Exercice 1

Une grenouille peut monter le long d'un escalier en faisant des bonds d'une ou de deux marches à la fois.

- 1. Quel est le nombre minimun de bonds pour monter un escalier de 9 marches? De n marches?
- 2. Combien y a-t-il de manières pour cette grenouille de monter un escalier de 9 marches? De n marches?

Exercice 2

Soient les deux fonctions suivantes :

- 1. f et g sont-elles surjectives, injectives, bijectives?
- 2. Que peut-on dire de $(f \circ g)$ et $(g \circ f)$?

Exercice 3

Soit E un ensemble fini.

- 1. Soit \mathcal{P} une partition de E. Posons que \mathcal{F} est relation de $E \times E$ telle que pour tout $(x,y) \in E^2$, on a $x\mathcal{F}y$ si et seulement si x et y sont dans la même partie de \mathcal{P} . Quelles sont les propriétés de \mathcal{F} ?
- 2. Soit \mathcal{R} une relation d'équivalence de $E \times E$. Peut-on définir une partition de E grâce à cette relation?

Exercice 4

Soit \mathcal{R} la relation suivante : soit x et y deux points du globe, on a $x\mathcal{R}y$ si et seulement x est a 1 kilomètre a vol d'oiseau. Quelles sont les propriétés de \mathcal{R} ?

Exercice 5

Soit G un groupe tel que l'application $x\mapsto x^{-1}$ soit un morphisme. Montrer que G est commutatif.

Exercice 6

Soit E un ensemble, et A, B deux sous-ensembles de E

- 1. Rappeller la définition de la différence symétrique.
- 2. Calculer $A\Delta A$, $A\Delta \emptyset$, $A\Delta E$, et $A\Delta \bar{A}$
- 3. Montrer que Pour tous A, B, C sous-ensembles de E, on a

$$(A\Delta B) \cup C = (A \cup C)\Delta(B \cup C)$$

Exercice 7

On souhaite démontrer par récurrence que pour tout entier n et pour tout réel x > 0, on a $(1+x)^n \le 1 + nx$.

- 1. La récurrence porte-t-elle sur n? Sur x? Sur les deux?
- 2. Montrer que $(1 + nx)(1 + x) = 1 + (n + 1)x + nx^2$.
- 3. Rédiger la démonstration.

Exercice 8

Exprimer la signification de

1.
$$\exists x \in Z, P$$
, $\forall x \in Z, P$

2.
$$\exists x \in Z, \neg P$$
, $\forall x \in Z, \neg P$

3.
$$\neg(\exists x \in Z, \neg P)$$
, $\neg(\forall x \in Z, \neg P)$

Quelle est la négation de

- Tout habitant de la terre respire de l'oxygène.
- tout habitant de la terre parle le français.
- Tous les menteurs sont des idiots ou des crapules

Exercice 9

Evaluer les prédicats suivants :

1.
$$f \rightarrow (g \rightarrow f)$$

2.
$$f \to (g \to h) \to ((f \to g) \to (f \to h))$$

3.
$$\neg f \rightarrow (g \rightarrow h) \rightarrow ((\neq f \rightarrow \neg g) \rightarrow f)$$