Convex Stochastic Bounds and Stochastic Optimisation on Graphs

JM Fourneau for J. Cohen

LRI France

J. Cohen (LRI-CNRS, France), A. Fauquette (LRI-CentraleSupelec, France), J.M. Fourneau (DAVID, France), N. Pekergin (LACL, France)

Motivation

- Optimisation on capacited networks
- where capacity (lengths, costs, weights) are random variables
- For instance Max-Flow when the capacity of the arcs are random integers.
- We only consider problems which are polynomial where the capacities are deterministic (a large class of problems with many applications: Max Flow, Shortest Path, "s-t" reliability, Completion Time of a Task graph).
- Most of these problems are NP hard when the capacities are random.
- We propose a new approach based on stochastic comparison and monotonicity to provide stochastic bounds on the distribution of the result.
- Most of the classical approches in the littrature are based on the structure of the graph (for instance Serie-Parallel subgraph)

Key Ideas

- We consider discrete distributions on a totally ordered space, for instance {1, 2, ..., n} and ≤.
- Conditioning on each random variable

$$Pr(Rand - Res(D1, ..., D_{Nv}) = T) = \sum_{(d1,...dNv) \in \Omega} Pr(d1, ..., dNv) \mathbf{1}_{Det - Res(d1,...,dNv) = T}$$

- The complexity of the distribution which appears in the computation is the number of atoms in the distribution
- A deterministic R.V. is a distribution with a single atom.
- Question: Find a new distribution with less atoms which will be a bound according to a stochastic order.
- Here we consider convex and increasing convex ordering and we prove an algorithm to find optimal upper bounds according to the convex order.

(4月) (4日) (4日) 日

- because it is supposed to be more precise than the strong stochastic order
- because "Max" is a convex operator and "Min" is a concave operator
- and operators "Min" and "Max" are the key operators in all the problems we consider
 - MAX-Flow: Min et + (because Max-Flow = Min Cut).
 - Shortest Path: Min et +
 - "s-t" Reliability: existence of a path from s to t: a variant of Max-Flow
 - $\bullet\,$ Completion Time: Max and $+\,$

伺 と く ヨ と く ヨ と

Definition (increasing convex ordering)

Let X and Y be two random variables, $X \leq_{icx} Y$ if for all increasing convex function Φ , $\mathbf{E}[\phi(X)] \leq \mathbf{E}[\phi(Y)]$ if the expectations exist.

Definition (stochastic convex ordering)

Let X and Y be two random variables, $X \preceq_{cx} Y$ if $\mathbf{E}[X] = \mathbf{E}[Y]$ and $X \preceq_{icx} Y$.

Property (Stop Loss)

Let X and Y be two random variables, $X \leq_{cx} Y$ if and only if $\mathbf{E}[X] = \mathbf{E}[Y]$ and, for all d we have, $\mathbf{E}[(X - d)^+] \leq \mathbf{E}[(Y - d)^+]$.

Definition (Ψ -Monotony)

A function f is Ψ -monotone if for all X and Y random variables such that $X \preceq_{\psi} Y$, then $f(X) \preceq_{\psi} f(Y)$.

• +, "max" are monotone for the increasing convex ordering.

Property

The CompletionTime of a task graph is monotone for the increasing convex stochastic ordering.

Proof: because it is defined with the "max" and "+" operators (see at the end of this talk) .

伺 ト く ヨ ト く ヨ ト

Measurements: typical approach

- Transform measurements into an average (the expectation)
- Solve the deterministic problem: ADD a systematic BIAIS.

Property

Consider the CompletionTime problem. Assuming that the durations of the task \mathbf{D}_i are random. Replace the random durations by their expectations. The deterministic result is a lower bound for the increasing convex ordering for the distribution and a lower bound for the expectation.

$\mathbf{E}[\mathbf{D}_i] \preceq_{cx} \mathbf{D}_i \quad \forall i$

CompletionTime is monotone for the increasing convex ordering:

 $CT(E[D_1], E[D_2], .., E[D_{Nv}]) \preceq_{icx} CompletionTime(D_1, D_2, .., D_{Nv}).$

Taking the Expectation, and noting that as CT(.) is deterministic, it is equal to its expectation:

 $CT(\mathsf{E}[\mathsf{D}_1],\mathsf{E}[\mathsf{D}_2],..,\mathsf{E}[\mathsf{D}_{N_{\mathcal{V}}}]) \leq \mathsf{E}[CompletionTime(\mathsf{D}_1,\mathsf{D}_2,..,\mathsf{D}_{N_{\mathcal{V}}})]_{:_{\mathsf{D}_{\mathcal{Q}_{\mathcal{Q}}}}}$

- Balance between the complexity (i.e. the number of atoms) and the accuracy of the bound.
- Expectation: lower bound with 1 atom. Worst bound....
- Step 1: Bound the input distributions to obtain upper and lower bound with a small number of atoms
- Step 2: Condition on the new random variables
 - Step 2.1: Solve the deterministic cases with a polynomial algorithm (they are well-known)
 - Step 2.2: Use the law of total probability to obtain the distribution of the bounds
- How to find convex bounds for a discrete distribution ?
- Convex rather than increasing convex: see the conclusion

(4月) (4日) (4日) 日

- For an arbitrary distribution D with N positive atoms and a convex function r, we prove an algorithm to find D2 such that
 - D _{≤cx} D2
 - **D2** has size *K* < *N*.
 - **D2** is an optimal bound according to the expectation of function $r(x) = x^2$ (i.e. the second moment).
- Find some basic actions to remove atoms
- Prove the structure of the optimal solution

Lemma

We consider an arbitrary discrete distribution (say **D3**) on three atoms a, b, c (a < b < c) defined by the positive probabilities p_a , p_b and p_c . Let us define by **D4** the distribution of atoms a and c the probabilities of witch (denoted as q_a and q_c) are defined by

$$q_a + q_c = 1$$
 and, $aq_a + cq_c = ap_a + bp_b + cp_c$.

Then, $D3 \leq_{cx} D4$.

Basic Actions for a lower bound with less atoms

Lemma

We consider an arbitrary discrete distribution (say **D1**) on two atoms a and b (without loss of generality we assume that a < b) defined by the following positive probabilities p_a and p_b . Let us define by **D2** the distribution with a single atom M equal to $\frac{(a \ p_a + b \ p_b)}{p_a + p_b}$. Then, **D2** is a lower bound for the convex stochastic ordering of **D1**: **D2** \leq_{cx} **D1**.

Figure: Fusion of two atoms for a lower bound

Proof: it is a simple application of $\mathbf{E}[X] \preceq_{cx} X$.

Lemma

Let **D1** a distribution on N atoms and **D2** a distribution on K < N atoms, such that **D1** \leq_{cx} **D2**. Let x_1, x_2, \dots, x_N be the atoms of **D1** sorted in increasing order, each value x_i is associated a probability p_i . Similarly, let u_1, u_2, \dots, u_K be the atoms of **D2** sorted in increasing order, associated to probabilities q_i . Then $y_1 = x_1$ and $y_K = x_N$.

Thus, we know that we must keep x_1 and x_N .

Lemma

We consider distribution **D1** with 4 atoms a, b, c, f such that (a < b < c < f). Assume that p_a, p_b, p_c, p_f are positive. We apply Lemma 1 to atoms a, b et c to obtain an upper bound (i.e. say **D2**) on the support $\{a, c, f\}$. We also apply Lemma 1 to atoms a, b et f to obtain **D3**. This last distribution has also $\{a, c, f\}$ as a support and **D1** \preceq_{cx} **D2** \preceq_{cx} **D3**.

Figure: Comparing upper bounds.

Thus, we expect that it is better to operated on closest atoms. It is formally proved in the paper.

Algorithm for the optimal upper bound

- We represent a distribution as a path in a graph from x₁ to x_N (we know that they are in the optimal solution).
- The path has length K 1 (i.e. it has K nodes including x_1 and x_N).
- The cost of an arc from y_i to y_j in the solution is related to the atoms between y_i and y_j in the input distribution (easily computed because of the structural properties when we try to optimize the variance)
- Find a path of length K 1 with minimal cost (Bellman-Ford algorithm).

- (同) (回) (回) - 回

Algorithm for a lower bound

Compute $\Delta(a, b)$ the variation of r when we merge atoms a and b. At each step find the couple of atoms which minimizes Δ

$$\Delta(a,b) = p_a r(a) + p_b r(b) - (p_a + p_b) r(\frac{p_a a + p_b b}{p_a + p_b}).$$

Require: input distribution **D1**, input size N, output size K **Ensure:** Output distribution **D2**

- 1: D2 = D1.
- 2: for all atoms a and all atoms b do
- 3: Compute $\Delta(a, b)$ and store it in a data structure.

4: end for

- 5: for i = N down to K + 1 do
- 6: Search for the couple (a, b) which minimizes $\Delta(a, b)$.
- 7: Fuse a and b into c in **D2**.
- 8: Update the matrix $\Delta(x, y)$ (remove *a* and *b*, add *c*).

9: end for

Example: A task graph

- Let b_i (resp. e_i) be the time when node *i* begins (resp. completes) its work.
- $e_i b_i = w_i$ where w_i is the execution time of task *i*.
- Classical induction: the time to complete the last node of the graph *e*_{Nv} can be recursively computed by the following sequence:

$$e_i = w_i + max_{j \in \Gamma^-(i)}(e_j)$$

where $\Gamma^{-}(i)$ is the set of predecessors of *i* and the sequence is initialized with

$$e_1 = b_1 + w_1$$
 and $b_1 = 0$.

• A "Max" and "+" recurence formulation. Thus,

伺 と く ヨ と く ヨ と … ヨ

The exemple

Figure: Example of a task graph with a small size such that we can also compute the exact solution.

Some numerical results for the output

Figure: Distribution of the total delay for the execution of the task graph (left: exact result 10 atoms, right: upper bound with 5 atoms)

Reducing the complexity from 10^8 to 5^8 .

Some numerical results 2

Figure: Kullback-Leibler divergence between the exact and optimal upper bound distributions. For input distributions (left), for the whole task graph distribution of time (right).

▲□ ▶ ▲ □ ▶ ▲ □

MIN based problems

- "Min" is not convex: it is concave.
- The concave ordering also exists.

Definition (stochastic concave ordering)

Let X and Y be two random variables, $X \preceq_{cv} Y$ if $\mathbf{E}[X] = \mathbf{E}[Y]$, and for all concave function Φ , $\mathbf{E}[\phi(X)] \leq \mathbf{E}[\phi(Y)]$ if the expectations exist.

 And convex ordering and concave ordering (≤_{cv}) are closely related:

Property

If $X \preceq_{cx} Y$ then $Y \preceq_{cv} X$

• Because the expectations are equal (thus it is not true anymore for \leq_{icx} and \leq_{icv} ordering).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Definition (increasing concave ordering)

Let X and Y be two random variables, $X \leq_{icv} Y$ if for all increasing concave function Φ , $\mathbf{E}[\phi(X)] \leq \mathbf{E}[\phi(Y)]$ if the expectations exist.

Property

Let X and Y be two random variables, $X \preceq_{cv} Y$ imples that $X \preceq_{icv} Y$.

Definition (\leq_{icv} –Monotony)

A function f is \leq_{icv} -monotone if for all X and Y random variables such that $X \leq_{icv} Y$, then $f(X) \leq_{icv} f(Y)$.

• +, "min" are monotone for the increasing concave ordering.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Property

Let X and Y be two random variables, $X \preceq_{icv} Y$ if and only if for all d,

$$\mathsf{E}[\min(d, X)] \leq \mathsf{E}[\min(d, Y)]$$

• Compare to

Property

Let X and Y be two random variables, $X \preceq_{icx} Y$ if and only if for all d,

$$\mathsf{E}[max(d, X)] \le \mathsf{E}[max(d, Y)]$$

伺 ト く ヨ ト く ヨ ト

Property

The MAX-Flow and Shortest Path problems are monotone for the increasing concave ordering.

- Proof: because it is defined with the "MIN" and "+" operators. Remember that MAX-Flow = MIN-Cut.
- Thus the algorithm we provided can also be used to obtain lower bound for the concave ordering and lower bound for the MAX-FLOW and Shortest-Path problems as well, using the concavity of MIN operator.
- Next step: Combine structural approches (based on the graph) and stochastic ordering.

通 と イ ヨ と イ ヨ と

- For input distributions, $X \preceq_{cv} \mathbf{E}[X]$
- Thus replacing input distributions by their expectations, we get

 $MaxFlow(RandomCapacity) \leq_{icv} MaxFlow(DeterministicCapacity)$

where *DeterministicCapacity* = **E**[*RandomCapacity*]

• Taking the expectation: (a Jensen-like inequality)

 $E[MaxFlow(RandomCapacity)] \le MaxFlow(E[RandomCapacity])$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Small Exemple (Thanks to Yann Strozecki)

- Consider a path of length $N \ge 2$
- Each arc has a random capacity equal to 0 with probability 1/2 and 2 with probability 1/2.
- thus the expectation of the capacity is equal to 1.
- And the Max-Flow for the deterministic network (with capacity equal to the expectation of the capacity) is also 1.
- If we consider the stochastic network, the arcs are independent. Thus the flow is equal to 2 with probability $\left(\frac{1}{2}\right)^{N-1}$.
- And the expectation is $\left(\frac{1}{2}\right)^{N-2}$
- Clearly $\left(\frac{1}{2}\right)^{N-2} \leq 1$.

伺 と く ヨ と く ヨ と

Exemple

- But it also work when we bound a limited (i.e. not all) input distributions
- Algorithm (not completely original)
 - Replace all the distributions by their expectation
 - Pind a minimal cut-set
 - Onsider the initial problem and replace all the distributions except the arcs in the cut-set by their expectations
 - Compute the \leq_{icv} bound
 - Iterate at step 2 with another cut-set to obtain several ≤_{icv} bounds (at least to improve the first and second moments).
- Can we combine (i.e. improve) *≤*_{*icv*} bounds like we did for strong stochastic bounds ???

(4月) (日) (日) 日

Conclusion

- We have optimal upper bounds for ≤_{cx} ordering and optimal lower bounds for ≤_{cv} ordering (same algorithms because X ≤_{cv} Y impies that X ≤_{icv} Y).
- We have \leq_{icx} ordering for MAX,+ based problems (Critical Path, Pert)
- We have \leq_{icv} ordering for MIN,+ based problems (Shortest Path, Max-Flow)
- The methods also works when the random variables are not independent (however we must know the conditional distributions). Typically for transportation problems.
- How to combine structural approaches and stochastic bounds approach ?

・同・ ・ヨ・ ・ヨ・ ・ヨ