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Abstract

This paper presents an approach to provide stochastic bounds for a large class of optimisation problems
on graphs when the parameters (i.e. costs, weights or delays) for links are random variables. We consider
the class of problems which are based on convex operators and whose complexity is polynomial, when
the parameters are deterministic. Here, the parameters (for instance the delay of a link) are discrete
random variables. Such an assumption drastically changes the complexity of the problem (typically, the
problems turn out unfortunately to be NP-complete). We propose to give stochastic bounds (both upper
and lower bounds) based on convex order. First, we prove how we can simplify a discrete distribution to
obtain bounding distributions which are easier to deal with, leading to a tradeoff between the computation
complexity and the accuracy of the bounds. Second, we design a polynomial time algorithm to compute an
upper bound. The approach is illustrated by the computation of the execution time of a task graph.

Keywords: Stochastic Convex Ordering, Discrete Distributions, Optimisation on Graphs, Stochastic
PERT.

1 Introduction

In most optimisation problems on graphs, it is assumed that the edge or node costs
or weights are deterministic, but this is not realistic in many cases. In a commu-
nication network, links or networking elements may malfunction due to congestion,
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accidents, weather conditions, DDOS attacks, ... Thus, one may associate with each
edge and node a probability that this element will be fully or only partially avail-
able. Typically, we assume that each element (node or edge) has several capacity
levels (that we can denote as states) with associated probabilities. Our aim is to
analyze the distribution of the results of the optimisation problem knowing the dis-
tributions of probabilities on the edges and the nodes. We consider a large class of
optimisation problems : Max-Flow, Shortest Path, Reliability, Minimum Spanning
Tree, Completion Time. These problems are built upon convex or concave opera-
tors. These problems have received a lot of attention due to their practical interest
and their rich theoretical context (see for instance [5] for the complexity issue).

Many methods only consider approximations or bounds for the expectation and
are based on the graph properties which are relevant for the problem. For instance,
n [14], the authors study the properties of the trees and the cuts associated with
them to bound the distribution of the total weights in a spanning tree where the
edges’ weights are random.

A completely different approach was used in [18] to bound the execution time
of a task graph where the delays are independent and exponentially distributed.
The authors obtain stochastic upper and lower bounds of the distributions of the
completion time. The stochastic order they used is the strong stochastic bound and
the comparison takes advantage of the association (i.e. positive correlation) of the
random variables describing the delays experienced on a path between the source
and the destination.

Unlike most traditional approaches for this problem, our approach is based on
the distributions of probability on the edges or the nodes and the properties of the
operators rather than the structure of the graph. As the operators are convex, we
advocate that we can use stochastic convex order on the distributions of probability
for the inputs to bound the distribution of the result.

The distribution of probability for the edges is a discrete distribution, for in-
stance obtained from some measurements. We do not assume that we obtain a
density from these measurements through a fitting algorithm such as [7]. We di-
rectly deal with the measurements and we obtain bounds with a tradeoff between
computation complexity and accuracy. The main transformation (or actions) is the
fusion of atoms (like in [8]) in the input distribution of the problems.

The technical part of the paper is as follows. In Section 2 we give a brief
introduction to strong stochastic order and convex order and we define the family
of optimisation problems we want to study. We show that these problems are
based on the same set of operators which are increasing and convex (or concave).
Section 3 is devoted to the elementary actions to design upper and lower bounds.
In Section 4, we present an optimal algorithm for the upper bound and in Section 5
an algorithm for the lower bound. Finally in Section 6, we illustrate the approach
with an example: the computation of the distribution of the completion time for a
task graph.
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2 Optimisation on Graphs and Stochastic Convex Or-
dering

2.1 Optimisation on graphs

Let us consider the following simple optimisation problem for a directed graph to
illustrate our approach. As our approach is not based on the graph properties but
on the operators used in the optimisation process, and on stochastic ordering, the
approach can deal with many optimisation problems which looks distinct at first
glance. However, these problems are all built with the same operators. Thus, our
approach can be used to provide stochastic bounds for all of them.

To illustrate our approach, we consider a general Directed Acyclic Graph (V| E)
with number of edges M. We assume that the DAG is not a serie-parallel directed
graph as this family of graphs allows for a recursive computation. Thus we exclude
such an algorithm based on recursion. We assume that the nodes are labelled using
a topological ordering. Thus, if (¢,j) € E then i < j.

The nodes are labelled with positive random delays (w;);cy. A directed edge
from ¢ to j means that j needs the results of i to be executed and must wait until
all the preceding nodes have completed their own work.

Fig. 1. Task graph.

Let b; (resp. e;) be the time when node i begins (resp. completes) its work. We
have e; — b; = w; where w; is the execution time of task i. It is well-known (see
for instance [18]) that the time to complete the last node of the graph ejs can be
recursively computed by the following sequence:

e, = w; + maxjep_ (@) (ej)

where I'" (i) is the set of predecessors of i and the sequence is initialized with
e1 = by +wi, and by = 0. And the Completion-time of the task graph is ej,.

The operators "Max”, "Min” and ”+”, are used to define many optimization
problems on graphs. Thus, the methodology we develop here is useful to address
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many practical discrete problems. Let us illustrate the generality of the approach
with a small list of well-known problems (see the reference book [2] for more precise
statements):

e Shortest Path: the length of a path is the sum of the length of the edges and we
need the path with the minimal length.

e Maximum Flow : as ”Max Flow = Min Cut”, we have to compute the minimum
of the capacities of the cuts in the networks. A cut is a subset of edges which
disconnect the source and the destination. The capacity of a cut is the sum of the
capacity of the edges inside the cut. Again the problem is defined with operators
"Min” and ”+” on structures which only depend on the graph.

e ”s-t” Reliability: the probability that there is an operating path from ”s” to ”t”
in the network when each link may fail (in that case, the distributions have two
atoms 0 and 1 to represent DOWN and UP links) is also the expectation for the
maximum flow with edge capacity equal to 0 and 1.

e Minimum Spanning Tree: the cost of a spanning tree is the sum of the costs of
the edges of the tree. And we take the minimum over all these costs. Again we
use the "Min” and ”+” operators.

* Completion Time (or Critical Path Method) makes use of the "Max” and ”+”
operators as seen previously.

We assume independence of the various random variables acting as inputs in the
model. We denote by €2 the state space. Under the independence assumption, the
probability of (d1,,,,dM) is given by:

Pr(di,....dM) =[] Pr(X; = di),

and {2 is the Cartesian product of the support of the input distributions. All these
problems are polynomial when the inputs are deterministic. Unfortunately, it is
not true anymore when the nodes are associated with random variables. Ball et
al. have surveyed in [5] various methods to evaluate network reliability and some
performability problems. They stated that calculating the distribution of the results
is NP-hard for various shortest path and flow problems for networks or graphs
with random costs. Note that it is still possible to solve the problem for small
instances where the sizes of the supports are small (i.e. in a naive point of view, the
distributions are almost deterministic). It is sufficient to use the Total Probability
Theorem after conditioning on the states of all the random variables. We will
illustrate this approach on the ” Completion Time” problem.

Without loss of generality we now assume that the random variables are as-
sociated with the nodes. Assume that the state of the network (or the graph) is
a vector with size M called X = Xj,...X; where X; is the state of the random
variable associated with node 7 (i.e. it is an atom as the distributions are discrete).

First let us formally define CompletionTime(Dy, ..., Dpr) as the random variable
equal to the completion time of the graph where the delays on node i is distributed
according to D;. CT(d1,...,dM) will be the value (in R™) of the completion time
when the input random variables are equal to dl,...,dM. CT(.) can be computed
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in a linear time as the variables are now deterministic. Consider again the digraph
(V,E). Let w; the random variable associated to the delay in node ¢ and let D; be
its distribution. Conditioning on the value of the random variables, we obtain:

Pr(CompletionTime(D1,...,Dy) =T) = Z Pr(dl,....dM)1cra,... av)=r
(d1...dM)eQ

Thus, a naive approach consists in conditioning on all the random variables to obtain
a problem with deterministic inputs which is solved in a linear time in the size of
the graph. However, we have to deal with all the possible values of the random
variables leading to a number of deterministic problems to solve, which is equal
to the product of the number of atoms (i.e. the size of €2). Assume that all the
distributions have the same size (equal to V), the complexity of this naive approach
is:

NYB(M),

where B(M) is the complexity in the deterministic case for a graph with size M. All
the problems mentioned previously have a polynomial complexity and C'T'(.) has a
linear complexity. Note that we still have to group these elements in a distribution
(several conditionings may give the same value for C7T'(.)). This may add an extra
logarithmic term if we need to sort the data to merge all the configurations of
random variables with the same value for CT'(.).

Also note that we do not claim that such an approach is optimal. However, as
the complexity of this family of problems with random variables as inputs is NP,
there is no polynomial time algorithm (unless NP = P) for general instances of
these problems.

2.2 Stochastic ordering and its application to reduce the complexity

Here, we propose to reduce the number of atoms while keeping some qualitative
information on the results. This is obtained through the use of various stochastic
orders. We do not establish new complexity results. We just prove that we can
reduce the size of the problems when it is too large and keep some bounds according
to some stochastic orders [17]..

Definition 2.1 [increasing convex ordering] Let X and Y be two random vari-
ables, X =, Y if for all increasing convex function ¢, E[p(X)] < E[¢(Y)] if the
expectations exist.

Definition 2.2 [stochastic convex ordering] Let X and Y be two random variables,
X =< Y EX]=E[Y] and X <., Y [13,17].

Definition 2.3 [strong stochastic ordering] Let X and Y be two random variables,
X =g Y if for all increasing function ¢, E[¢(X)] < E[p(Y)] if the expectations
exist.
Corollary 2.4 Thus, we have:
o X < X and X <4 X.
o If X =4 Y, then for all k, E[X*] < E[Y*].
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o If X = Y, then for all k > 1, E[X*] < E[Y¥]. As E[X] = E[Y], we get
Var[X] < VarlY].

These orders differ considerably when we consider the expectations of the ran-
dom variables.

Proposition 2.5 Let X and Y be two random variables, such that X <4 Y. If
E[X] =E[Y] then X =Y.

Proposition 2.6 (Expectation) Let X be a random variable with finite expecta-
tion, then E[X] <. X and E[X]|+ X = 2X.

Finally we add some well-known properties which will be useful to prove our
algorithms. Their proofs and more results on these stochastic orderings can be
found in the literature [15,16].

Proposition 2.7 (Stop Loss) Let X andY be two random variables, X <., Y if
and only if E[X] = BE[Y] and, for all d we have, E[(X —d)*] < E[(Y —d)7].

It is sometimes more convenient to use the following characterization.

Corollary 2.8 Let X and Y be two random wvariables, X <. Y if and only if
E[X] = E[Y] and, for all d we have, E[(d — X)T] <E[(d —Y)"].

Theorem 2.9 (Theorem 3.A.44 of Shantikumar [16] page 133) Let X and
Y be two random variables with equal means (E[X] = E[Y]) and with respective cdf
Fx and Fy. X <. Y, if and only if the number of sign changes for the function
Iy — Fx is equal to 1 and the sign change sequence is +, —. The cases Fy —Fx =0
are discarded (not considered as sign changes).

When we deals with the comparison of discrete random variables, distributions
are step-functions. Both methods require to decompose the support into intervals
where the expectation or the cdf are constant. Thus, both methods of proof have
roughly the same complexity. We use both in Section 3 and Section 4.

Proposition 2.10 (Mixing) Let X, Y and © three random variables such that
[(X]© =a] =2y [Y|© = a] for all a in the support of ©, then X =<y Y with <y being
Siczs Sst OT Deg-

Thus, using the convex ordering and the increasing convex ordering instead of
the strong stochastic ordering we keep constant the expectation and we hope that we
only introduce a small bias when we deal with bounds instead of the measurements.
The main characterization of the optimisation problems we consider in this paper
is an extension of monotony related to various stochastic orderings. Let us define
first the generic ¥ —monotony.

Definition 2.11 [¥—Monotony| A function f is W—monotone if for all X and YV
random variables such that X <, Y, then f(X) =y f(Y), with =<y being <z, <t
or =cz.

In this paper, we will prove that the problems we consider are monotone for the
strong ordering or monotone for the increasing convex ordering. These properties
are now illustrated for some well-known optimisation problems on graphs. From the
recursion we have seen previously, it is possible to derive the following properties.
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Proposition 2.12 The CompletionTime is monotone for the increasing convex or-
dering.

Proof: Let us consider three random variables X, Y and © such that X <. Y.
Thus X =i Y. Now consider an arbitrary increasing convex function f whose
arguments are X and © (or Y and ©) and taking value in R. For any real a, we
have f(X,a) =icx f(Y,a). Thus, for all a, f(X,0)|0 = a =i f(Y,0)|0 = a.
Due to the mixing property 2.10, we have f(X,0) =< f(Y,0). Thus one can
replace each input random variables by a bounding distribution. Finally, we note
that ”CompletionTime” problem is defined with the "max” and ”+” operators
which are increasing and convex. Clearly, the assumptions on function f hold for
”CompletionTime”.

Proposition 2.13 The CompletionTime is monotone for the strong stochastic or-
dering.

The proof is similar.

Corollary 2.14 Consider the CompletionTime problem. Assuming that the dura-
tions of the task are random. Replacing the random durations by their expectations

ntroduces a systematic biais. The deterministic result is a lower bound for the in-
creasing convex ordering for the distribution and a lower bound for the expectation.

Proof: Let D; the distribution of the duration of task i. According to Prop. 2.6,
we have for all node index ¢

As CompletionTime is monotone for the increasing convex ordering, we get:
CT(E[D1], E[Dg], .., E[Dy]) =ice CompletionTime(D1,Da,..,Dyy).
Taking the Expectation, we obtain:
E[CT(E[D1], E[D,], .., E[Dy])] < E[CompletionTime(Dy, Do, .., Dy)].

As CT(.) is the result of the deterministic problem, it is equal to its expectation.
Thus:

CT(E[D1], E[Dg,..,E[Dy]) < E[CompletionTime(D1,Da, .., Das)].

Thus, one must be aware that replacing the input distributions by their expectations
introduce a systematic biais (in fact we proved that it is a lower bound). Using
stochastic bounds instead of this crude approximation will help to balance between
the complexity and the accuracy of the results to derive a better approach for
practical problems.

Proposition 2.15 Similarly, the Shortest-Path problem, the max-flow problem and
the s-t reliability problem which are defined with the "min” and "+ operators are
monotone for the strong stochastic ordering as these operators are increasing.

Combining the ¥—monotone property and the approach based on condition-
ing suggest the following method: algorithmically simplify the distributions to get
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bounds on the inputs and obtain bounds of the outputs due to the monotone prop-
erty. Some of us had already studied this approach for the strong stochastic ordering
[4]. More precisely, for an arbitrary distribution D with size N and any positive
increasing reward function r, we proved in [4] an algorithm to find the distributions
D1 and D2 with size K < N such that

* D1 jst D jst D2
* D1 and D2 are optimal bounds according to the expectation of an arbitrary

increasing function 7.

The optimality of D1 means that if we found a distribution D3 such that D3 <5 D
and ), 7(1)D1(i) < >, r(i)D3(i) < ), r(i)D(i), then D3 = D1 or D3 = D.
The optimality of D2 is defined in a similar manner. Note that, as function r is
increasing, D1 <¢ D implies that ), r(i)D1(i) < Y, r(i)D(i). Such an approach
was shown to be valuable for network performance modeling [3], operation research
[4], reliability modeling [11,12].

In this paper, we investigate a similar problem for the convex order. More pre-
cisely, for an arbitrary distribution D with N positive atoms, we prove an algorithm
to find D2 such that
* D =cx D2
e D2 has size K < N.

e D2 is an optimal bound according to the expectation of an arbitrary convex
function ¢(x) (i.e. for instance any moment).

Furthermore, we propose an algorithm to find a lower bound D1 with size K but
we do not prove the optimality of our method.

3 Basic Operations on Atoms

The following lemma will help to deal with large distributions by allowing to extract
a small part of them (by conditioning) and proving the algorithms on these small
distributions. We begin with a very simple technical lemma.

Lemma 3.1 Let x1,22,x3,x4 be arbitrary positive values such that x1 < x2 <
x3 < z4. Then we have:
(23 — 22)(xd — x1) < (23 — z1) (24 — 22).
Proof: z1 < 22 < 3 < z4. Thus, (22 — z1)(z4 — 23) > 0. Thus,
(3 — 22) (x4 — z1) < (x4 — 22)(x3 — z1).

Indeed,
(x3 — 22) (x4 — 1) = 2324 + zlx2 — 422 — xlx3

and

(x4 — 22) (23 — 1) = 2324 + xlx2 — 2223 — zlzd
Finally, (23 —22)(z4 — 1) + (22 —21) (24 — 23) = (x4 — 22)(x3 — x1) and the result
holds.
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Lemma 3.2 We consider distribution D on support S. We define a true partition
of § into S1 and §2. We now consider X an arbitrary random variable with dis-
tribution D and the boolean random wvariable © = 1xcs1. We will bound the two
random variables [X|© = True] and [X|0© = False].

Assume that one builds a new random variable (say Y ) on S as follows:
[X|© = False] = [Y|O© = False],

and
YO = True] = [X|O = True],
then Y <. X.

Proof: it is a simple application of property 2.10.
Corollary 3.3 Similarly, if Y satisfies

[X|© = False] = [Y|O© = False],

and,
[X|© = True] < [Y|O = True],
then X <. Y. We obtain an upper stochastic bound for the convex ordering.

These last two properties are very important to simplify the proofs of the fol-
lowing results on the comparison of distributions. They allow to decompose the
distributions into two parts: the one which is not impacted by the action, and the
one which contains the atoms which are modified. Therefore in the lemmas, we
only consider the atoms which are modified. We begin with a new formulation of
the basic actions needed to design a strong stochastic bound.

Lemma 3.4 We consider an arbitrary discrete distribution (say D1) on two atoms
a and b (without loss of generality we assume that a < b) defined by the following
positive probabilities p, and pp. Let us define by D2 and D3 the distributions with
a single atom in a for D2 and in b for D3, with probability equal to 1 in both cases.
Then, D2 jst D1 jst D3.

We now prove some lemmas on the basic operations of fusion of atoms to obtain
lower bounds (Lemma 3.5) and upper bounds (Lemma 3.6) for the convex ordering.

Lemma 3.5 We consider an arbitrary discrete distribution (say D1) on two atoms
a and b (without loss of generality we assume that a < b) defined by the following
positive probabilities p, and py. Let us define by D2 the distribution with a single
atom M equal to (a pg+b pp). Then, D2 is a lower bound for the convex stochastic
ordering of D1: D2 <.« D1.

Proof: it is a simple application of property 2.6.

Lemma 3.6 We consider an arbitrary discrete distribution (say D3) on three
atoms a, b, ¢ (without loss of generality we assume that a < b < ¢) defined by
the positive probabilities p,, py and p.. Let us define by D4 the distribution of
atoms a and c the probabilities of which (denoted as q, and q.) are defined by

Gatqc=1
9
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Fig. 2. Fusion of two atoms for a lower bound

and
aqa + Cqe = apa + bpy + cpe.
Then, D4 is an upper bound for the convex stochastic ordering of D3: D3 <¢x D4.

Fig. 3. Upper bounding distribution.

Proof: Two steps. First, we check that these two equations define a distribution of
probability. Second, we prove that it is an upper bound for the convex ordering.

11
As a # ¢, determinant is not equal to 0 and there exists a unique solution

ac
to the system of equations. This solution is:

c—b b—a

Gc = Pc+ Db
CcC—a cC—a

Ga = Pa + Db

We now prove that D3 <.x D4 using the Stop Loss property (i.e. Property
2.7). We have to check that for all d, E[(X —d)"] < E[(Y — d)*"]). We decompose
the proof according to the interval which contains d:

e d>c Thus (X —d)" and (Y — d)" are equal to 0. Thus the equality holds.

e b<d<ec (X—d7T ispositive when d = c¢. And E[(X — d)T] = (¢ — d)pe.
Similarly, E[(Y — d)"] = (¢ — d)g.. Clearly p. < q., and (¢ — d) is positive,
therefore the relation holds.

e a<d<b (X —d)t is positive when d = ¢ and d = b. Thus,
E[(X —d)"] = (c—d)pc+ (b —d)p
(Y —d)* is positive when d = ¢. Thus,

E[(Y —d)'] = (c — d)ge

As g. = pe+py =2, after simplifications we have to compare (b—d) and %.
And we apply Lemma 3.1 to prove that E[(X—d) "] < E[(Y —d)*] for all d between

a and b.

10



CONVEX BOUNDS AND OPTIMISATION ON GRAPHS

e d<a (X—d%tand (Y —d)*" are positive. Thus E[(X —d)"] = E[X —d] =
E[X]—d. Similarly, E[(Y —d)"] = E[Y] —d. As E[X] = E[Y] the equality holds.
We have also proved another method to obtain a lower bound with less atoms.

We have to consider two cases to remove one atom out of three. We just illustrate
one of them in the following lemma.

Lemma 3.7 We consider an arbitrary discrete distribution (say D1) on three
atoms a, b, ¢ (without loss of generality we assume that a < b < c¢) defined by
the positive probabilities py, py and p.. Assume that b > %4-;190 = M. Let us
define by D2 the distribution of atoms a and b the probabilities of which (denoted
as qq and qy) are defined by
Ga +q =1,

and

@ qa+bqy=apa+bps+cpe
Then, D2 <¢x D1.

&, ® OO

Fig. 4. Lower bound, first case.

The Lemma is not proved as we do not use this construction to obtain a lower
bound in the following of the paper. It is just given here to show that we can obtain
a lower bound according to the convex ordering based on a subset of atoms. We
have a similar construction when b < aggiigcm = M as illustrated by the following
example.

Example 3.8 Let D1 be a discrete distribution defined on H1 = {1,2,4}
(a=1,b=2,c=4) with following probabilities [0.2,0.4,0.4]. Thus E[D1] = 2.6, and
the barycenter between 1 and 4 is M = 3. The lower bounding distribution D2 is
defined on H2 = {2,4} with probabilities g2 = 0.7 et g4 = 0.3, thus one can check
that E[D2] = 2.6 = E[D1]. One can check easily that there is 1 sign changes and
the sequence of signs is 4+, —, it follows from Theorem 2.9 that

D2 <.« D1

Note that when b = a;’zii;c“, the construction is equivalent to the one studied
in Lemma 3.5.

4 Algorithm for an optimal upper bound

Before proceeding with the algorithms, we prove a characterization of the atoms of
the upper bound for the convex order.

11
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4.1 Structure of an optimal solution for the convexr ordering on a subset of atoms

Lemma 4.1 Let D1 a distribution on N atoms and D2 a distribution on K atoms,
such that D1 <¢x D2. Let x1,22, -+ ,xn be the atoms of D1 sorted in increasing
order, each value x; is associated a probability p;. Similarly, let y1,y2, -+ ,yr be the
atoms of D2 sorted in increasing order, associated to probabilities q;. Then y; = x1
and Yyg = TN

Proof: it has two steps. First, we prove that z1 > y; and then, we show that
x1 # y1 does not hold. Let X (resp. Y) a random variable be distributed following
D1 (resp. D2).

Assume that 21 < y;. Then there exists some d between: x1 < d < y;. We
compute E[(d — X)T]| and E[(d — Y)T].

E[(d— X)T]=(d—z1)p1 >0

E[d-Y)*]=0
Thus there is a contradiction with D1 <¢x D2 and Corollary 2.8.

Now assume that y; < z1. Consider d such that y < d < z1. E[(X —d)t] =
E[X]—d asd < z1 and 1 is the smallest atom of D1. And E[(Y —d)*] < E[Y]—d, as
d > y;. Taking into account that E[(X] = E[Y], we get E[(X —d)*] > E[(Y —d)*],
again a contradiction. The proof that yx = zn is similar and is omitted for the
sake of conciseness.

We now combine the basic actions we have studied in the previous section to
obtain algorithms which reduce the complexity of the distributions while providing
upper and lower bounds for the stochastic convex ordering. We first try to compare
actions on distributions which share atoms to obtain an optimal action for the design
of an upper bound.

Lemma 4.2 We consider distribution D with 4 atoms a,b,c, f such that (a < b <
c < f). Assume that pa,ps, pe,ps are positive. We apply Lemma 3.6 to atoms a,b
et ¢ to obtain an upper bound (i.e. say D2) on the support {a,c, f}. We also apply
Lemma 3.6 to atoms a,b et f to obtain D3. This last distribution has also {a,c, f}
as a support and D1 <. D2 <. D3.

Fig. 5. Comparing upper bounds.

Proof: Both distributions have the same support and the same expectations as
they are both equal to the expectations of D. We already know due to Lemma
3.6 that D1 <¢x D2 and D1 =<.x D3. We now prove that D2 <.x D3 using the
Stop-Loss property. Using Lemma 3.6 we know that D2 is:

c—b b—a

Ga = Pa + Db y Gc =Dc+ Db y 4f = Df
cC—a CcC—a

12
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as pp has been distributed among a and ¢ while f was not modified. Similarly, D3
is:

f=b o, b-a
f—a t = Df be_a

because we distribute p, between a and f while ¢ was kept unchanged. We consider

an arbitrary d and we compare E[(X — d)*] and E[(Y — d)"] where X (resp. Y) is

distributed according to D2 (resp. D3). One must study 4 cases:

e d > f. We have, as usual, E[(X —d)*] =0=E[(Y —d)T].

cc<d< f. E[(X—-d)f]=(f—dpsand E[(Y —d)"] = (f —d)ry. As f > d
andry > py, the inequality holds.

Ta = Pa + Db y Te = Pe

* a < d < c. We compute the expectations:

E[(X — d)*] = (¢ — d)g. + (f — d)ay = (¢ — d)pe + <C—Cd>_<f;—a>pb (= dypy,
and
E[(Y —d)*] = (c— d)re + (f — d)ry = (c — d)pe + (f — d)ps + pr.

c—a

* d<a. Asusual, E[(X —d)T| =E[X]|-d=E[Y]-d=E[(Y —d)"].

Lemma 3.1 implies that <=4 < %. Therefore, E[(X —d)*] < E[(Y — d)7]

This concludes the proof.

Let us now assume that we have selected K atoms out of N and we prove
the structure of the optimal distribution which is an upper bound for the convex
ordering.

Lemma 4.3 Let D be a distribution on set S which contains N atoms. We consider
a r.v. X distributed following D. Consider an arbitrary subset S1 of S with K atoms
Tuy, Tug - - - Ty - Let D1 be a upper bounding distribution of D for the <., ordering,
with support S, such that for all u in Sy, we have E[(X —u)™] = E[(Y —u)"] where
Y is a random variable distributed following D1. Consider an arbitrary upper bound
(say D2) of D for this subset of K atoms. Then, we have: D1 <¢x D2.

Proof: Consider a r.v. Z distributed following D2. By construction we have:
V deR, E[(X-d)f]<E[(Z-d7]
And by assumption we also have for all v in Sy:
E[(X —u)"] =E[Y —u)"] <E[(Z —u)]

We now have to prove that E[(Y —d) "] < E[(Z —d)T] for all d in R. We decompose
the proof according to the value of d compared to the atoms in S;.

 Consider two consecutive atoms x,, and x,, , in §;. We know that

E[(Y —2y,)"] <E[(Z — zy,)"]
13
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and
E[(Y - ‘rui+1)+] < E[(Z - xui+1)+]'

Moreover, functions E[(Z —d) "] and E[(Y — d)*] are linear and decreasing func-
tions of d on [2y,, Zu,,,]. Therefore, for all d in [Ty, Ty, ],

E[(Y —-d)T] <E[(Z-d)"].
« Now, assume that d > ug. We have:
E[(X —d)"]=E[Y —d)"]=E[(Z - d)'] =
e Similarly, assume that d < u;.
E(X —d)T|=E[X]—d, E[Y-dt=E[Y]-d, E[Z-d)" =E[Z]-d

And E[X] = E[Y] = E[Z]. Therefore E[(Z —d)"] = E[(Y — d)*].
Finally
V d €R, E[(Z—-d)"] > E[Y —d)"],

This concludes the proof of the Lemma.
We now prove that this optimal distribution already exists and we give an explicit
solution.

Theorem 4.4 Let D be a distribution on set which contains N atoms. Let

xr1,...,xN be the atoms of D sorted in increasing order, each wvalue x; is as-
sociated probability p;. Consider an arbitrary subset Sy of D with K atoms (
Ty Ty - - - Tuy ), Sorted in increasing order, with uy = 1 and ug = N. Let D1

be a distribution on Si associated to probabilities q,,, defined as follows for all
l<i< K:

u;—1 Uit1—1

'/I:uz 1 '/I:uz«l»l - xﬂ
=pu+ Y pe — T >
l=u;_1+1 g Ui-1 l=u;+1 Witl i

and for the first and last atom.:

us—1 T T N-1
— Ay
a=p+ Y p-2——, q=pn+ > D
Lyy — L1 =
=ug_1+1

Lo — Tug_4

IN — Lug_y

Then, D1 is a upper bounding distribution of D for the <. ordering, with support
81, such that for all u in Sy, we have E[(X —u)"] = E[(Y — u)™| where X (reap.
Y ) is a random variable distributed following D (reap. D1).

Proof: We have to prove that the distribution is well-defined. In the following,
index ¢ describes the atoms of D and index ¢ the atoms of D1. First, it is easy to

14



CONVEX BOUNDS AND OPTIMISATION ON GRAPHS

notice that ¢,, > 0, for all 7, 1 <i < K. We now prove that Zfil qu;, = 1.

K u;—1 g K—1ujy1—1 T
Uj_1 Ui41
> = Z > ope et BRI DI e +Zpuz
i=1 i=2 f=u;_1+1 i=1 f=u;+1 Witl
N-—1
- S Y
(=208, i=1

Second, we prove that E[Y] = E[X]
K
YI=D duitu, Zpuzxuz £ Y ne=m
i=1 0=2,0¢5,

Third, we prove by induction that E[(X — z,,)"] = E[(Y — zy,) "], for all i, 1 <i <
K. Clearly the equality holds for ux. Let us consider now ug_1.

E[(Y - $UK71)+] = Qug (Tug — Tug_,)

urg—1
o 2 : — Lug_4
- (:L‘uK - :EUK—l) pé —r
l=ug _1+1 UK-1

= B[(X — 2u,,)"]

Now, we will assume that E[(X — ;)] = E[(Y —x,,) ] is true for all j, i < j < K.
We prove that E[(X — z,,)"T] = E[(Y — zy,) 7]

E[( xul Z Quj xuj muz)

7>
= Z QU]- (xuj — Ty, + Lujpq — xui+1)
j>t
=E[Y - mu¢+1)+] + (Tuisr — ;) Z Gu, -

§>i

By induction E[(Y — xy,,,)"] = E[(X — y,,,)"] and after some algebraic manipu-
lations, we get:

E[(Y - xuz)+] - E[(X - xui+1)+] + Z (.CL‘@ - xui)pf + (mui+1 - muz) Z be

u;<l<uiq £>uiy1

— E[(X —2,)"].
This concludes the proof.

4.2 Building the graph

Now, we describe a polynomial time algorithm taking a distribution (say D) on
N atoms as input. It will return an upper bound distribution D1 which has an

15
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included subset of size K (say y,, - ,%Tux) as a support and which minimizes
E[¢(Y)] — E[¢(X)] where ¢ is an arbitrary convex function chosen by the modeler.

From Lemma 7?7, we know that the smallest and largest atom of D must also
be in D1. We build the weighted oriented graph G = (V, FE) which contains all the
paths associated to a final distribution. Its vertices are V- = {1,2,--- , N}. The set
of the arcs is {(i,7) € V?|j > i}, and arc (4,7) is associated to weight w;;. The
weight of arc (4, j) corresponds to the increase of function ¢ when all atoms between
x; and x; are deleted. Thus every distribution can be represent as a path passing by
nodes (Tuy,)geqr - Our algorithm is based on Bellman-Ford algorithm [6,9] to find
the path having K edges with the minimum weight. Now, finding the upper bound
distribution of K atoms with the minimal increase for function ¢ is equivalent to
find the shortest path in G starting from vertex 1 to N with K — 1 arcs. This path
can be obtained by adapting the Bellman-Ford algorithm. Let OPT(i, k) be the
shortest path starting from the vertex 1 to ¢ using exactly k vertices. Then the
recursion formula became

OPT(i, k) = minj<i (OPT(], k— 1) + wjz-)

7j—1
Wherewz]— xz pr +¢‘rj pr _Zd)xl
l=i+1 Ti— =i+1 Ty —
One can easily check that the dlfference of expectatlons is the sum of the weights

on the path.

N
E[p(Y)] — E[¢(X)] = un (@u;) = > ped(r)
=1

K K—1uiy1—1

= A(xu; ) (qu; — Pu; Z Z Pegp(ze)
=1 =1 L=u;+1
K—-1 Ujp1—1 z Ujp1—1 K—1u;y1—1

Uil

=D Hlww) D pem Z S@uin) D Pe——— 1+ 3 > peslar)
i=1 l=u;+1 Tujpr = f=u;+1 Tujpr = FTuy i=1 f=u;+1
K—1 it+1—1 = oo uj41—1 = Uip1—1

Uil VA u;

= ¢(@u;) Z pe——— + wiy1) Z P — Z B(xe)pe

=1 l=u;+1 Tujpr — Tuy l=u;+1 Lujpr = Puy l=u;+1

Wy ,u

o

o
Il
=

Complexity of the approach

Assume that the input distributions have size N and that the task graph as M
nodes. The initial problem has a complexity of NM M.

Our approach consists in two steps: first, bound the inputs distributions and
second, solve the problem with the new input distributions. Each upper bounding
distribution is obtained with our algorithm after N3 operations and we must com-
pute M distributions which are, in general, all distinct. Therefore this first step
has a complexity of N3 M operations and we obtain a bounding graph with M
distributions with size K. The second step (i.e. solving the completion time) has
therefore a complexity equal to KM M.

16
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5 Lower bound discrete distributions

For the lower bound, we do not have a result equivalent to Lemma 4.2 and we cannot
obtain an optimal bound. Thus we propose the following heuristic to compute a
lower bound for the convex order based on Lemma 3.5. To simplify the presentation
we present the heuristic for a function ¢ associate to the second moment. Remember
that the lower bound has a smaller variance. Thus at each step of the heuristic,
we replace two atoms by one new atom. And by construction we keep the same
expectation and the second moment decreases. Let a and b two arbitrary atoms,
and A the difference for the second moment.

Pal + Ppb
()2

A(a,b) = paa’ + ppb® — +
(a,b) = paa” + ppb” — (pa + po P

After some cancellations, we get: A(a,b) = (%)(a — b)%. Thus, at each stage,
we search the couple of atoms a and b which minimizes this difference to keep the
second moment and the variance as high as possible. There is no proof of optimality

for the whole process as the heuristic is myopic. The complexity is N2 to prepare

Algorithm 1 Heuristic for a lower bound.
Input: input distribution D1, input size N, output size K
Output: Output distribution D2
1: D2 =D1.
2: for all atoms a do
3:  for all atoms b do
Compute A(a,b) and store it in a data structure.
end for
: end for
: for i = N down to K + 1 do
Search for the couple (a,b) which minimizes A(a, b).
Make the fusion of a and b in D2. Let ¢ be the atom created by the fusion.
10:  Update the matrix A(z,y) (remove the entries related to @ and b, add the
new entries related to c).
11: end for

4
5
6
7
8
9

matrix A. We then have (N — K) fusions of atoms. The complexity of the fusion
depends on the data-structure used to store A and to find the minimum and can
be linear. Thus, the complexity of the heuristic is N2.

Remark 5.1 In the heuristic, one can modify the value of A, to use any convex

function ¢ and use the same heuristic. A is still the difference between the rewards:

Pal + pbb)

A(a,8) = pag(a) + pod(b) = (pa +po)@(= ==

6 Example

We consider the task graph decided in Fig. 1 associated with discrete distributions
of the task durations to see how our algorithms perform. We have three generated

17
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instances for this graph. In the first instance, the processing time is a uniform
distribution between 1 and 10. In the second (resp. third) instance, the processing
time follows a Zipf’s distribution [1] with exponent equal to 1.4267 (resp. 2) having
{1,...,10} as support. The random variables for the tasks are independent. We
consider relatively small instances to be able to solve exactly the problem and
compare the solutions with the upper bounds. Note that due to the size of the
graphs and the number of atoms, the number of graph analysis is 108.

In Fig. 6, we have represented the distribution of the exact result for the com-
pletion time of the task graph (on the left) and the upper bounding distribution for
the convex order for distributions having only 5 atoms. The input distributions for
the nodes are the Zipf distribution with an exponent equal to 1.4267.

Distribution of total delay d Distribution of total delay d

Rd
Rd

Fig. 6. Distribution of the total delay for the execution of the task graph (left: exact result, right: upper
bound with 5 atoms for the input distributions).

We depict in Fig. 7, the optimal bounds on 4 atoms and 3 atoms when the initial
distribution is an uniform distribution on 7 atoms. The distributions show that it is
not possible to derive the optimal distribution on 3 atoms with only one action on
one atom for the optimal distribution on 4 atoms. Thus a greedy approach will not
work here. In Fig. 8, we report some examples for the lower bounds. Remember

AX—w) ‘ ‘ 05 ‘ ‘ AX—w)

0.4+

0.3 |-

0.2

0.1

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

Fig. 7. Input distributions (left: optimal bound with 4 atoms, right: optimal bounds with 3 atoms). The
initial distribution is an Uniform with 7 atoms.

that this bound is not optimal and we do not characterize the support as me made
for optimal upper bounding distribution. We evaluate the distribution computed
by the previous algorithm using the Kullback-Leibler divergence.

Definition 6.1 [Kullback-Leibler divergence] Let D1 and D2 two discrete proba-
18
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Distribution of delay w; Distribution of delay w;

Pw; =d;)

1.0 2.0 3.36 5.41 8.2

10 20 3.0 40 50 60 7.0 8.0 9.45
d, d,

i i

Fig. 8. Zipf with exponent 2 Input distributions (left) , lower bound with 5 atoms (right).
bility distributions, the KullbackLeibler divergence from D2 to D1 is defined as:

Di(PQ) = 3 P() log gg;

The divergence is a measure of how one probability distribution diverges from
a second one. If the Kullback-Leibler divergence is equal to 0, then both distribu-
tions are equal. In Figure 9, we draw this divergence from the bound to the exact
distribution, versus the number of atoms we keep in the optimal upper bounding
distribution. The similarity of the two distributions remains relevant when one half
of the atoms are deleted.

Kullback-Leibler divergence evolution Kullback-Leibler divergence evolution

18 for a single task 25 for the complete task

16k XX zipf(10,2) | x-x zipf(10,2)

. +-+ zipf(10,1.4267) 3 +-+ zipf(10,1.4267)
g 14| oo U(10) i g 2o e U(10) I
) . S
5 1.2 . 1 g
S 10f — 513 |
ko ks
gosf 1 3
3 B < 10| . g
< i~ .
g 06k . 1 2 el
2 X - 2 4 .,
2 04r X . - 1 2 os) X E ]

0.2} . * 1 5

0.0 L S8 0.0 R . v " w

2 3 4 5 6 7 8 10 2 3 4 5 6 7 8 9 10
number of atoms kept number of atoms kept

Fig. 9. Kullback-Leibler divergence from the optimal upper bound to the exact distribution. For input
distribution (left). For the task graph completion time (right).

7 Conclusion

Some questions are still open. The upper bound is optimal for any convex function
r. For the lower bound, we do not have proof of optimality and it is not clear that
we can transform the minimization problem into a graph related algorithm such
as the shortest path approach we use here like in [4]. But the theoretical results
and the applications on the examples are promising and the approach proposes a
bounding method for many practical optimization problems. Furthermore, replacing
some measurements by their expectation in such an optimisation problem leads to
systematic biais which must be understood. We have also proved such a relation for
MaxFlow problem (in that case, we obtain an upper bound). We are also investigate
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how we can combine our approach and the various structure based approaches
developed in the literature. The numerical methods will been implemented in a new
version of XBorne [10], the software tool we develop to study stochastic bounds.
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