O(n^q p(n))$ avec p un polynome en n

Algo. d'approximation.

- 1. Soit I une telle instance telle que $\mathcal{B} = \{b_1, \dots, b_n\}$ est trié dans l'ordre décroissant en fct de w.
- 2. $\forall \alpha \leq n, m = \left\lfloor \frac{n}{\alpha} \right\rfloor$, partionner les n boîtes en m+1 groupes G_i avec $G_i = \left\{ b_{(i-1)\alpha+1}, \dots, b_{i\alpha} \right\}$ et $G_{m+1} = \left\{ b_{m\alpha+1}, \dots, b_n \right\}$.
- 3. Instance J = Instance I modifiée:
 - tous les éléments d'un même groupe i, $2 \le i \le m+1$ a la capacité la plus grande de ce groupe dans I.
- 4. J possède m types différents de boîtes.
- 5. Application de l'algorithme optimal sur J.

Exemple: grouper

Soit
$$x = ((9, 9, 8, 7, 6, 6, 5, 4, 3, 3, 3), c)$$
 et $\alpha = 3$

Transformer l'instance x en une instance restreinte x_q :

instance de départ
$$x = ((9, 9, 8, 7, 6, 6, 5, 4, 3, 3, 3), c)$$

$$G_1 = \{9, 9, 8\}$$
 $G_2 = \{7, 6, 6\}$ $G_3 = \{5, 4, 3\}$ $G_4 = \{3, 3\}$ lissage

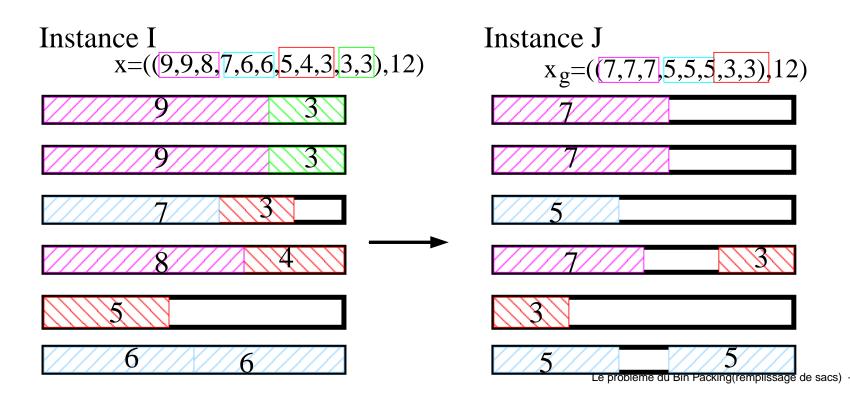
$$G_2 = \{7, 7, 7\}$$
 $G_3 = \{5, 5, 5\}$ $G_4 = \{3, 3\}$

instance restreinte: $x_g = ((7, 7, 7, 5, 5, 5, 3, 3), c)$

1. Chaque rangement de *I* peut être remplacé par un rangement de *J*:

1. Chaque rangement de *I* peut être remplacé par un rangement de *J*:

si $b \in G_i$ est rangé dans le sac j pour l'instance I, alors, il existe une boite $b' \in G_{i+1}$ est rangé dans le sac j pour l'instance J

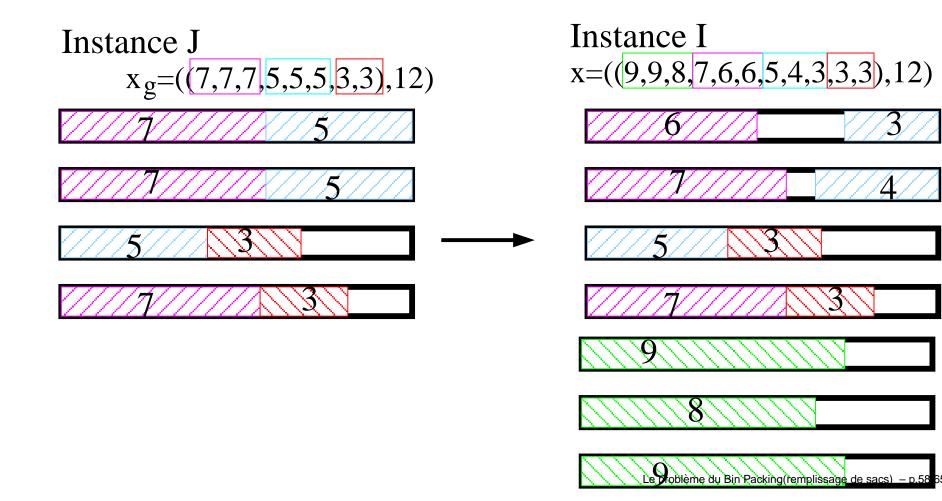


1. Chaque rangement de *I* peut être remplacé par un rangement de *J*:

$$m^*(J) \le m^*(I)$$

2. Chaque rangement de J peut être transformé en un rangement de I plus α sacs:

2. Chaque rangement de J peut être transformé en un rangement de I plus α sacs:



Donc:

$$m^*(J) \le m^*(I) \le m^*(J) + \alpha$$

Traitement des petites boîtes.

- 1. Soit *I* une instance du bin packing, et $\delta \in (0, 1/2]$
- 2. I_{δ} = Instance obtenue par élimination des boites de capacité $< \delta \times c$.
- 3. Soit \mathcal{R} un rangement optimal de I_{δ} utilisant M sacs.
- 4. Utilisation l'approche First Fit pour construire un rangement \mathcal{R}' pour I.

Traitement des petites boîtes.

- 1. Soit *I* une instance du bin packing, et $\delta \in (0, 1/2]$
- 2. I_{δ} = Instance obtenue par élimination des boites de capacité $< \delta \times c$.
- 3. Soit \mathcal{R} un rangement optimal de I_{δ} utilisant M sacs.
- 4. Utilisation l'approche FIRST FIT pour construire un rangement \mathcal{R}' pour I.

QUESTION: Comment évaluation du nombre de sacs crées par l'algorithme FIRST FIT?

2 cas possibles.

- 1. Aucun sac a été créé par l'algorithme First Fit: \mathcal{R}' utilise M sacs.
- 2. Sinon Soit M' le nbre de sacs créé par cette procédure:
 - (a) Tous les sacs de $M' \cup M$ excepté 1 a une place vide au plus δc .
 - (b) Donc

$$(1 - \delta)(M + M' - 1) \le \frac{\sum_{i=1}^{n} w(b_i)}{c} \le m^*(I)$$

$$(M+M') \le \frac{1}{1-\delta}m^*(I) + 1 \le (1+2\delta)m^*(I) + 1$$

2 cas possibles.

- 1. Aucun sac a été créé par l'algorithme First Fit: \mathcal{R}' utilise M sacs.
- 2. Sinon Soit M' le nbre de sacs créé par cette procédure:
 - (a) Tous les sacs de $M' \cup M$ excepté 1 a une place vide au plus δc .
 - (b) Donc $(M + M') \le (1 + 2\delta)m^*(I) + 1$
 - (c) En conclusion, la solution est calculée en tps polynomial tel que le nombre de sacs est majoré par

$$max(M, (1+2\delta)m^*(I) + 1)$$

Algorithme

Entrée: 1 instance I: n boites, entier c, rational 1 < r < 2.

Sortie: une solution tel que la mesure rOPT + 1

ALGORITHME:

1.
$$\delta \leftarrow (r-1)/2$$

- 2. $J \leftarrow I \setminus \{\text{de boîtes de cap. } < \delta c \}$
- 3. $\alpha \leftarrow \left\lceil \frac{(r-1)^2 n'}{2} \right\rceil$ avec n' de nbre de boîtes de J.
- 4. J': instance obtenue par groupement par α boîtes de J
- 5. Trouver la solution optimale pour J'
- 6. Inserer les α première boites dans α nouveaux sacs
- 7. Appliquer Algo First Fit pour inserer les petites boites.
- 8. retourner le rangement obtenu.

Théorème 4: L'algorithme précedent est un schéma d'approximation en temps polynomiale asymptotiquement.

Preuve

Théorème 4: L'algorithme précedent est un schéma d'approximation en temps polynomiale asymptotiquement.

PREUVE

Algorithme polynomiale

Théorème 4: L'algorithme précedent est un schéma d'approximation en temps polynomiale asymptotiquement.

PREUVE

- Algorithme polynomiale :
 - Construire les nouvellles instances J et J': O(n).
 - calculer l'optimal de J': $O(n^q p(n))$
 - ullet q dépend de r
 - p est un polynome.

Théorème 4: L'algorithme précedent est un schéma d'approximation en temps polynomiale asymptotiquement.

PREUVE

- Algorithme polynomiale
- Qualité de la solution notée m(I):

- 1. au départ, instance I et $\delta = (r-1)/2$
- 2. $J \leftarrow \text{Elimininer les boites de petites tailles } (< \delta c)$.
- 3. $J' \leftarrow \text{Regrouper les boites en } \alpha = \left\lceil \frac{(r-1)^2 n'}{2} \right\rceil$ boites + lissage.
- 4. Trouver l'optimal pour l'instance restreinte J'.
- 5. Adapter la sol. pour J.
- 6. Inserer les boites de petites tailles

- 1. au départ, instance I et $\delta = (r-1)/2$
- 2. $J \leftarrow \text{Elimininer les boites de petites tailles } (< \delta c)$. $m^*(J) \leq m^*(I)$
- 3. $J' \leftarrow \text{Regrouper les boites en } \alpha = \left \lfloor \frac{(r-1)^2 n'}{2} \right \rfloor$ boites + lissage.
- 4. Trouver l'optimal pour l'instance restreinte J'. $m^*(J')$
- 5. Adapter la sol. pour $J.m(J) = m^*(J') + \alpha$
- 6. Inserer les boites de petites tailles

- 1. au départ, instance I et $\delta = (r-1)/2$
- 2. $J \leftarrow \text{Elimininer les boites de petites tailles } (< \delta c)$. $m^*(J) \leq m^*(I)$
- 3. $J' \leftarrow \text{Regrouper les boites en } \alpha = \left \lfloor \frac{(r-1)^2 n'}{2} \right \rfloor$ boites + lissage.
- 4. Trouver l'optimal pour l'instance restreinte J'. $m^*(J')$
- 5. Adapter la sol. pour $J.m(J) = m^*(J') + \alpha$
- 6. Inserer les boites de petites tailles

$$m(I) = max(m(J), (1+2\delta)m^*(I) + 1)$$

1.
$$m(J) = m^*(J') + \alpha$$
 avec $\alpha = \left\lceil \frac{(r-1)^2 n'}{2} \right\rceil$

2. tous les éléments de J ont une capacité $>\delta c$ avec

$$\delta = (r-1)/2.$$

Donc
$$\delta n' \leq m^*(J)$$
 car $\frac{\delta \times c \times n'}{c} \leq \frac{\sum_{b \in J} w(b)}{c} \leq m^*(J)$

3.
$$\alpha \leq \frac{(r-1)^2 n'}{2} + 1 \leq (r-1) \times \delta n' + 1 \leq (r-1)m^*(J) + 1$$

- **4.** $\alpha \leq (r-1)m^*(J)+1$
- 5. Donc $m(J) \leq r \times m^*(J) + 1$

Théorème 4: L'algorithme précedent est un schéma d'approximation en temps polynomiale asymptotiquement . Preuve: Qualité de la solution notée m(I)?

- 1. $m(I) = max(m(J), (1+2\delta)m^*(I) + 1)$ avec $\delta = (r-1)/2$.
- **2.** $m(J) \le r \times m^*(J) + 1$
- 3. $m(I) \leq max(r \times m^*(J) + 1, (1+2\delta)m^*(I) + 1)$
- **4.** $m(I) \leq max(r \times m^*(J) + 1, rm^*(I) + 1)$ avec $r = 2\delta + 1$
- 5. $m(I) \leq rm^*(I) + 1 \text{ avec } m^*(J) \leq m^*(I)$