Algorithmes d'approximation

Question 1. Cet exercice se focalise sur les graphes orientés acycliques. Le graphe *orienté* acyclique est un graphe ne possédant pas de circuit. Le graphe à gauche de la figure 1 donne un exemple. Nous notons $u \to v$ un arc allant de u vers v.

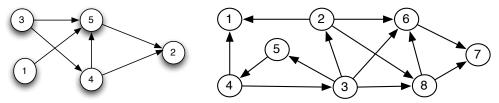


FIGURE 1 – Graphes orientés : il y a un arc de 4 vers 2 noté $(4 \rightarrow 2)$.

Nous allons considérer le problème de maximisation : trouver le sous-graphe acyclique le plus grand. Plus formellement,

Données : Un graphe orienté G = (V, E).

Objectif: Trouver un sous-ensemble d'arcs $E' \subseteq E$ tel que le graphe G' = (V, E') soit acyclique, tels que |E'| soit le plus grand possible.

Considérons l'algorithme suivant :

- 1. Numéroter les sommets de manière arbitraire;
- 2. $E_{\rightarrow} := \emptyset \text{ et } E_{\leftarrow} := \emptyset;$
- 3. Pour chaque arc $a = (u \to v)$ alors
 - (a) Si le numéro du sommet u est plus petit que celui de v,

alors
$$E_{\rightarrow} := E_{\rightarrow} \cup \{a\}$$
;
sinon $E_{\leftarrow} := E_{\leftarrow} \cup \{a\}$;

4. si $|E_{\rightarrow}| \leq |E_{\leftarrow}|$, alors retourner E_{\leftarrow} sinon retourner $|E_{\rightarrow}|$;

Question 1.1 Donner la complexité de cet algorithme.

Question 1.2 Appliquer cet algorithme sur les deux graphes de la figure 1 en utilisant la numérotation des sommets de cette figure.

 ${\bf Question~1.3~Donner~la~complexit\'e~de~cet~algorithme~en~nombre~d'op\'erations.}$

Notons E^* la solution optimale (i.e. $G^* = (V, E^*)$ est le sous graphe acyclique de G contenant le plus d'arcs possibles) et $OPT = |E^*|$.

Question 1.4 Prouver que $max(|E_{\rightarrow}|, |E_{\leftarrow}|) \ge OPT/2$

Question 1.5 Qu'en déduisez vous?

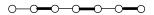
 ${\bf Question}~{\bf 2}.$ Couplage dans un graphe

Soit un graphe G = (V, E). Un **couplage** M est un ensemble d'arêtes deux à deux non adjacentes : $\forall \{u_1, u_2\}, \{v_1, v_2\} \in M$, $\{u_1, u_2\} \neq \{v_1, v_2\} \Rightarrow \{u_1, u_2\} \cap \{v_1, v_2\} = \emptyset$.

Un couplage maximal est un couplage M ayant la propriété que si une arête e est ajoutée, alors $M \cup \{e\}$ n'est pas un couplage. Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.

Notation : Soit M un couplage.

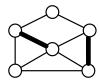
- Un chemin dans le graphe est dit M-alternant si ses arêtes sont alternativement dans M et hors de M (donc une arête sur deux est dans M).
- Un chemin M-augmentant est un chemin alternant dont les points de départ et d'arrivée sont deux sommets non couverts par M.

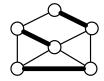


Ce chemin est M-alternant.

Ce chemin est M-augmentant de 5 arêtes.

FIGURE 2 – l'ensemble des arêtes épaisses forment le couplage M.





Couplage maximal

Couplage maximum

FIGURE 3 – Exemple de couplages : l'ensemble des arêtes épaisses forment le couplage.

Considérons l'algorithme glouton vu en cours :

Entrée : un graphe G = (V, E)

Sortie: un couplage M

- 1. $M \leftarrow \emptyset$;
- 2. Pour chaque arête e du graphe G

Si $M \cup \{e\}$ est un couplage alors $M \leftarrow M \cup \{e\}$;

3. Retourner M;

Question 2.1 Montrer que si le graphe possède un chemin M-augmentant, alors M n'est pas maximum.

Soit M un couplage. Soit M^* correspondant à un couplage maximum.

Question 2.2 Montrer que toutes composantes connexes de $G' = (V, M \cup M^*)$ sont soit des chemins soit des cycles. Comparer le nombre d'arêtes de M et de M^* dans chaque composante connexe.

Question 2.3 Soit M un couplage tel qu'il n'existe aucun chemin M-augmentant de longueur 3. Montrer que $3|M| \ge 2|M^*|$. Indication : raisonner sur $G' = (V, M \cup M^*)$.

Question 2.4 Décrire un algorithme qui étant donné en entrée un graphe G, retourne un couplage M tel que $|M| \ge \frac{2}{3}|M^*|$. Donner la complexité de cet algorithme.

Question 2.5 Soit M un couplage tel que chaque chemin M-augmentant possède au moins 2k-1>1 arêtes. Montrer que $k|M| \geq (k-1)|M^*|$. Indication: raisonner sur G'.

Question 2.6 Maintenant, nous considérons un graphe G = (V, E) avec la fonction poids sur les arêtes $w : E \to \mathbb{N}$. Le **poids** d'un couplage M noté par w(M) est la somme des poids de toutes les arêtes : $w(M) = \sum_{e \in M} w(e)$. Nous notons le couplage M^* tel que $w(M^*) = max\{w(M) : M \text{ est un couplage}\}$.

Transformer l'algorithme glouton qui retourne un couplage M tel que $2w(M) \ge w(M^*)$.