graphe planaire

https://www.lri.fr/~jcohen/documents/enseignement/td-planaire.pdf

Exercice 1 Le problème du coloriage de graphe planaires

Un graphe est *planaire* si on peut le dessiner dans le plan sans que les arêtes ne se croisent. Soit G = (V, E) un graphe planaire non vide *connexe*. Notons n = |V|, a = |E|.

Considérons un dessin de G dans le plan (sans que les arêtes ne se croisent). Soit f le nombre de régions du plan délimitées par les arêtes de G.

Question 1.1 Montrer que les graphes planaires respectent la relation d'Euler n-a+f=2. (Indication : raisonner par récurrence sur le nombre de faces)

Correction

On procède par récurrence sur le nombre f de faces. Si f=1, le graphe possède uniquement une unique face. Par conséquent, le graphe connexe ne possède aucun cycle et est un arbre. Ainsi, n-a+f=n-(n-1)+1=2 et la formule est vérifiée.

Supposons que la formule d'Euler satisfaite pour les valeurs inférieur à f.

Soit e une arête d'un cycle du graphe. Par définition, l'arête appartient sépare deux faces A et B. En supprimant cette arête, le nouveau graphe obtenu possède le même nombre de sommets (n), a-1 arêtes. De plus ce graphe a f-1 faces puisque A et B forment une seule face de ce nouveau graphe. En appliquant l' hypothèse de récurrence, on a

$$n - (a - 1) + f - 1 = 2$$

En simplifiant on obtient n-a+f=2 et le graphe respecte bien la formule d'Euler. Donc tout graphe planaire satisfait la formule d'Euler.

Question 1.2 On suppose $n \ge 3$. Montrer que $3f \le 2a$.

-Correction

Soit \mathcal{F} l'ensemble de faces. Notons nb(F) le nombre d'arêtes qui délimitent la face F Chaque face F est délimitée par au moins 3 arêtes.

$$nb(F) \geq 3$$

Donc
$$\sum_{i \in \mathcal{F}} nb(F) \ge 3 \cdot f$$

Chaque arête est une frontière de deux faces et donc on peut en déduire que

$$\sum_{i \in \mathcal{F}} nb(F) = 2a$$

Donc en combinant les deux équations, on obtient $3f \leq 2a$.

Question 1.3 Montrer qu'il existe un sommet de degré au plus 5 dans le graphe planaire G.

-Correction-

Si G possède des sommets de degré 1, alors il existe bien un sommet de degré au plus 5 dans G.

Supposons que G ne possède pas des sommets de degré 1. Raisonnons par l'absurde et supposons que pour tout sommet v de G, $d(v) \ge 6$. On a $6n \le 2a$ car la somme de tous les

sommets est égale à 2 fois le nombre de arêtes.

En appliquant la formule d'Euler (n-a+f=2), on a f=2+a-n.

$$3f \leq 2a$$

$$3(2+a-n) \leq 2a$$

$$a \leq 3n-6$$

$$2a < 6n-12$$

Ce qui est en contradiction avec $6n \le 2a$. Donc il existe un sommet de degré au plus 5 dans G.

Question 1.4 Concevoir un algorithme de 6-coloration en temps polynomial.

-Correction

Notons $\mathcal{D}(G)$ l'ensemble des sommets de G tel que leur degrés sont inférieurs ou égale à 5. Nous allons contruire une suite de graphes G_1, \ldots, G_n de la façon suivante

- 1. $G_1 \leftarrow G$
- 2. pour i allant de 2 à n faire
 - (a) calculer $\mathcal{D}(G_i)$;
 - (b) extraire un sommet v_i tel que $v_i \in \mathcal{D}(G_i)$;
 - (c) construire $G_{i+1} = (V_{i+1}, E_{i+1})$ tel que $V_{i+1} = V_i \setminus \{v_i\}$, et $E_{i+1} = E_i \setminus \{e : e \text{ est adjacent à } v_i \text{ dans } G_i\}$.

Tout d'abord remarquons que ces graphes sont des graphes planaires (puisqu'on enlève simplement un sommet entre deux graphes G_i et G_{i-1} .)

A partir de cette suite, nous pouvons construire une coloration $c: V \to \{1, \dots, 6\}$ de la façon suivante :

- 1. pour i allant de n à 1 faire
 - (a) colorier v_i avec la plus petite couleur qui n'appartient aux couleurs de son voisinage dans G_i ;

Nous construisons une coloration utilisant 6 couleurs : à chaque itération i, le sommet a au plus 5 voisins et donc il peut être voisin de sommets ayant au plus 5 couleurs différentes. \Box

Remarque : tout graphe planaire peut être colorer avec 4 couleurs. Ce résultat est connu sous le nom de théorème des quatre couleurs. Il a été démontré en 1976 par Appel et Haken.

Exercice 2 Le problème de l'ensemble indépendant dans les graphes planaires

Le problème (de décision) de l'ensemble indépendant reste NP-complet même si les graphes sont planaires. Nous allons concevoir un algorithme calculant un ensemble indépendant de taille k pour les graphes planaires de n sommets en temps $O(6^k n)$.

Soit G un graphe planaire et k un entier. Par la question 3.3, il existe un sommet u_0 un sommet de degré au plus 5: on notera ces voisins u_1, \ldots, u_d avec $d \leq 5$.

Question 2.1 Supposons que G possède un ensemble indépendant J de taille k > 0. Prouver que

1. Si J contient aucun sommet u_i avec $0 \le i \le d$, alors, il existe un ensemble indépendant

de taille k contentant u_0 .

Correction

Soit v un sommet de J, $J\setminus\{v\}\cup\{u_0\}$ est un ensemble indépendant de taille k puisque J et $J\setminus\{v\}\cup\{u_0\}$ ne contient aucun voisin de u_0 .

2. Si J contient un sommet u_i avec $0 \le i \le d$, alors $J \setminus \{u_i\}$ est un ensemble indépendant de taille k-1 dans le graphe G_i , correspondant à G privé de tous les sommets v voisins de u_i et de leurs ses arêtes incidentes.

Correction-

Il suffit de constater que

- 1. les sommets $J\setminus\{u_i\}$ sont uniquement des sommets qui ne sont pas voisins de u_i : ils sont des sommets de G_i
- 2. les sommets $J\setminus\{u_i\}$ forment un ensemble indépendant dans G_i puisque ils forment un ensemble indépendant dans G

Question 2.2 Supposons que G ne possède pas un ensemble indépendant J de taille k > 1. Soit i entier entre 0 et d, Prouver que pour le graphe G_i correspondant à G privé de tous les sommets v voisins de u_i , ne possède pas un ensemble indépendant J de taille k - 1.

Considérons l'algorithme $\mathcal{A}(G,k)$ suivant

Entrée: un graphe planaire G et un entier k

Sortie: Vrai si et seulement si G possède un ensemble indépendant de taille k.

- 1. Si k > |V(G)|, alors renvoyer Faux.
- 2. Si $E(G) = \emptyset$ ou si k = 0, alors renvoyer Vrai.
- 3. Choisir un sommet u_0 de degré $d \leq 5$ avec pour voisins u_1, \ldots, u_d
- 4. Pour tout i allant de 0 à d, construire le graphe G_i tel que $V(G_i) = V(G) \setminus \Gamma_G(u_i)$ et $E(G_i) = E(G) \setminus \{e \in E : e \text{ a une extrémité dans } \Gamma_G(u_i)\}$
- 5. Renvoyer $\bigvee_{i=0}^d \mathcal{A}(G_i, k-1)$

Question 2.3 Exécuter cet algorithme sur une étoile à n+1 sommets avec k=7.

-Correction

Les tests des lignes 1 et 2 ne s'appliquent pas. Puis la ligne 3 sélectionne une feuille u_0 qui est une feuille. On construit deux graphes : G_0 composé de 5 sommets isolés, et G_1 vide. Ensuite, $\mathcal{A}(G_0, 6)$ $\mathcal{A}(G_1, 6)$ sont évalués à Faux tous les deux (instruction 1). Et donc $\mathcal{A}(G_0, 7) = Faux$, ce qui est correct.

Question 2.4 Montrer que cet algorithme est correct.

Question 2.5 Donner la complexité de l'algorithme.

-Correction

La construction de chaque graphe G_i nécessite O(n+m) opérations. Au total, la construction de tous les graphes nécessite $O(5n+5m)=O(5^2n)$ opérations. Soit a_k le nombre maximum de fois que l'on exécute l'instruction "construction des graphes G_i ". On

$$a_1 = 1 = (6^0)$$

$$a_k \le 1 + (6)a_{k-1}$$

$$a_2 \le 1 + (6)a_1$$

$$a_3 \le 1 + (6)a_2 \le 1 + (6)^1 + (6)^2$$

$$a_k \le (6^0) + 6^1 + 6^2 + 6^{k-1} < \frac{6^k - 1}{5} < \frac{6^k}{5}$$

$$a_k < \frac{6^k}{5}$$

Donc la complexité totale est $O(a_k 5^2 n)$ soit $O(6^k 5n) = O(6^k n)$.