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@ Optimisation on capacited networks

@ where capacity (lengths, costs, weights) are random variables

@ For instance Max-Flow when the capacity of the arcs are
random integers.

@ We only consider problems which are polynomial where the
capacities are deterministic (a large class of problems with
many applications: Max Flow, Shortest Path, "s-t" reliability,
Completion Time of a Task graph).

@ Most of these problems are NP hard when the capacities are
random.

@ We propose a new approach based on stochastic comparison
and monotonicity to provide stochastic bounds on the
distribution of the result.

@ Most of the classical approches in the littrature are based on
the structure of the graph (for instance Serie-Parallel
subgraph)
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Key Ideas

@ We consider discrete distributions on a totally ordered space,
for instance {1,2,...,n} and <.
e Conditioning on each random variable

Pr(Rand — Res(D1, ..., Dy,) = T) = S Pr(dl, .., dNV)lper Res(ai,...,dNv)=T
(d1...dNv)eQ

@ The complexity of the distribution which appears in the
computation is the number of atoms in the distribution

@ A deterministic R.V. is a distribution with a single atom.

@ Question: Find a new distribution with less atoms which will
be a bound according to a stochastic order.

@ Here we consider convex and increasing convex ordering and
we prove an algorithm to find optimal upper bounds according
to the convex order.
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The convex order: Why 7

@ because it is supposed to be more precise than the strong
stochastic order

@ because "Max" is a convex operator and "Min" is a concave
operator

@ and operators "Min" and "Max" are the key operators in all
the problems we consider

MAX-Flow: Min et 4+ (because Max-Flow = Min Cut).

Shortest Path: Min et +
e "s-t" Reliability: existence of a path from s to t: a variant of

Max-Flow
e Completion Time: Max and +
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The convex order: Definition?

Definition (increasing convex ordering)

Let X and Y be two random variables, X <. Y if for all
increasing convex function ®, E[¢(X)] < E[¢(Y)] if the
expectations exist.

| A\

Definition (stochastic convex ordering)

Let X and Y be two random variables, X <. Y if E[X] = E[Y]
and X <X Y.

A

Property (Stop Loss)

Let X and Y be two random variables, X <. Y if and only if
E[X] = E[Y] and, for all d we have, E[(X — d)"] < E[(Y — d)"].
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Stochastic Monotony

Definition (W —Monotony)

A function f is W—monotone if for all X and Y random variables
such that X <, Y, then f(X) =< f(Y).

@ +, "max" are monotone for the increasing convex ordering.

Property

The CompletionTime of a task graph is monotone for the
increasing convex stochastic ordering.

Proof: because it is defined with the "max” and " +"
operators (see at the end of this talk) .
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Measurements: typical approach

e Transform measurements into an average (the expectation)
@ Solve the deterministic problem: ADD a systematic BIAIS.

Property

Consider the Completion Time problem. Assuming that the
durations of the task D; are random. Replace the random
durations by their expectations. The deterministic result is a lower
bound for the increasing convex ordering for the distribution and a
lower bound for the expectation.

E[D/] 2ex D; Vi
CompletionTime is monotone for the increasing convex ordering:
CT(E[D4],E[D3],..,E[Dny]) <icx CompletionTime(D1, D>, .., Dpy ).

Taking the Expectation, and noting that as CT(.) is deterministic,
it is equal to its expectation:

CT(E[D4], E[D3], .., E[Dny]) < E[CompletionTime(D1, D, .., Dpy )]



Methodology:

@ Balance between the complexity (i.e. the number of atoms)
and the accuracy of the bound.

Expectation: lower bound with 1 atom. Worst bound....

Step 1: Bound the input distributions to obtain upper and
lower bound with a small number of atoms

Step 2: Condition on the new random variables
o Step 2.1: Solve the deterministic cases with a polynomial
algorithm (they are well-known)
o Step 2.2: Use the law of total probability to obtain the
distribution of the bounds

How to find convex bounds for a discrete distribution ?

Convex rather than increasing convex: see the conclusion
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Here

@ For an arbitrary distribution D with N positive atoms and a
convex function r, we prove an algorithm to find D2 such that

o D <, D2

o D2 has size K < N.

e D2 is an optimal bound according to the expectation of
function r(x) = x2 (i.e. the second moment).

@ Find some basic actions to remove atoms

@ Prove the structure of the optimal solution
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Basic Actions for an upper bound with less atoms

Lemma

We consider an arbitrary discrete distribution (say D3) on three
atoms a, b, ¢ (a < b < c) defined by the positive probabilities p,,
pp and pc. Let us define by D4 the distribution of atoms a and ¢
the probabilities of witch (denoted as q, and q.) are defined by

ga+qc=1 and, aq,+ cqc = ap, + bpp + cpc.

Then, D3 < DA4.
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Basic Actions for a lower bound with less atoms

Lemma

We consider an arbitrary discrete distribution (say D1) on two
atoms a and b (without loss of generality we assume that a < b)
defined by the following positive probabilities p, and pp. Let us
define by D2 the distribution with a single atom M equal to

(2 Patb pp) Then, D2 is a lower bound for the convex stochastic

order/ﬁg of D1: D2 < D1.

Figure: Fusion of two atoms for a lower bound

Proof: it is a simple application of E[X] <c X.
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Structure of the solution for the optimal upper bound

Lemma

Let D1 a distribution on N atoms and D2 a distribution on K < N

atoms, such that D1 < D2. Let x1,x2,--- , Xy be the atoms of
D1 sorted in increasing order, each value x; is associated a
probability p;. Similarly, let u, us,--- , uk be the atoms of D2

sorted in increasing order, associated to probabilities q;. Then
y1 =x1 and yx = xp.

Thus, we know that we must keep x; and xy.
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Lemma

We consider distribution D1 with 4 atoms a, b, c, f such that

(a < b< c<f). Assume that p,, pp, pc, pr are positive. We apply
Lemma 1 to atoms a, b et ¢ to obtain an upper bound (i.e. say
D2) on the support {a,c,f}. We also apply Lemma 1 to atoms
a,b et f to obtain D3. This last distribution has also {a,c,f} as a
support and D1 <, D2 < D3.

v

Figure: Comparing upper bounds.

Thus, we expect that it is better to operated on closest atoms. It
is formally proved in the paper.
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Algorithm for the optimal upper bound

@ We represent a distribution as a path in a graph from x; to xy
(we know that they are in the optimal solution).

@ The path has length K — 1 (i.e. it has K nodes including x;
and xy).

@ The cost of an arc from y; to y; in the solution is related to
the atoms between y; and y; in the input distribution (easily
computed because of the structural properties when we try to
optimize the variance)

e Find a path of length K — 1 with minimal cost (Bellman-Ford
algorithm).
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Algorithm for a lower bound

Compute A(a, b) the variation of r when we merge atoms a and b.
At each step find the couple of atoms which minimizes A

A(a, b) = par(a) + por(b) — (ps + po)r( P22 PEDY
Pa+ Pb
Require: input distribution D1, input size N, output size K

Ensure: Output distribution D2
1: D2 = D1.
2: for all atoms a and all atoms b do
3:  Compute A(a, b) and store it in a data structure.
4: end for
: for i = N down to K + 1 do
Search for the couple (a, b) which minimizes A(a, b).
Fuse a and b into c in D2.
Update the matrix A(x,y) (remove a and b, add ¢).
end for
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Example: A task graph

o Let b; (resp. €;) be the time when node i begins (resp.
completes) its work.

@ ¢ — b; = w; where w; is the execution time of task /.

o Classical induction: the time to complete the last node of the
graph ey, can be recursively computed by the following
sequence:

e = wi + maxjer-(;)(¢))
where [~ (/) is the set of predecessors of i and the sequence is
initialized with
et =bi+wy; and by =0.

@ A "Max" and "+4" recurence formulation. Thus,
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The exemple

Figure: Example of a task graph with a small size such that we can also
compute the exact solution.
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Some numerical results for the output
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Figure: Distribution of the total delay for the execution of the task graph
(left: exact result 10 atoms, right: upper bound with 5 atoms)

Reducing the complexity from 108 to 52.
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Some numerical results 2

Kullback-Leibler divergence evolution Kullback-Leibler divergence evolution

18 for a single task 25 for the complete task
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Figure: Kullback-Leibler divergence between the exact and optimal upper
bound distributions. For input distributions (left), for the whole task
graph distribution of time (right).
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MIN based problems

@ "Min" is not convex: it is concave.

@ The concave ordering also exists.

Definition (stochastic concave ordering)

Let X and Y be two random variables, X <., Y if E[X] = E[Y],
and for all concave function ®, E[¢(X)] < E[¢(Y)] if the
expectations exist.

@ And convex ordering and concave ordering (=,) are closely
related:

Property
If X 2ex Y then Y <o X

@ Because the expectations are equal (thus it is not true
anymore for <. and =, ordering).
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Concave ordering and =;.,- Monotonicity

Definition (increasing concave ordering)

Let X and Y be two random variables, X <., Y if for all
increasing concave function ®, E[¢(X)] < E[¢(Y)] if the
expectations exist.

Let X and Y be two random variables, X <., Y impies that
X jicv Y.

Definition (=<;., —Monotony)

A function f is <;o, —monotone if for all X and Y random
variables such that X <., Y, then f(X) <o, F(Y).

@ +, "min" are monotone for the increasing concave ordering.
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Checking concave ordering

Property

Let X and Y be two random variables, X <., Y if and only if for
all d,
E[min(d, X)] < E[min(d, Y)]

@ Compare to

Property

Let X and Y be two random variables, X <. Y if and only if for
all d,
E[max(d, X)] < E[max(d, Y)]

JM Fourneau for J. Cohen Convex Stochastic Bounds and Stochastic Optimisation on Grap



Max-Flow and Shortest Path problems

Property

The MAX-Flow and Shortest Path problems are monotone for the
increasing concave ordering.

@ Proof: because it is defined with the "MIN" and "+"
operators. Remember that MAX-Flow = MIN-Cut.

@ Thus the algorithm we provided can also be used to obtain
lower bound for the concave ordering and lower bound for the
MAX-FLOW and Shortest-Path problems as well, using the
concavity of MIN operator.

@ Next step: Combine structural approches (based on the
graph) and stochastic ordering.
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Typical Bias

e For input distributions, X <., E[X]

@ Thus replacing input distributions by their expectations, we
get

MaxFlow(RandomCapacity) <., MaxFlow(DeterministicCapacity)

where DeterministicCapacity = E[RandomCapacity|

e Taking the expectation: (a Jensen-like inequality)

E[MaxFlow(RandomCapacity)] < MaxFlow(E[RandomCapacity])
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Small Exemple (Thanks to Yann Strozecki)

o Consider a path of length N > 2

@ Each arc has a random capacity equal to 0 with probability
1/2 and 2 with probability 1/2.

@ thus the expectation of the capacity is equal to 1.

@ And the Max-Flow for the deterministic network (with
capacity equal to the expectation of the capacity) is also 1.

@ If we consider the stochastic network, the arcs are
independent. Thus the flow is equal to 2 with probability
N—1
(3)

@ And the expectation is (%)I\F2

o Clearly (%)I\F2 <1
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@ But it also work when we bound a limited (i.e. not all) input
distributions

@ Algorithm (not completely original)

Replace all the distributions by their expectation

Find a minimal cut-set

Consider the initial problem and replace all the distributions

except the arcs in the cut-set by their expectations

Compute the <., bound

Iterate at step 2 with another cut-set to obtain several =<,

bounds (at least to improve the first and second moments).

©0 000

e Can we combine (i.e. improve) <., bounds like we did for
strong stochastic bounds 777
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Conclusion

We have optimal upper bounds for <., ordering and optimal

lower bounds for <., ordering (same algorithms because

X =¢v Y impies that X <., Y).

e We have <., ordering for MAX,+ based problems (Critical
Path, Pert)

e We have =, ordering for MIN,+ based problems (Shortest
Path, Max-Flow)

@ The methods also works when the random variables are not

independent (however we must know the conditional

distributions). Typically for transportation problems.

@ How to combine structural approaches and stochastic bounds
approach 7
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