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Abstract

We consider a class of fully stochastic and fully distributed algorithms, that we prove to
learn equilibria in games. Indeed, we consider a family of stochastic distributed dynamics that
we prove to converge weakly (in the sense of weak convergence for probabilistic processes) to-
wards their mean-field limit, i.e an ordinary differential equation (ODE) in the general case.
We focus then on a class of stochastic dynamics where this ODE turns out to be related to
multipopulation replicator dynamics. Using facts known about convergence of this ODE, we
discuss the convergence of the initial stochastic dynamics: For general games, there might be
non-convergence, but when convergence of the ODE holds, considered stochastic algorithms
converge towards Nash equilibria. For games admitting Lyapunov functions, that we call Lya-
punov games, the stochastic dynamics converge. We prove that any ordinal potential game,
and hence any potential game is a Lyapunov game, with a multiaffine Lyapunov function. For
Lyapunov games with a multiaffine Lyapunov function, we prove that this Lyapunov function is
a super-martingale over the stochastic dynamics. This leads a way to provide bounds on their
time of convergence by martingale arguments. This applies in particular for many classes of
games that have been considered in literature, including several load balancing game scenarios
and congestion games.



1 Introduction

Consider a scenario where agents learn from their experiments, by small adjustments. This might
be for example about choosing their telephone companies, or about their portfolio investments. We
are interested in understanding when the whole market can converge towards rational situations,
i.e. Nash equilibria in the sense of game theory. This is natural to expect dynamics of adjustments
to be stochastic, and fully distributed, since we expect agents to adapt their strategies based on
their local knowledge of the market, and since agents are often involved in games where a global,
and hence local, deterministic description of the whole global market is not possible.

Several such dynamics of adjustments have been considered recently in the algorithmic game
theory literature. Up to our knowledge, this has been done mainly for deterministic dynamics or
best-response based dynamics: Computing a best response requires a global description of the mar-
ket. Stochastic variations, avoiding a global description, have been considered. However, considered
dynamics are somehow rather ad-hoc, in order to get efficient convergence time bounds, and still
mainly best-response based. We want to consider here more general dynamics, and discuss when
one may expect convergence. This could lead to consider any dynamics which is monotone with
respect to the utility of players, in relation with evolutionary game theory literature [?]. We pro-
pose to restrict here to dynamics that lead to dynamics related to (possibly perturbed) replicator
dynamics.

Somehow, as algorithmic game theory can be seen as an algorithmic version of classical game
theory, our long term aim is to better understand algorithmic evolutionary game theory. Somehow,
we could also say, that as best-response dynamics can be seen as strategies that visit corners of the
simplex of (mixed) strategies, we are interested in a long term objective in learning methods that
could be seen as interior point methods to find equilibria.

Basic game theory framework. Let [n] = {1,...,n} be the set of players. Every player i has
a set S; of pure strategies. Let m; be the cardinal of S;. A mized strategy q; = (¢i1,¢i2s- - -, Gim,)
corresponds to a probability distribution over pure strategies: pure strategy ¢ is chosen with prob-
ability ¢; ¢ € [0,1], with ;" ¢;» = 1. Let K; be the simplex of mixed strategies for player i. Any
pure strategy £ can be considered as mixed strategy e,, where vector e, denotes the unit probability
vector with " component unity, hence as a corner of K.

Let K =[] K; be the space of all mixed strategies. A strategy profile Q@ = (q1,...,qn) € K
specifies the (mixed or pure) strategies of all players: g; corresponds to the mixed strategy played
by player i. Following classical convention, we write often write abusively @ = (¢;, Q—;), where Q_;
denotes the vector of the strategies played by all other players.

We allow games whose payoffs may be random: we only assume that whenever the strategy
profile Q € K is known, each player i gets a random cost of expected value ¢;(Q). In particular,
the expected cost for player i for playing pure strategy ey is denoted by ¢;(eg, @—;).

Some classes of games. Several classes of games where players’ costs are based on the
shared usage of a common set of resources [m] = {1,2,...,m} where each resource 1 < r < m
has an associated nondecreasing cost function denoted by C, : [n] — R, have been considered in
algorithmic game theory literature.

In load balancing games [?], resources are called machines, and players compete for elements
(i.e. singleton subsets) of [m]. Hence, the pure strategy space S; of player i having a weight w;
corresponds to [m] or a subset of [m], and a pure strategy ¢; € S; for player i is some element
r € [m]. The cost for player (task) ¢ under profile of pure strategies (assignment) @ = (q1,...,qn)



corresponds to ¢;(Q) = Cy, (A (Q)), where A\.(Q) is the load of machine 7: A\.(Q) = >
that is to say the sum of the weights of the tasks running on it.

In congestion games [?], resources are called edges, and players compete for subsets of [m)].
Hence, the pure strategy space S; of player i is a subset of 2™ and a pure strategy ¢; € Q for
player i is a subset of [m]. The cost of player i under profile of pure strategies @) corresponds to
ci(Q) = > ey Or(A(Q)) where A (Q) is the number of g; with r € ¢;. In weighted congestion
games, weights (w;); are associated to players, and one takes instead A\ (Q) = >_ wj.

Jjiqj=r Wy,

j:TEq;

In task allocation games [?], as in load balancing games, resources are callejd Iﬁachines, and
players compete for elements (i.e. singleton subsets) of [m]. Each resource (machine) r is assumed
to have a function C, that takes as input a set of tasks A C [n] assigned to it, and outputs a cost C, ;
for each participating player j. The cost of player ¢ under profile of pure strategies () is then given
by ¢i(Q) = Cq,i({jlg; = ¢;}). Functions C, can be considered as speed and scheduling policies,
and associated costs as corresponding completion time for player (task) i. For example, SPT and
LPT are policies that schedule the jobs without preemption respectively in order of increasing or
decreasing weights (processing times) [?].

Clearly, load balancing games are particular task allocation games, and load balancing games
are particular weighted congestion games. A load balancing game whose weights are unitary is a
particular congestion game.

Ordinal and potential games. All these classes of games can be related to ordinal and
potential games introduced by [?]: A game is an ordinal potential game if there exists some function
¢ from pure strategies to R such that for all pure strategies Q_;, ¢;, and ¢}, one has ¢;(¢;, Q—;) —
ci(q), Q) > 0iff ¢(qi,Q—i) — (¢}, Q—i) > 0. It is an an (exact) potential game if for all pure
strategies Q_;, ¢i, and ¢j, one has c;(¢;, Qi) — ¢i(q;, Q—i) = ¢(qi, Q—i) — ¢(q;, Q—s).

2 Stochastic Learning Algorithms

Generic Stochastic Learning Algorithm. We want basically to consider learning algorithms
of the following form, over the most possible general games, where b is a parameter, intended to be
positive but close to 0.

e Initially, ¢;(0) € K; can be any vector of probability, for all i.
e At each round ¢,
e Any player i: selects a strategy s;(t) € S; according to distribution ¢;(¢): player ¢ selects
strategy ¢ € S; with probability g; ¢(t). This leads to a (random) cost ;(t) for player i.
e Select some player i(t) at random: player i is selected with probability p;, with >~ | p; = 1.
This player i = i(t) updates g;(t) as follows: g;(t + 1) = qi(t) + bEF (ri(t), si(t), ¢i(t));
Any other player keeps ¢;(t) unchanged: ¢;(t +1) = ¢;().

In a first step, consider functions F(r;(t), si(t),¢i(t))) as generic as possible, maintaining that
the ¢;(t) always stay validity probability vectors: that is to say, ¢;(t) € [0,1] and > ,q; ¢(t) =1
is preserved. Functions F?(r;(t), si(t), qi(t)) can be random (formally a random variable). We only
assume that its expectation E[ FP(r;(t), s:(t), q:(t)) |Q(t) ] is always defined.

This corresponds indeed to fully distributed algorithms'. Decisions made by players are com-

We of course understand that for some games (like congestion games), the size of the involved probability vec-
tors might be non-polynomial. However, by restricting to function F?(r;(t),s:(t),q:(t))), or close dynamics, which
guarantee a support of polynomial size for ¢;(t), can solve the problem: restrict to function which are equal to



pletely decentralized: At each time step, player i only needs r; and ¢;, that is to say respectively
her cost and her current mixed strategy, to update his own strategy g;.

Let Q(t) = (q1(t),...,qn(t)) € K denote the state of all players at instant t. Our interest is
in the asymptotic behavior of Q(t), and its possible convergence to Nash equilibria. Assume that
Gi(Q) = limy_o E[ FP(ri(t), si(t), ¢i(t)) |Q ] exists and is some continuous function G; of Q.

Results. In the general case (Theorem 1), any stochastic algorithm in the considered class
converges? weakly (in the sense of weak convergence for probabilistic processes) towards solutions
of initial value problem (ordinary differential equation (ODE)) Cfiqti = piGi(Q), given Q(0), i.e. to
its mean-field limit approximation.

A replicator-like dynamics F,L»b is a dynamic where

Fy (ri(t), si(t), qi(t)) = 7(ri(t))(es,0) — a:(1)) + O(b),

or where this holds for its expectation, where v : R — [0, 1] is some decreasing® function with value
in [0,1]. Recall that e, is the unit vector of dimension m; with component number s;(t) unity.
Notice that we allow perturbed dynamics: O(b) denotes some perturbation that stay of order
of parameter b.
We can also allow randomly perturbed dynamics: a perturbed replicator-like dynamic is of the
form

v(ri(t))(es,r) — qi(t))  with probability
bles, — qi(t)) with probability 1 — «
b(... . . — )
Fr(rit), s:(0), ai(t)) = O() + ' where j € {1,...,m;}
is chosen uniformly,

where 0 < a < 1 is some constant.

We claim that such dynamics have a mean-field approximation which is isomorphic to a multi-
population replicator dynamics.

We claim (Theorem 2), that for general games, if there is convergence of the mean-field ap-
proximation, then stable limit points will correspond to Nash equilibria of the game. Notice, that
there is no reason that convergence of mean-field approximation holds for generic games, but if it
holds, then its stable limit points will be Nash equilibria.

We claim (Theorem 3) that ordinal games (and hence (exact) potential games) are Lyapunov
games: their mean-field limit approximation admits some Lyapunov function. Furthermore, this
Lyapunov function, that can be taken as the expectation of the potential and is of a special type,
that we call multiaffine.

We show that for Lyapunov games with multiaffine Lyapunov function (hence this includes
ordinal and (exact) potential games such as load balancing, task allocation and congestion games),
the Lyapunov function is a super-martingale over stochastic dynamics.

We deduce results on the convergence of stochastic algorithms for this class. We claim (Theorem
4) that for generic Lyapunov games with multiaffine Lyapunov function, the convergence towards

F(Q(0))

Nash equilibria happens in expected time of order , taking b of order e.

—bg;,¢ for components ¢ outsides a polynomial (or fixed) sized support, for example. If this is too problematic to our
reader, please consider that we restrict to games where the m; stay polynomial, as for load balancing games and task
allocation games.

2See discussion in Appendix A.1.1.

31f we assume all costs to be positive, by linearity of expectation then all costs must be bounded by some constant

M, and we can take for example v(z) = %



Related work. This is clear that an (exact) potential game is an ordinal potential game.
Congestion games, and hence load balancing games are known to be particular (exact) potential
games [?]. Actually, it is known that a game is an (exact) potential game iff its is isomorphic to
a congestion game [?]. It has been proved in [?] that task allocation games are ordinal potential
games, for SPT and LPT policies. In fact, it is proved in [?] that under SPT and LPT policies,
one can build some function ¢, which takes values of the form (ly,--- ,[,), that is lexicographically
decreasing iff a player is doing a best response move. As the [; (which corresponds to loads) are
bounded by some constant K, function ¢ = ) . ;K n—i i5 decreasing iff a player is doing a best
response move.

In other words, task allocation games under SPT and LPT policies are indeed ordinal potential
games, under the terminology of [?].

An ordinal potential game always have a pure Nash equilibrium: since ordinal potential function,
that can take only a finite number of values, is strictly decreasing in any sequence of pure strategies
strict best response moves, such a sequence must be finite and must lead to a Nash equilibrium [?].
This proof of existence of pure Nash equilibria can be turned into a dynamic: players play in turn,
and move to resources with a lower cost.

For load-balancing games, following this idea, bounds on the convergence time of best-response
dynamics have been investigated in [?]. Since players play in turns, this is often called the El-
ementary Stepwise System. Other results of convergence in this model, have been investigated
in [?, 7, 7], but all require some global knowledge of the system in order to determine what next
move to choose.

A Stochastic version of best-response dynamics has been investigated in [?, ?]. It is proved to
terminate in expected O(loglogn +m*) rounds for uniform tasks, and uniform machines. This has
been extended to weighted tasks and uniform machines in [?]. The expected time of convergence
to an e-Nash equilibrium is in O(nmW3e2) where W denotes the maximum weight of any task.

For congestion games, the problem of finding pure Nash equilibria in congestion games is PLS-
complete [?]. Efficient convergence of particular best-response dynamics to approximate Nash
equilibria in symmetric congestion games have been investigated in [?], in the particular case where
each resource cost function satisfies a bounded jump assumption. In this context, the convergence
to e-Nash equilibria occurs within a number of steps that is polynomial in the number of players.
This has been extended to different classes of asymmetric congestion games in [?].

All previous discussions are about best-response dynamics. A stochastic dynamic, not elemen-
tary stepwise like ours, but close to those considered in this paper, has been partially investigated
in [?] for general games and for potential games: It is proved to be weakly convergent to solutions
of a multipopulation replicator equation. Some of our arguments follow theirs, but notice that
their convergence result (theorem 3.1) is incorrect: convergence may happen towards non-Nash
(unstable) stationary points. Furthermore, this is not clear that any super-martingale argument
holds for such dynamics, as our proof relies on the fact that the dynamics is elementary stepwise.

Replicator equations have been deeply studied in evolutionary game theory [?, ?]. Evolutionary
game theory has been applied to routing problems in the Wardrop traffic model in [?, ?]. Potential
games have been generalized to continuous player sets in [?]. They have be shown to lead to
multipopulation replicator equations, and since our dynamics are not about continuous player sets,
but lead to similar dynamics, we borrow several constructions from [?]. No time convergence
discussion is done in [?].

A replicator equation for the routing games considered has been considered in [?], where a Lya-



punov function is established. The dynamics considered in [?] considers marginal costs. Moreover,
in [?, 7], the replicator dynamics for particular allocation games are studied to converge to a pure
Nash equilibrium by modified the game cost in order to obtain Lyapunov function.

3 Mean-Field Approximation For Generic Stochastic Algorithms

Recall that we are interested in discussing the evolution of Q(t), where Q(t) = (q1(t), ..., qn(t)) € K
denotes the state of the player team at instant ¢ in the stochastic algorithm.

Clearly, Q(t) is an homogeneous Markov chain. Define AQ(t) as AQ(t) = Q(t+1) — Q(t), and
Ag;(t) as gi(t + 1) — gi(t). We can write

E[ Agi(t) |Q(t) | = bpE[ F(ri(t), si(t), qi(t)) 1Q(t) ], (1)

with G;(Q) = limy_o E[ F?(ri(t), si(t), ¢i(t)) |Q(t) ] assumed to be continuous under our hypotheses.

Convergence of the stochastic algorithms towards ordinary differential equations defining their
mean-field limit approximation can be formalized as follows: Consider the piecewise-linear interpo-
lation Q°(.) of Q(t) defined by Q°(t) = Q(|t/b]) + (t/b— [t/b])(Q(|t/b+ 1]) — Q(|t/b])). Function
Q"(.) belongs to the space of all functions from R into K which are right continuous and have left
hand limits (cad-lag functions). Now consider the sequence {Q%(.) : b > 0}. We are interested
in the limit Q(.) of this sequence when b — 0. Recall that a family of random variable (Y;)ier
weakly converges* to a random variable Y, if E[h(X;)] converges to E[h(Y)] for each bounded and
continuous function h°.

Theorem 1 The sequence of interpolated processes {Q¥(.)} converges weakly, when b — 0, to Q(.),
which is the (unique deterministic) solution of initial value problem

dg;

o = PiGiQ), i=1,---m, 2)

with Q(0) = Q°(0).

4 General Games and Replicator-Like Dynamics

From now on, we restrict to (possibly perturbed) replicator-like dynamics, as defined in page 3.
For any such dynamic®, Equation (2) leads to the following ordinary differential equation which
turns out to be (a rescaling of) (multipopulation) classical replicator dynamic

dg;
th;f = —piti,e(ui(ee, Q—i) — ui(qi, @—i)), ¥

whose limit points are related to Nash equilibria (through so-called Folk’s theorems of evolutionary
game theory [?])7.

4See discussion in Appendix A.1.3.

SProof of Theorem 1 can be found in Appendix A.2.
5Full details in Appendix A.4.

"Proof of Theorem 2 can be found in Appendix A.6.



Here, u;(Q) is taken as u;(Q) = E[ v(r(Q)) |Q ] for replicator-like dynamics, and u;(Q) =
E[ é’y(ri(Q)) |@ | for perturbed replicator-like dynamics. The game whose costs are defined by u;
is clearly isomorphic to the original game. Notice that when + is affine, this is just introducing a(n
other) rescaling in (3).

Using properties of dynamics (3), we get:

Theorem 2 For general games, for any replicator-like or perturbed replicator-like dynamic, the
sequence of interpolated processes {Qb(.)} converges weakly, as b — 0, to the unique deterministic
solution of (3) with Q(0) = Q®(0). If the mean-field approzimation dynamic (3) converges, its
stable limit points correspond to Nash equilibria of the game.

More precisely®, the following are true for solutions of (3): (i) All Nash equilibria are stationary
points. (ii) All stable stationary points are Nash equilibria. (iii) However, (unstable) stationary
points can include some non-Nash equilibria.

Actually, all corners of simplex K are stationary points, as well as, from the form of (3), more
generally any state ) in which all strategies in its support perform equally well. Such a state @ is
not a Nash equilibrium as soon as there is an not used strategy (i.e. outside of the support) that
performs better.

Unstable limit stationary points may exist for the mean-field approximation (3): Consider for
example a dynamics that leave on some face of K where some well-performing strategy is never
used. To avoid “bad” (non-Nash equilibrium, hence unstable) stationary points, following the idea
of penalty functions for interior point methods, one can use as in Appendix A.3 of [?] some patches
on the dynamics that would guarantee Non-complacency®. Non-Complacency (NC) is the following
property: G(Q) = 0 implies that @ is a Nash equilibrium (3) (i.e. stationarity implies Nash).

This can be thought as the price to pay for purely deterministic models'?, and actually, when
dealing with stochastic dynamics, all this can be avoided by taking profit of the unstability of
non-Nash stationary points: this is the idea behind the randomized replicator dynamics already
defined. This guaranteed unstable points to be left almost-surely by the associated stochastic
algorithm: technically, this ensures ergodicity of the underlying Markov Chain. Notice that a
purely deterministic replicator-like dynamics where O(b) = 0 is not: an unstable stationary point,
like a corner of K is invariant for ever, and the underlying Markov is hence not irreducible.

For general games, we get that the limit for b — 0 is some ordinary differential equation
whose stable limit points, when ¢ — oo, IF there exist, can only be Nash equilibria. Hence, IF
there is convergence of the ordinary differential equation, then one expects the previous stochastic
algorithms to learn equilibria.

Observe, that roughly speaking, for non-degenerated games, learning interior (hence mixed)
Nash equilibria by such method is often problematic (and hence practically only pure Nash equi-
librium may be learned) since the following is known:

Proposition 1 ([?, ?],[?, page 218] ) If a closed set X C K belongs to the relative interior of
some face of K, then X is not asymptotically stable by dynamics (3).

8See discussion in Appendix A.5.
9See discussion in Appendix A.1.2.
10 And perhaps somehow as artifacts of modeling.



5 Lyapunov Games, Ordinal and Potential Games

Since general games have no reason to converge, we propose now to restrict to games for which
replicator equation dynamic or more generally general dynamics (2) is provably convergent. As this
practically often relies on some Lyapunov function argument, we propose the following terminology.

Definition 1 (Lyapunov Game) We say that a game has a Lyapunov function (with respect to
a particular dynamic (2) over K ), or that the game is Lyapunov, if there exists some non-negative

C! function F : K — R such that for all i, and Q, whenever G(Q) # 0,

OF
Zpi@@mi,e(@) <0. (4)
il b

Lyapunov games include ordinal potential (and hence (exact) potential) games: we will say that
a Lyapunov function F': K — R is multiaffine, if it is defined as as polynomial in all its variables,
it is of degree 1 in each variable, and none of its monomials are of the form g; ¢q; /.

Theorem 3 An ordinal potential game is a Lyapunov game with respect to dynamics (3). Fur-
thermore, its has some multiaffine Lyapunov function.

Proof:

Consider F(Q) = E[ ¢(Q) | players play pure strategies according to probability distribution @ |
where ¢ is the potential of the ordinal potential game. By linearity of expectation, F(Q) is clearly
multiaffine.

Now, by linearity of expectation, we have that F(g;,Q—;) = >_,¢i¢F (e, Q—i), and hence

%(Q) = F(ey,Q—;). Now, for dynamics (3), left-hand side of (4) rewrites to

Zi,gpi%(Q)Gi,z(Q) = —2pid o Flew, Q-i)aie(uiler, Q—i) — ui(gi, Q—i))
= =P D e Qi Fee, Q—i)(ui(er, @—i) — uiler, Q—i))

= =3P Yoper Gt (Flee, Qi) — Flep, Qi) (uiler, Qi) — ui(er, @—s))

Since the game is ordinal, (F(ey, Q@—;) — F(ep,Q—;))(ui(er, Q—;) — ui(ep,Q—;)) is always non-
negative, by definition, and hence F' is a Lyapunov function.
]
More precisely, if ¢ is the potential of the ordinal potential game, then one can take its expec-
tation F(Q) = E[ ¢(Q) | = E[ ¢(Q) | players play pure strategies according to @ Jas a Lyapunov
function with respect to dynamics (3).
The following class of games have been introduced [?, ?].

Definition 2 (Potential Game [?]) A game is called a continuous potential game if there exists
a C' function F : K — R such that for all i,¢ and Q,

oF
0qi

(Q) = ui(er, Q). (5)



Proposition 2 A continuous potential game is a Lyapunov game with respect to dynamics (3).
Furthermore, its has some multiaffine Lyapunov function.

Proof:
By definition, F' has a multiaffine Lyapunov function: this is clear as all its partial derivative
are known, given by -2£-(Q) = ¢;(er, Q).

94i.e
Now, in this case, for dynamics (3), left-hand side of (4) rewrites to
Zi,epi%(Q)Gi,z(Q) = = 2ipi > puiler, Q-i)gie(uiler, @—i) — ui(qi, @—i))

= =D iDi Do 2w Gietieui(er, Qi) (ui(eq, Q—i) — ui(er, Q—;))
= —L3Di > e Qoo (ui(er, Q—i) — ui(er, Q—;))?

hence is positive on non-stationary points. ]
Recall that exact potential games have been defined page 2, following [?], in terms of pure
strategies. Notions turn out to be equivalent!! when F is assumed at least C2.

Proposition 3 An (exact) potential game of potential ¢ leads to a continuous potential game with
F(Q) =E[ ¢(Q) ], and conversely, the restriction of F of class C? to pure strategies of a potential
in the sense of above definition leads to an (exact) potential.

Proof: In other words, a game is a continuous potential game if there exists some C! function
whose gradient V f equals the cost vector H = (u;(e;, Q));;. Function F', which is unique up to an
additive constant, is called the potential function of the game.

When F is C2, condition (5) is equivalent to externality symmetry [?, 7]:

aui(€€7 Q) _ au](SZa Q) (6)

0q; v 0¢; v

for all 4, 7, ¢,¢". In that case, by a well-known result (characterization of exact forms), if we fix any
z € K, F is given by

n m; 1
F@=YY [ wena)aio, 7)
i=1 ¢=1"0
where z : [0, 1] — K is any piecewise continuous differentiable path in K that connects z to @ (i.e.
2(0) = z, z(1) = Q).

In particular it must be independent of the used path. Considering paths from pure strategies
to pure strategies, the second part of the proposition follows, from characterizations of (exact)
potential games in [?]. The first part of the proposition is easy to establish, in the same vein as we
established ;TZ(Q) = F(es, @—;) in the proof of Theorem 3 above.

O

A Lyapunov game can have some non-multiaffine potential function, hence not all Lyapunov
games with respect to dynamics (3) are ordinal games. We believe Lyapunov game with respect to
dynamics (3) with a multiaffine potential function to differ from ordinal games.

The interest of Lyapunov functions is that they provide convergence. Recall that the w(Qo)
limit set of a point )y is the set of accumulation points of the trajectories that start from Qq:
considering a trajectory starting from @, this is the set of @* with Q* = lim,, - Q(t,), for some
increasing sequence (t)n>0 € R.

1Pproof of Proposition 3 can be found in Appendix ?7.



Proposition 4 In any Lyapunov game with respect to any dynamic (2) over K, the solutions
of mean-field approximation (2) have their limit set w(Q) non-empty, compact, connected, and
consisting entirely of stationary points of the dynamic. On this limit sets, F' is constant.

Proof: This is made of well-known fact, and is for example present for example as Lemma A.1
of [?].

For self-contentedness, here is mainly a slight adaptation of the proof of Lyapunov Stability
theorem [?, page 194].

F(Q(t)) must be monotone along trajectories, since Equation (4) guarantees % < 0. Let
Q(t) be some solution of ordinary differential equation (2) with Q(0) = z. Let Qo € w(x): that is
to say Q(t,) — Qo for some sequence t,, — co. We claim that @)y must be some stationary point of
the dynamics, that is to say, G(Qo) = 0. To see this, observe that F(Q(t)) > F(Qo) since F(Q(t))
decreases and F(Q(t)) converges to F(Qo) by continuity of F.

Suppose that G(Qg) # 0. Let Z(t) be the solution of the ordinary differential equation starting
from Qo. For any s > 0, we have F(Z(s)) < F(Qo). Hence, for any solution Y (s) starting
sufficiently near Zy we have F (Y (s)) < F(Qo). Setting Y (0) = Q(t,) for sufficiently large n yields
the contradiction F(Q(t, + s)) < F(Qo). Therefore, G(Qo) = 0.

This proves that any limit set must be non-empty and consisting entirely of stationary point of
the dynamics.

By continuity of F', F(Qo) = limy,—« F(Q(ty)) for any limit point Qy. Now this must be equal
to inf;(F(Q(t))) and hence independent of Q.

The subset w(x) of limit points (g, being equal to NyClosure(F (s > t)), hence a decreasing
intersection of compact connected sets must be compact and connected.

]

Observing that all previous classes are Lyapunov games with respect to dynamics (3), this gives
the full interest of this corollary.

Corollary 1 In a Lyapunov game with respect to general dynamics (3), whatever the initial con-
dition is, the solutions of mean-field approzimation (2) will converge. The stable limit points are
Nash equilibria.

If mean-field approximation (2) has the (NC) property, then this guarantees that limit points are
Nash equilibria. Otherwise, unstable limit stationary may exist for the mean-field approximation.

6 Replicator-Like Dynamics for Multiaffine Lyapunov Games

Fortunately, this is possible to go further, observing that many of the previous classes (ordinal,
(exact) potential, continuous potential, load balancing games, congestion games, task allocation
games) turn out by previous discussion to have a multiaffine Lyapunov function.

When this holds, this is indeed possible to talk directly about the stochastic algorithms, avoiding
passage through ordinary differential equation (2), and the double limit b — 0, ¢ — oo. The key
observation is the following (the proof mainly relies on the fact that second order terms are null for
multiaffine functions).



Lemma 1 When F is a multiaffine Lyapunov function,

n m;

E[ AF(Q(t+1)) D) - aqﬂ E[ Agiy |Q(t) ], (8)

=1 4=1

where AF(t) = F(Q(t+1)) — F(Q(t)).

Proof:
Let us denote R(Q,A) = F(Q+A)—F(Q)—>"1, >0, a: [( )A; ¢, when A is a vector, so that

by definition taking A = AQ(t), we have AF(t) = F(Q(t+1))—F(Q(t)) = Y >0 am( )AGi o+

R(Q,AQ(1)).
We then have

oF

E[AF(@) [Q() ] = AE(Q)E[ Agie |Q() 1+ E[ R(Q, AQ(1)) |Q(?) ].

It only remains to prove that E[ R(Q, AQ(t)) |Q(t) ] = 0 when F is multiaffine.

A multiaffine function F' is particular polynomial function, of degree 1 in each variable. By
definition, R(Q,AQ) is hence also a polynomial function, of degree 1 in each variable AQ;,. By
construction, it has no-constant term, and no monomial of the form 3;,AQ;,. Hence, all its
monomials are of the form f; ¢ ; n AQ; o(t)AQ;j ¢ (t), with (i,£0) # (5, ¢).

By definition of multiaffine function used in this paper, there can not be terms AQ; (1) AQ; ¢ (t)
with ¢ = j among these monomials.

Observe that AQ; ,(t)AQ; () = 0 for i # j: indeed, at any time ¢, at most one player moves
in the considered class of algorithms: in other words, we use the fact that considered algorithms
are elementary stepwise.

0

When considering a Lyapunov game with respect to replicator-like dynamics, using Equation
(1) and the fact that G;(Q) = limy_.q F(Q) the right hand side of Equation (8) is

by fjpz (@QGi(Q) + O(1?), (9)

i=1 =1 it

and hence expected to be negative by Equation (4) when G(Q) # 0 and b is sufficiently small.

In other words, when b is small, (F(Q(t)); will be a super-martingale until reaching a point
where (9) is close to 0.

More precisely, for a replicator-like dynamics, Equation (9) rewrites to'?

—b% Zpi Z i oo (ui(ee, Qi) — ui(ep, Q—i))* + O(B?).

i LAl

As expected, on corners of K, this is expected to be close to 0, and hence not (neccesarily) a
super-martingale.

128ee Appendix 5.
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For the perturbed replicator-like dynamics, taking the perturbation O(b) in page 3 to be 0,
Equation (9) rewrites to

"L QF
_ba% Zpi Z Qi o (uiler, Qi) — ui(er, Q—i))* + b*(1 — ) Z Z Py (Q(t))(% — Gi).
N e i=1¢=1 " ¢

which can be written

_bai sz' Z Qi oo (uiler, Qi) — ui(er, Qi))* + O(b?).

Y

When talking about stochastic perturbed dynamics, using this super-martingale argument, one
gets the following stability result : we write L(u) for the subset of states @) on which F(Q) < p.

Proposition 5 Let A > 1. Let Q(ty) be some state. Consider b enough small so that (8) is non-
positive outside of L(F(Q(0))). Then Q(t) will be such that Q(t) € L(AF(Q(to))) forever after time
t > to with a probability greater than 1 — %

Proof: Consider sequence Z,, = max;<, F'(Q(t)) and F; the sigma-algebra generated by (Q(j));<i,
and apply Proposition 8 for \' = AE[ Z |:

P, F(Q(n)) < AF(Q(O)] = Plsup 2, > X] < =00 = -

0 If dynamic is perturbed, then the underlying Markov chain is

ergodic. It follows that any neighborhood is visited with a positive probability: a dynamic will be

said perturbed if for all Q € K, for any neighborhood V with @ in its closure, the probability that
Q(t+1) € V when Q(t) = @ is positive.

Then if in some neighborhood of such a point we can apply previous proposition, one would get
that almost surely, after some time, Q(t) will be close to some Nash equilibria forever with high
probability. The default of such an approach is clearly on the fact that it does not provide bounds
on the time required to reach such a neighborhood.

Notice that for Lyapunov game with a multiaffine Lyapunov function F', with respect to Dy-
namic (3) (this include ordinal, and hence potential games from above discussion), the points Q*
realizing the minimum value F* of I’ over compact K must correspond to Nash equilibria.

Fortunately, this is possible to get bounds on the expected time of convergence!3: we write L (1)
for the subset of states  on which F(Q) < p.

Definition 3 (e-Nash equilibrium) Let € > 0. A state Q is some e-Nash equilibrium iff for all
1 <i<n,1 <0< my, we have ui(eg, Q—;) > (1 — €)ui(qi, Qi)

If one prefers, in an e-Nash equilibrium, no player can improve its situation by more than e
times its current cost by changing unilaterally its strategy.

In a non e-Nash equilibrium, we have some i and ¢, with u;(eg, @—;) < (1 — €)u;(g;, @—;). This
means, u;(q; — e, Qi) > eui(qi, Q).

13Proof of Theorem 4 can be found in Appendix A.8.
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For the perturbed replicator-like dynamics, taking the perturbation O(b) to be 0 in the definition
of this dynamics, we have

B[ Agis 1Q(1) ] = —abpigis(ui(er, Q) — uilas Q1)) + (1~ 0) (-~ — ).

(2

Assume without loss of generality that all costs are greater than 1. Let ¢ = p;u;(q; — eg, Q—;)
and # = 1 — a. Previous equation is of the form b(ag; ¢ + bﬂ(m%_ — ¢iv)), hence some strictly
increasing function of ¢; ¢ as soon as b < %pieui(qi, Q-;) and ¢ > p;eu;(gi, @—;). In that case, its
minimal value, obtained for ¢;y = 0is 0 = i—@.

So, as soon as ¢ > pjeu;(g;, @—;), that is to say ui(q; — er, Q—i) > eui(qi, @—;), we will have
E[ Ag; ¢ |Q(t) | > 9, that implies E[ g; o(t + 1) |Q(t) ] > 0.

This implies that the opposite of E[ AF(Q(t + 1)) |Q(¢) ] will be greater than

1
V= ba4pi6€§;/ Gio (uiler, Q—;) — ui(er, Q—;))* + O(b?).

Taking b < (1 — ,u)%pieui(qi, Q—;) for any pu > 0 guarantees that the factor in ¢; ¢ in previous
discussed expression is greater than puCca, and hence that its iterations growth exponentially fast
near 0. Reasoning by sequences of k steps, i.e. about the opposite of E[ AF(Q(t + k)) |Q(t) ], will
greater than a term of order

V= baipi > i (uiler, Qi) — uiler, Qi)

O£l

in a non-e-Nash equilibrium.

Theorem 4 Consider a Lyapunov game with a multiaffine Lyapunov function F, with respect to
(3). This includes ordinal, and hence potential games from above discussion. Taking b = O(e),
whatever the initial state of the stochastic algorithm is, it will almost surely reach some e-Nash
equilibrium. Furthermore, it will do it in a random time whose expectation T (€) satisfies

FQO),

€

T(e) < O(

We believe these bounds are tight for generic ordinal games. The point is that in arbitrary
ordinal games, there is no necessarily relation between the gain in utility and the gain in potential:
only sign of variation must be preserved.

Of course better bounds can be hoped for particular games, and in particular for conges-
tion games. For generic congestion games, there is a strong relation between the potential and
utilities of players. In congestion games, using notations from page 2, the potential is given
by F(Q) = E[ >, ;\;(f) Cr(t) . One has in particular F(Q) < E[ > ui(c;, Q) ], since
¢i(Q) = Yreq, Cr(An(Q))-

In particular, following [?], a congestion game is said to satisfy the a-bounded jump condition
if its cost functions satisfy C,(t +1) < aC,.(t) for all t > 1. This ensures the following property for
0= ﬁ (see [?]): whenever @ is not an e-Nash equilibrium, then for at least a player 4, the relative
cost of adopting some pure strategy ¢ would induce a gain at least ¢ times the resulting gain in
potential.

We believe perturbed replicator-like dynamics to converge very fast (hence in polynomially
many steps) on such games.

12



A Proofs

A.1 Comments
A.1.1 Informal Analysis of the Dynamics of Stochastic Algorithms

Assume we replace E[ Agi(t) |Q(t) ] by Ag;(t) in E[ Agi(t) |Q(t) ] = bpi FP(Q(t)), in the discussion
that follows the description of the algorithm, where F(Q(t)) = E[ FP(r(t), si(t), qi(t)) |Q(2) ].

Through the change of variable ¢ « tb, this would become ¢;(t +b) — ¢;(t) = bp; F?(Q). Approx-
imating q;(t + b) — q;(t) by bcigj (t) for small b, we may expect the system to behave like ordinary
differential equation (ODE)

dgi A
E - szz(Q)a (10)

when b is close to 0.

A.1.2 Turning Replicator Dynamics Into a Non-Complacency Dynamics

Following the discussion after Proposition 6, to avoid non-Nash equilibrium, hence unstable sta-
tionary points, following the idea of penalty functions for interior point methods, one can use as
in Appendix A.3 of [?] some patches on the dynamics that would guarantee Non-complacency.
Non-Complacency (NC) is the following property: G(Q) = 0 (stationary) implies that @) is a Nash
equilibrium (3).

Indeed, one we may consider for example the following class of dynamics: Let d(.) : K — [0, 1]
be some continuous function. A patched replicator dynamics corresponds to a dynamics of form

M%"(t)(esi(t) —¢;(t)) with probability 1 — d§(g;)
EP(ri(t), si(t), qi(t)) = es; — qi(t) with probability §(g;),
where j € {1,...,m;} is chosen uniformly,
Dynamics (2) becomes
dgie 1—0(qi) 1
== =i Gielciler, Qi) — ui(gi, @i i0(qi)(— — @ 11
g = P ap Gelelen Q) —uilen Qi) +pidlai) (- = aie) (11)

whose stationary points are now exactly Nash equilibria, if §(.) is well-chosen. Indeed, follow the
idea of the construction in Appendix A.3 of [?]. Roughly, take § to be 0 everywhere except on
neighborhood of non-Nash stationary points of dynamic (3). On such a neighborhood, define it as
positive so that to guarantee that right-hand side of Equation (11) stay positive for the i and ¢ for
which u;(es, @—;) — u;i(gi, @—;) is not 0, that must exist in a non-Nash equilibrium.

When dealing with stochastic dynamics, all this can be avoided, by exploiting unstability of
non-Nash stationary equilibrium points.

A.1.3 On Weak Convergence in Theorems 1 and 2

Using techniques from [?], this is possible to reinforce weak convergence in Theorems 1 and 2 into
stronger notions of convergence, over a finite horizon, as in [?] where mean square (and thus in
probability) convergence results are obtained, under wide hypotheses. Several results relating the
stochastic dynamics and its ODE approximation, including results about their asymptotic behavior
can also be established following constructions from [?].

13



Notice, that this would not help to get convergence of the underlying mean-field limit, nor help
with the double limit b — 0, ¢ — oc.

A.2 A General Theorem about Approximation of Diffusions

We will use the following theorem from [?, theorem 11.2.3]. The following presentation is inspired
by the presentation of it in [?, Theorem 5.8, page 96].
Suppose that for all integers b > 0, we have an homogeneous Markov chain (Yk(b)) in R¢ with

transition kernel 7(®) (z,dy), meaning that the law of Yk(fr)l, conditioned on Yo(b), - ,Yk(b), depends

only on Yk(b) and is given, for all Borelian B, by P(Yk(?1 € B|Yk(b)) =7 (Yk(b), B), almost surely.
Define for x € R?,

O101=1 fl- a0,

@) = 3 [w=0)— 07 (e,
K®(z) = % / (y — )’ n ) (, dy),
AD() = 370z, Bz, o)),

where B(x, €)¢ denotes the complement of the ball with radius €, centered at x.
The coefficients d® and a(®) can be interpreted as the instantaneous drift and the variance (or

matrix of covariance) of X (),
Define

om (b) (b)
XO () = Yy + @/0 = [t/0]) (Y, jp1) = Yiijn))-

Theorem 5 ([?, theorem 11.2.3], [?, Theorem 5.8, page 96]) Suppose that there exist some
continuous functions d,b, such that for all R < 400,

lim supjpj<pla® (z) — a(z)| = 0
lim supjpi<pld® (z) — d(z)| = 0
lim supj,|< rA®) = 0,Ve >0

sup KO (z) < oo,
lz|<R
With o a matriz such that o(x)o*(x) = a(x), x € RY, we suppose that the stochastic differential
equation
dX(t) =d(X(t))dt + o(X(t))dB(t), X(0)=uz, (12)
has a unique weak solution for all x. This is in particular the case, if it admits a unique strong
solution.
Then for all sequences of initial conditions Yo(b) — 1z, the sequence of random processes X (
weakly converges to the diffusion given by Equation (12). In other words, for all functions F :
C(RT,R) — R bounded and continuous, one has

lim B[F(X®)] = B[F(X))

b)

14



A.3 Proof of Theorem 1

Theorem 1 follows from previous theorem. Consider (Yk(b)) to be

Y = (Q(k))

with the corresponding b, which is indeed an homogeneous Markov chain. Let 7(*)(Q, dy) be its
transition kernel.

‘We have
d"(Q) = ?fw—%ﬂ)x@)
= 3E[Aq Q]
_ EDEP(Q)
— piGi(Q) when b — 0
and ,
a)(Q) = 5 (i = @)y — 4;)" " (w,dy)
= YE[pipjAgAg Q]
= OW)

— Owhenb—0

In the same vein, clearly K()(Q) stay bounded, being in O(b?).

Now, from the fact that compact K must be kept invariant by the dynamics, Fib(.) must
have a compact support. This means that W(b)(Q,B (Q,€)¢) is 0 for b sufficiently small. Hence
limy_.g supmSRAEb) =0, Ve > 0.

Hence, we have all the hypotheses of previous theorem with a(Q) = 0 and

observing that the corresponding stochastic differential equation dQ(t) = d(Q(t))dt +o(Q(t))dB(t)
turns out to be an ordinary differential equation, whose solution is unique by (classical) Cauchy
Lipschtiz theorem.

A.4 Derivation of Dynamics (3) For Replicator-Like Dynamics

For replicator-like dynamics set a = 1 in what follows.
For replicator-like dynamics and perturbed replicator-like dynamics, the one-step dynamics of
the stochastic algorithm can be rewritten componentwise:

0 +0(b) if i #i(t)
Agio(t) = qie(t+1)=qie(t) = aq —by(ri(t))gie(t) +Ob) if i=i(t) and si(t) #1
=by(ri(t))qie(t) + 0(v(ri(t)))  +O(b) if i=i(t) and s;(t) =1,

and we have

Gi(Q) = hmbHO b E[ Ag; Z(t) Q1) ]
hHlb—>0 b Z Qz,]( )E[ A%’,ﬁ(t) |Q(t)75i(t) = jai(t) = Z]

+a); qw( )25, (DE[ y(ri (1)) [Q(2), si(t) = £,i(t) =i ])
—aZ qw( Nai,e(E[ v (ri(2)) |Q(E), 5i(t) = j,i(t) =i ])
= %‘,E(E[ ri(t)) 1Q(t), si(t) = £,i(t) =i | = E[ y(ri(t)) [Q(#),i(t) = i ]).



that is to say, if we introduce u;(Q) = E[ — 14(r;j(Q)) |Q ] for all Q, then Equation (2) leads to
dynamics,

dgie

g = Pitie(uiler, @) — ui(a, Q-i)).

by Theorem 1. This is Equation exactly (3).

A.5 Formal Statement about Theorem 2:

Formally, we have:

Proposition 6 The following are true for the solutions of Equation (3): (i) All Nash equilibria
are stationary points. (ii) All stable stationary points are Nash equilibria. (iii) However, (unstable)
stationary points can include some Non-Nash equilibria.

The following are well-known (and obtained by just playing with definitions).

Lemma 2 A strategy profile Q is a Nash Equilibrium iff u;(q;, Q—;) < ui(eg, Q—;) for all1 <i <mn,

Corollary 2 In a Nash Equilibrium, we have u;(q;, Q—;) = ui(eg, Q—;) foralll <i<mn,1 </l <m;
with q; ¢ > 0.

Proposition 6 is then an instance of the so-called folk-theorems of Evolutionary Game Theory
[?]. For completeness, the proof goes as follows: From Corollary 2, clearly any Nash equilibria must
also vanish the right-hand side of Equation (3).

A non-Nash equilibrium @ is not stable: Indeed, if @) is not a Nash equilibrium, this means
that for some i, and some ¢ we have u;(g;, Q—;) > wu;(es, Q—;). By bilinearity and continuity of u;,
function w;(g; — eg, @—;) must be strictly positive (say greater than €) on some neighborhood of Q.

On this neighborhood, dz;e is greater than p;q; ¢€, and hence the point is left exponentially faster
(faster than exponential g; ¢(0) exp(p;et)).

In a corner of K, we have for all 4, ¢; = e, for some ¢. Then clearly ¢; » = 0 for index ¢ # ¢,
and w;(eg, Q—;) — ui(qi, @—;) = 0 for index ¢ = ¢'. Hence, the right-hand side of Equation (3) is
always null, and hence any corner is a stationary point.

More generally any state (Q in which all strategies in its support perform equally well, is clearly

a stationary point from the definition of the dynamic.

A.6 Proof of Theorem 2

Theorem 2 follows immediately. Observe that a limit point must necessarily be a stationary point
[?], and hence a Nash equilibrium if it is stable.

A.7 Results About Semi-Martingales

Let {Z;,i > 0} be a sequence of real non-negative random variables, such that Z; is measurable in
the increasing family of sigma-algebra F;.
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Proposition 7 (proof similar to [?, Theorem 2.1.1, page 17]) Assume that Zy is constant.
Denote by T the F,-stopping time representing the epoch of the first entry into [0,C] or in some
measurable subset K, for C > 0, i.e. 7(w) = inf{n > 1|Z,(w) < CV Z,(w) € K}. Introduce the
stopped sequence

Zn = LnAT)

n, fn<rT
nAT= ;
T, ifn>T

where

We use the classical notation for the indicator function 14 :

{ 1, if Ais true
14=

0, otherwise
Assume Zg > C, and for some € > 0 and all n > 0,
E[ Zn_H |Fn | < Zn — €lrsn, almost surely.

Then T is almost surely finite and

Proposition 8 ( [?, Theorem 3.2, Chapter 7]) Assume that for alln, E| Z,,11—Z, |F, ] <0.

Then for all N > 0,

E[ Z |
A/

Plsup Z, > N'] <
n

A.8 Proof of Theorem 4

Consider V* = min; g, >y gier (wi(er, @—i) — ui(er, Q_;))?. Let I(¢) denote the states where the
righthand side of Equation (8) is greater than —bai min; p;V™e.

If the initial state is already e-stable then there is nothing to prove.

Otherwise, this follows from the analysis before Theorem 4, and from proposition 7, with Z; =
F(Q(i)), F; the sigma-algebra generated by (Q(j));j<i, C = p, K = I(€): indeed, whenever Q(t) ¢
I(e) U L(p), this implies 7 > ¢, and we have E[ AF(t) |Q(t) | = B[ Zig1 — Z¢ |Fr ] < —€O(b). In all
other cases, E| Zn+1 |Fn | = Z,, and hence all the hypotheses of Proposition 7 are satisfied.
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