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A scheduling problem

- Data: m machines M,, ..., M, , aset of n tasks.

- An instance :
Tasks : [7 2 3 4
2 identical parallel machines M; and M, .

- Possible schedules :

M, |1 4 2 4 1 4

M| 3 2 1| 3 3 | | 2

/
time idle time

F1Ciq 165+3¢5 = 1 . [Cj= 2+6+1+4 = 13
A} objéctive Functiopcy= erortr

- Example : Min. average completion time




Context

» Algorithmic game theory (AGT).
Shared ressources: agents with conflicting
interests interact.
Centralized protocols are not always possible.

Machine : processor, printer, link in a network ...

¥] Scheduling problems have been studied in
AGT.

* Each agent has one objective, and a set of possible
strategies. We focus on (pure) Nash equilibrium: no
agent can improve its objective function by
unilateraly changing its strategy.



- 2agents Aet B

Example

A has 2 tasks:

2

3

and B has 2 tasks: . I

Strategy : choose on which machine to schedule each task.
- The machines schedule the tasks by increasing order of

lengths.

- Aim of the agents : Min average completion time




Price of anarchy

» Global objective function (social cost)
- Example : Min. sum of completion times

. Price of anarchy = Social cost (Worst Nash equilibrium)

Social cost (optimal solution)

W] Measures the loss of efficiency du to the lack of
cooperation between the selfish agents.




Coordination mechanisms
* Introduced by Christodoulou et al. in Icalp'O4.

» Coordination mechanism = set of scheduling policies,
one for each machine.

Each policy :
- Gives the order of the tasks on the machine, and
may introduce idle times.

- Is local : it depends on the tasks scheduled on the
machine only.

- Does not distinguish the tasks of the different
agents. Each task is identified by its length and
its identification number.



Classical policies :
- SPT (LPT): tasks are scheduled in increasing order of
their lengths (resp. in decreasing order of their lengths).

- Random : tasks are scheduled in a random order.

Example of a coordination mechanism :

Mo M 2

ChriMed 4 CALP'O4], introduced the coordination
mechanisms when 1 agent = 1 task.

Immorlica et al. [TCS 09] : study of the convergence and
the price of anarchy of the schedules induced by the
classical policies.




Our problem

m machines shared between 2 agents A et B having
each one a set of tasks.

Aim of each agent : Minimize the sum of the
completion times of its tasks.

Does there exist a coordination mechanism which
always induce Nash equilibria ?

What is the stability of the solutions obtained
with the classical policies SPT, LPT, and Random ?



Stability of a schedule

s-approximate Nash equilibrium : no agent can
improve its objective (its sum of completion fimes)
by a ratio larger than ¢ by changing its strategy

(by moving its tasks).
Agent A:

M, e 3 Agent B :

W

Cj= 7. could obtain 6

-> improvement ratio =7/6 .

W

Cj= 6. could obtain 5

-> improvement ratio =6/5 .

=> 6/5-approximate Nash equilibrium.
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Stability

* Property : If all the machines use the same
deterministic policy which doesn't use idle times,
then there does not always exist a Nash equilibrium.

+ Proof: (m=2) Let 3 tasks s.t.
A A,
- If A,and B are aloneonas ..HE.A e <

. A
- If Band A, are alone on a same machine : == < .

B [~
There is no Nash equilibrium.
Agent A wants : Agent B wants :

M, A
M, [A;
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Price of anarchy

* Property : If all the machines have the same
deterministic policy, then the price of anarchy is

at least 2.

* Proof: m=2, 3 tasks of length1s.t.  mm < N

Idle times :

Bl

- If there are 2 tasks of length 1 on the same

machine :

- If there i,

12

machine :

K]

of length 1 alone on a
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We distinguish 4 cases:

Case 1.
i1 A, i2 -

i3 [A;

M]Cj= il+i2+2
If B, goeson M, : [¥]Cj= il+1

=> This is not a Nash equilibrium.

- Case 2:

=> This is :o+ a Zer mgc___c_‘._c_s.

Case 3:| il |A,| i2 |A,
i3

M]Cj= 2 * i1+i2+3

Nash equilibrium only if
i1+i3+2 D] 2 * il+i2+3,
i.e. :ﬂ _w I T.T_N

- Case 4: the 3 tasks are
together

By no:j,o%njo: If the price of

With other _u«.o_uml_mm\ we can
deduce than there is an instance
without Nash equilibrium.

=> With identical deterministic policies, the price of anarchy is [¥] 2.
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The SPT policy

Property : If all the machines use the SPT policy,
then there exist always a 3-approximate Nash
equilibrium.,

Proof : (m is even)

Sum of the completion
times on a set of m/2
machines ] 2 x Sum of
the completion times of the
same tasks on m machines.
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The SPT policy : lower bound

* Property : If all the machines use the SPT policy,
then there does not always exist (3/2-/)-
approximate Nash equilibrium, for all /~

* Proof: 2m-1 tasks of length 1 s.t.

< < < < < < <

A, . A, . cee At . An

Let S be the most stable schedule.

- At most 2 tasks per machine in S. M,

- Each agent can, by moving its tasks, "

make them start at time O. " x mu
x+1
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Let x be the number of tasks of A in 15t position in S.

* ®]Cj = x + 2(m-x).

A could gain a factor  x+2(m- x) _, X
by moving. m m

.

* B could gain a factor X by moving.
|_|

m- 1

* S is a max( \ )-approximate Nash equilibrium.

2o e

* There is no *-dpproXimbte Nash equilibrium with
¢ < min max( \ =
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The LPT and Random policies

* Property : If the machines use the policy LPT or
Random, then there does not always exist an -
approximate Nash equilibrium, for all ¢.

* Proof for LPT:

m, I

ML

M L

m

m

L

m

ﬁ n. = (¢ m)~(2m -1) tasks of length L,= (¢ m)"(2m™! -2m-+2)

N

- s

J

(¢ m) tasks of length L,

1- In S, agent B decreases its completion time with a factor
larger than ¢ by going on another machine. 19



2- Inany other schedule, agent A decreases its sum of
completion times by a factor > ¢ by moving its tasks.

w [

M LI

ﬁ n, = (¢ m)~(2m -1) tasks of length L,= (¢ m)~(2m1 -2m-+2)

molote |t -l L [RESA

\ J

(¢ m) tasks of length L,

- Sum of the completion times of Ain S:

W

Ci(S) <m (s my~(2m - 2)

- Sum of the completion times of the tasks of length L, with a
longest task > L,,, n, = (¢ m)"(2™! - 1) > o W]Cj(S)

W

There is no *-approximate Nash equilibrium in this game.
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Conclusion

* Machines with deterministic identical policies
- without idle times : instances without Nash
equilibrium
- with idle times : price of anarchy at least 2
(social cost = sum of completion times).

» Classical policies :
- LPT, Random induce schedules as instable as
wanted
- SPT induces ¢-approximate Nash equilibria with ¢
between 3/2 et 3.
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Future work

» Tight bound for SPT

» Complexity for an agent to compute its best
response (for a given coordination mechanism) ?
Convergence time to obtain a Nash equilibria?

- Does there exist a coordination mechanism which
induces Nash equilibria for this problem?

For example : one machine uses SPT, and another
one LPT?
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