
Université Pierre et Marie Curie

Final-year internship

The power disaggregation algorithms and
their applications to demand dispatch.

Arnaud Cadas

supervised by
Ana Busic, Researcher at DI ENS and Inria, Paris

October 15, 2017

Contents

1 Models 4
1.1 Bayesian Hidden Markov Model . 4
1.2 Hidden Semi-Markov Model . 6
1.3 Hierarchical Dirichlet Process - HSMM . 8
1.4 Factorial HDP-HSMM . 10

2 Batch Inference 11
2.1 Bayesian HMM Inference . 11

2.1.1 Posterior of the hidden states . 11
2.1.2 Posterior of the observations and transitions parameters 13

2.2 HSMM Inference . 14
2.2.1 Posterior of the hidden states . 14
2.2.2 Posterior of the duration parameters . 15

2.3 HDP-HSMM Inference . 16
2.3.1 Posterior of the transitions parameters . 17

3 Online inference 25
3.1 Sequential Monte Carlo . 25

3.1.1 Monte Carlo and importance sampling . 25
3.1.2 Sequential Importance Sampling . 27
3.1.3 Sequential Importance Resampling . 28
3.1.4 Auxiliary Particle Filtering . 29

3.2 Bayesian particle filter . 30
3.3 Factorial bayesian particle filter . 33
3.4 Smoothing . 35

4 Control 39
4.1 Local control design . 39
4.2 Mean-field model . 41
4.3 Feedback loop . 42

5 Application 44

Appendices 50

A Preliminary knowledge 51
A.1 Graphical models . 51
A.2 Bayesian statistics . 52
A.3 Dirichlet distribution . 53
A.4 Nonparametric Bayesian statistics . 55

A.4.1 Dirichlet Process . 55
A.4.2 Hierarchical Dirichlet Process . 57

A.5 Gibbs Sampling . 59

2

Introduction
The increase of renewable energy has made the supply-demand balance of power more complex
to handle. In [2], the authors designed randomized controllers to obtain ancillary services to the
power grid by harnessing inherent flexibility in many loads.

However these controllers suppose that we know the consumption of each device that we want
to control. This introduce the cost and the social constraint of putting sensors on each device of
each house. Therefore, our approach was to use Nonintrusive Appliance Load Monitoring (NALM)
methods [4] to solve a disaggregation problem. The latter comes down to estimating the power
consumption of each device given the total power consumption of the whole house.

We started by looking at the Factorial Hierarchical Dirichlet Process - Hidden Semi-Markov
Model (Factorial HDP-HSMM) introduced in [1]. In our application, the total power consumption
is considered as the observations of this state-space model and the consumption of each device as
the state variables. Each of the latter is modeled by an HDP-HSMM which is an extension of a
Hidden Markov Model. All the models are presented in chapter 1.

The inference method used in [1] will be developed in chapter 2. It is based on Gibbs sampling
and some of its variations. Our contributions here was to give a detailed proof on how to sample
from the posterior distribution of each parameter for each model.

However, the inference algorithm has a complexity of O(T 2N + TN2) where T is the number
of observations and N is the number of hidden states. As our goal is to use the randomized
controllers with our estimations, we wanted a method that does not scale with T. Therefore, we
developed an online algorithm based on particle filters in chapter 3. Because we worked in a
Bayesian setting, we had to infer the parameters of our model. To do so, we used a method called
Particle Learning which is presented in [15]. The idea is to include the parameters in the state
space so that they are tied to the particles. Then, for each (re)sampling step, the parameters are
sampled from their posterior distribution with the help of Bayesian sufficient statistics. Smoothing
was also introduced as a possible improvement for future work.

In chapter 4, we present the control theory for "demand dispatch" which was developed in [2]
and which motivated the search for power disaggregation algorithms. We will see how the control
architecture work, how to evaluate its performance and how to combine it with the online learning
algorithm from the previous chapter.

We applied the disaggregation method to data from Pecan Street in chapter 5. Using their
Dataport, we collected the power consumption of each device from about a hundred houses. We
selected the few devices that consume the most and that are present in most houses. We separated
the houses in a training set and a test set. For each device of each house from the training set,
we estimated the operating modes with a HDP-HSMM and used these estimations to compute
estimators of the priors hyper-parameters. Finally we applied the particle filters method to the
test houses using the computed priors.

The algorithm performs well for the devices with the highest power consumption, which is
the air compressor (of the air conditioning system) in the case of Pecan Street data. The report
ends by an overview of the ongoing work on applying the disaggregation algorithm to the control
techniques in [2] for thermostatically controlled loads.

3

Chapter 1

Models

During this chapter, we will present the different models introduced in [1]. Starting from the
Hidden Markov Model, the next models will build upon it, adding new variables and changing
the structure so that it is more flexible and could fit more complex data. The final model that
we will use for disaggregation is the factorial HDP-HSMM. For this chapter, some knowledge
about graphical models and Bayesian statistics is assumed, see appendix A.1 and appendix A.2
for more details. Section 1.3 also assumes some understanding about the Dirichlet Process and
the Hierarchical Dirichlet Process, see appendix A.4 for more details.

1.1 Bayesian Hidden Markov Model
The Hidden Markov Model (HMM) is a well known model used for time series analysis. Its
structure is more adapted for time series than the usual i.i.d hypothesis as the observations depend
on each other through a phenomena that we cannot observe but which evolve in a specific way.
Thus, it appears as a good candidate to modelize a signal of the power consumption of a device.

The model supposes that we observe a realization of random variables y1, · · · , yn ∈ Yn which
we call observations and that depends on latent random variables x1, · · · , xn ∈ Xn that we
call hidden states. The observations are supposed to be independently distributed given the
hidden states: p(y1, · · · , yn|x1, · · · , xn) =

∏n
i=1 p(yi|xi). The hidden states are supposed to evolve

like a Markov chain: p(x1, · · · , xn) = p(x1)
∏n
i=2 p(xi|xi−1). Here p is a density with respect to

a reference measure which will essentially be the Lesbegue measure (if the random variable is
continuous) or the counting measure (if the random variable is discrete). We will use this notation
p through out the paper.

The sets Y and X can be very general but we intend to use this model for our power disaggre-
gation problem. Therefore, we will focus on the specific sets Y = R+ and X = {1, · · · , J}. The
reason behind this choice is that the hidden states modelize the different operating modes of a
device and the observations represent the power consumption of the device in a particular mode.
When |X | <∞ we call this a finite state-space HMM.

Next, to fully define the model, we need to specify the transition kernel of the hidden Markov
chain and the distribution of the observations given the hidden states. Here again, we could use
several different distributions but we will focus on the ones adapted to our application. Because
we choose X = {1, · · · , J}, it is straightforward that we have a transition matrix as the transition
kernel. We will call (πj)1≤j≤J the rows of this transition matrix. For the observations, as the
power consumption of a device is often very concentrated around a specific value for each operating
mode, we will use a normal distribution with a different mean θj and the same variance σ2 for
each mode. The support of this distribution is not R+ but by using a normal distribution we will
greatly ease the inference part later on. If we estimate a negative value for an observation we will
set it to zero.

4

For the first model, we consider the inferential statistics framework. Thus we suppose that we
know πj and θj for j = 1, · · · , J and σ2. We can sum up the model this way:

xt|xt−1 ∼ Cat(πxt−1)

yt|xt
i.i.d∼ N (θxt , σ2) for t = 1, 2, · · · , n

where the categorical distribution (noted Cat(πj)) is a discrete distribution on the set of {1, · · · , J}
(because dim(πj) = J) where the probability of each outcome is specified by πj . For example, if
x ∼ Cat(πj), then x = i with probability πji. We can also represent this finite state-space HMM
with the following graphical model:

x1 x2 x3

y1 y2 y3

· · ·

· · ·

xT

yT

θj

πj

In this representation, nodes without borders are fixed parameters whereas nodes with borders
are random variables. Random variables with a white background are hidden and the ones with
a grey background are the ones that we observe.

Our goal is to solve the power disaggregation problem in a non intrusive way. This means that
we suppose having no information about the devices that generated the aggregate signal. There-
fore, we suppose that we do not know πj and θj for j = 1, · · · , J . To modelize this uncertainty,
we will use the Bayesian framework instead of the Inferential one.

To do so, we now treat (πj)1≤j≤J and (θj)1≤j≤J as random variables with given priors. In
the context of our application, the prior on (θj)1≤j≤J modelize the uncertainty on the version
of device. For example, the mean power consumption of an operating mode of a device can
vary on the version of this device. However, it is often concentrated around a specific value, so
we will use a normal distribution (as the prior) with hyperparameters µj and τ2

j . Because the
(πj)1≤j≤J are the rows of a transition matrix, we have the following constraints: 0 ≤ πji ≤ 1
∀j ∈ {1, · · · , J}, i ∈ {1, · · · , J} and

∑J
i=1 πji = 1 ∀j ∈ {1, · · · , J} . Thus, we have to choose

a prior that has a support which satisfies these constraints. The most natural distribution that
comes to our mind is the Dirichlet distribution:
Definition. Dirichlet distribution

Let X = (X1, · · · , XK) be a random vector with K ∈ N∗. We say that X is distributed as
a Dirichlet of parameter α = (α1, · · · , αK) ∈ RK+ (noted X ∼ Dir(α1, · · · , αK)) if for every
x ∈ ∆K−1 = {(t1, · · · , tK) : ti ≥ 0,

∑K
i=1 ti = 1}, its density (with respect to the Lebesgue measure

on RK−1) is:

f(x) =
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

xαk−1
k with Γ(y) =

∫ +∞

0
ty−1e−tdt

If we have αi = 0 (i ∈ {1, · · · ,K}), we say that Xi is degenerate and we put Xi = 0.
See appendix A.3 for more results on the Dirichlet distribution. The prior parameters will

be computed only on specific trainning houses to stay general and to preserve our non intrusive
objective, see chapter 5 for more informations on the method. We call this model the (finite
state-space) Bayesian HMM and we can summarize this way:

distribution priors

hidden states xt|xt−1, (πj)j ∼ Cat(πxt−1) πj
i.i.d∼ Dir(α)

observations yt|xt, (θj)j
i.i.d∼ N (θxt , σ2) θj ∼ N (µj , τ2

j)

subscripts t = 1, · · · , n j = 1, · · · , J

5

We can also represent this Bayesian HMM with the following graphical model (where we put
ι = (µj , τ2

j)1≤j≤J):

x1 x2 x3

y1 y2 y3

· · ·

· · ·

xT

yT

θj
J

πj

J
α

ι

In this representation, a node with a square frame means that there are multiple random
variables and the number of them is shown in the bottom-right corner of the square.

1.2 Hidden Semi-Markov Model
The HMM is a powerful model which has been proven useful in many situations but it is also
limited in certain ways. The fact that the hidden states are a Markov chain makes the time that
we stay in a state distributed as a geometric. However, in some cases we would want to have this
time following another distribution. For example, here is the histogram of the time that an air
compressor stays ON:

We can see that a mixture of a Poisson distribution and a negative binomial distribution is a
better fit to these durations than a geometric one. This example motivates us to introduce the
Hidden Semi-Markov Model (HSMM) which is presented in [1]. This model allows us to choose
the distribution we want for the length that a device stays in an operating mode.

The idea is that the hidden states will behave as a jump process where we choose the arrival
time distribution. We now have super-states z1, · · · , zS that represent the jumps, they are like
the previous hidden states except that now we do not allow self-transitions. The durations
D1, · · · , DS are the time we stay in each state after a jump. S represents the last jump of the
process before the end of our observations T . We have to specify if our observations ends exactly
when the process is about to jump (T =

∑S
s=1Ds) or if they are censored. As in our control

application, we will have continuously arriving observations, it seems natural to suppose that they
are right-censored (

∑S−1
s=1 Ds < T ≤

∑S
s=1Ds) as in [1]. The hidden states are entirely determined

by the super-states and the durations. The first hidden state x1 is equal to z1 and remains the
same until xD1 , then xD1+1 is equal to z2 and remains the same until xD1+D2 and so on...

The durations are distributed according to a parameter wj which depends on the current super-

6

state. This represents the fact that a device does not have the same behavior for different modes.
As with the observations in the previous section, we can put any (discrete) distribution for the
durations but we have chosen one which is well suited to our application: a mixture of a Poisson
distribution and a negative binomial distribution.

This mixture was most of the time the best fit to our Pecan Street data. The intuition behind
this distribution is that a device often stays in a mode around the same time (which is modelized
by the Poisson) and sometimes it stays very long compared to the usual habit (for example the
owner of the device forget that it is ON or go on vacation and does not use it for a long time, which
is modelized by the negative binomial). In this case, we have wj = (φj , λj , rj , ϕj) where φj is the
proportion (of Poisson) in the mixture, λj is the parameter of the Poisson distribution, rj and
ϕj are the parameters of the negative binomial distribution. We note a mixture distribution as
Mixture($1:M , f1:M) whereM is the number of components and $1:M are the weights associated
to f1:M which are the densities of the mixture.

Because we work with the bayesian framework, we need to put a prior on these parameters.
We choose to put a Beta prior on φj (with hyperparameters α̇j and β̇j), a Gamma prior on λj
(with hyperparameters α̈j and β̈j), a Beta prior on ϕj (with hyperparameters ...αj and

...
β j) and no

prior on rj . The density (with respect to the counting measure) of a duration given its parameters
and the super-state is the following:

p(d|(φj)j , (λj)j , (ϕj)j , z) = φz
λdz
d! e
−λz + (1− φz)

(
d+ rz − 1
rz − 1

)
ϕd−1
z (1− ϕz)rz

For the prior on the transition matrix (of the super-states), we need to account the fact that there
are no more self-transitions. We note πj := (πj,−j , πj,j) with πj,−j := (πj,1, · · · , πj,j−1, πj,j+1, · · · , πj,J)
and πj,j = 0. The prior is now on πj,−j and we use an J − 1 dimensionnal Dirichlet with hyper-
parameter α−j := (α1, · · · , αj−1, αj+1, · · · , αJ). We can sum up the model this way:

distribution priors

hidden states xt = zs zs|zs−1, (πj)j ∼ Cat(πzs−1) πj,−j
i.i.d∼ Dir(α−j)

durations
Ds|zs, (wj)j ∼Mixture ((φzs , 1− φzs), (f1, f2))

f1 = fP(λzs) f2 = fNegBin(rzs ,ϕzs)

φj ∼ Beta(α̇j , β̇j)
λj ∼ Gamma(α̈j , β̈j)
ϕj ∼ Beta(...αj ,

...
β j)

observations yt|zs, (θj)j
i.i.d∼ N (θzs , σ2) θj ∼ N (µj , τ2

j)

subscripts

s = 1, · · · , S
t = t1s, · · · , t2s with

t2s =
∑
l≤s

Dl, t
1
s = t2s−1 + 1, t20 = 0

j = 1, · · · , J

The notations t1s and t2s represent the start and the end of the sth block of hidden states. A
block of hidden states means the sequence of hidden states that are tied to a super-state. So we
could also define t1s and t2s as t1s = min{t : xt = zs} and t2s = max{t : xt = zs}. We can represent
this Bayesian HSMM with the following graphical model:

7

z1 z2

D1 D2

· · ·

· · · · · ·

· · · · · ·

zS

DS

· · ·

· · ·yt11 yt21 yt12 yt22 yt1
S

yt2
S

xt11 xt21 xt12 xt22 xt1
S

xt2
S

θj
J

πj

J

wj

J

α

κ

ι

with t2s =
∑
l≤sDl, t1s = t2s−1 + 1 and t20 = 0 and with κ = (α̇j , β̇j , α̈j , β̈j ,

...
αj ,

...
β j)1≤j≤J .

1.3 Hierarchical Dirichlet Process - HSMM
The Hidden Semi-Markov Model is more flexible than the HMM and had been proved useful
in many situations. However, this model imposes us a strong assumption which is the number
of operating modes (the number of different hidden states). Because we want to solve our dis-
aggregation problem in a non-intrusive way, we suppose that we do not know the model of a
device. The number of operating modes of a device can depend on its model. Therefore, we
would want to modelize this uncertainty and be able to use prior knowledge about this number
of modes. One solution is to have a model which allows an infinite number of modes and that
learns through observations the real number. We call this model a Hierarchical Dirichlet Process
- HSMM (HDP-HSMM). see appendix A.4 for more details on the Hierarchical Dirichlet Process.

The idea behind this model is to have an infinite number of hidden states. Because we now
have a transition matrix of infinite dimension, we need a new prior (on each of its rows) which
samples an infinite number of values between 0 and 1 that all sum up to 1. A first idea is to use
a Dirichlet process as its realizations are discrete probability measure. However, if we choose a
non-atomic distribution as the parameter of the DP, the atoms between the rows will be almost
surely distincts. This means that with probability 1 we will always jump from one row to a new
one but never to a row previously visited. So, this prior cannot represent a device with a finite
number of operating modes which is problematic. One solution is to choose a discrete probability
measure as the parameter of the DP prior. We want it to be flexible enough to model various
structures in the transitions of operating modes of a device and this leads us to choose again a
Dirichlet process. If we put everything together, we have define a hierarchical Dirichlet process as
our prior.

M. J. Johnson proposed in [1] to use a HDP prior that can be described (Using the notations
of section A.4.2) as:

G0 ∼ DP (γ,H) with H(θ, w) = f(θ)g(w)
Gj |G0 ∼ DP (α,G0)

where f is the density of the observations parameters and g is the density of the durations pa-
rameters. If we look at the definition of the HDP, the parameter H does not depend on j (which
is the row index in our models). This means that we cannot use a different normal distribution
for each row j as we did in the HSMM. Therefore, we now choose f (respectively g) as a mixture
of normal densities (respectively Beta, Gamma and Beta densities). This allows us to have only
one H (that does not change with j) and still be able to use prior knowledge on the number of
operating modes. Indeed, if our prior knowledge tells us that a device has M operating modes,

8

we can choose f as a mixture of M normal densities with each parameters suited to the mode. If
we have no prior at all, we can just set f as Gaussian (a mixture of only one component) with
randomly chosen parameters.

In order to better understand how this HDP defines the prior on our transition parameters,
we are going to look at its stick-breaking representation:

β ∼ GEM(γ) θk, wk
i.i.d∼ H for k = 1, 2, · · ·

G0 =
∞∑
k=0

βkδ(θk,wk)

πj |β ∼ DP (α, β)

Gj =
∞∑
k=0

πjkδ(θk,wk) for j = 1, 2, · · ·

As we have described in section A.4.1, each transition row πj is attached to a (θj , wj). We
can see that the transitions are between the observations (and durations) parameters instead of
the hidden states. By this, we means that we jump from (θj , wj) to (θk, wk) with probability
πjk. To link this HDP prior to our previous models, we can introduce the super-states as labels
which represent the rows associated to the observations. We get the following generative process
(looking only at the observations parameters):

β ∼ GEM(γ)

πj |β
i.i.d∼ DP (α, β) (θj , wj) ∼ H for j = 1, 2, · · · ,

π̄j = πj,−j
1− πj,j

zs|zs−1, (πj)j ∼ π̄zs−1

yt1s:t2s |zs, (θj)j
i.i.d∼ f(θzs) for s = 1, · · · , S

where π̄j is the transition row without πj,j (and renormalized) because we do not allow self-
transition to be able to have different distribution on the durations. We can now see more clearly
the link with the HSMM and how with this HDP prior, we have defined priors on our new transition
matrix of infinite dimension. The HDP-HSMM can be summarized as:

distribution priors

hidden states xt = zs zs|zs−1, (π̄j)j ∼ Cat(π̄zs−1) π̄j = πj,−j
1−πj,j πj |β

i.i.d∼ DP (α, β) β ∼ GEM(γ)

durations
Ds|zs, (wj)j ∼Mixture ((φzs , 1− φzs), (f1, f2))

f1 = fP(λzs) f2 = fNegBin(rzs ,ϕzs)

φj , λj , ϕj ∼Mixture ($1:M , f1:M)
fm =fBeta(α̇m,β̇m)fGamma(α̈m,β̈m)fBeta(...αm,

...
β m)

observations yt|zs, (θj)j
i.i.d∼ N (θzs , σ2) θj ∼Mixture

(
p1:M ,

(
fN (µm,τ2

m)
)
m

)

subscripts

s = 1, · · · , S
t = t1s, · · · , t2s with

t2s =
∑
l≤s

Dl, t
1
s = t2s−1 + 1, t20 = 0

j = 1, 2, · · ·
m = 1, · · · ,M

We can also represent the HDP-HSMM with the following graphical model:

9

z1 z2

D1 D2

· · ·

· · · · · ·

· · · · · ·

zS

DS

· · ·

· · ·yt11 yt21 yt12 yt22 yt1
S

yt2
S

xt11 xt21 xt12 xt22 xt1
S

xt2
S

θj

∞

πj

∞

wj

∞

β

α

κ

ι

γ

1.4 Factorial HDP-HSMM
All the models that we have presented were designed to describe the consumption of a device with
multiple operating modes. However, our goal is to solve a disaggregation problem. This means
that we only have access to the total consumption of a house which is the sum of the consumption
of each device. Therefore, we need a final model that describes this aggregation using our previous
model. For this purpose, [1] introduced the Factorial HDP-HSMM. The idea is that we want to
represent each device by a HDP-HSMM (where the different states are the different modes of
the device). So now, each device will have a hidden emission y

(k)
n (which represents the power

consumption of the device) and the observation will be the aggregate power ȳn =
∑K
k=1 y

(k)
n + ε

(with K the number of devices and ε a white noise). In order to ease the computations for the
inference of the model, we suppose that the hidden emissions are independent given the hidden
states:

p(y(1)
n , · · · , y(K)

n |x(1)
n , · · · , x(K)

n) =
K∏
k=1

p(y(k)
n |x(k)

n)

To illustrate this structure, we can draw the hidden states part with only the x(k)
1:n and the y(k)

1:n to
simplify it (the transitions, durations and emissions parameters just have to be copied from what
was done in the previous section for each device):

x
(1)
1 x

(1)
2

x
(2)
1 x

(2)
2

· · ·

· · ·

x
(1)
n

x
(2)
n

y
(1)
1 y

(1)
2 y

(1)
n

y
(2)
1 y

(2)
2 y

(2)
n

ȳ1 ȳ2 ȳn

10

Chapter 2

Batch Inference

Now that we have defined our models, we want to infer the parameters that will make our models
fit the best our data from Pecan Street. We are working in a Bayesian setting, so we want to
compute Bayesian estimators of the parameters of our models. To do so, we want to sample from
the posterior distribution of the model which means the joint distribution of all the parameters
of the model given the observations. Because it is too complex to directly sample from this joint
distribution, we are going to use a method called Gibbs sampling. This algorithm can produce
approximate samples from the joint distribution if we know how to sample from each parameter
given the others and the observations, see appendix A.5 for more details. During this chapter,
we will first briefly present Gibbs sampling. Then, we will see how to sample from the posterior
distribution of each parameter for each model introduced in the previous chapter.

2.1 Bayesian HMM Inference
In the Bayesian Hidden Markov Model, defined in section 1.1, the parameters of the model are
the hidden states x1:T , the observations parameters (θj)j and the transitions parameters (πj)j .
Therefore, we will use the following posterior joint density as the target density in a Gibbs sampler:

p(x1:T , (θj)j , (πj)j |y1:T)

with x1:T = (x1, · · · , xT) and y1:T = (y1, · · · , yT). In order to compute the inference algorithm, we
have to be able to sample from the distribution of each of these parameters given the observations
and the other parameters. During this section, we will show how to sample each parameter. First
we will see how to sample the hidden states which will lead us to another variation of the Gibbs
sampler: the blocked Gibbs sampler. Then, we will see how to easily sample the observations and
transitions parameters through conjugacy.

2.1.1 Posterior of the hidden states
Most of the inference problems associated with the Hidden Markov models comes down to com-
puting the posterior distribution of the hidden variables given the observations (whether it is the
joint distribution or its marginals). The algorithms to solve these problems often use "forward
and backward messages". Because we are working in a Bayesian setting, we are more interested in
sampling from this posterior distribution than computing it. First, we will define these "messages"
and then, we will see how we can use them to obtain samples from the posterior distribution. It
is also important to remember that we supposed in section 1.1 that |X | <∞. This hypothesis is
essential in order to be able to compute these "messages".

Definition. Forward messages

11

Let (ft)1≤t≤T be a sequence of functions with for all t ∈ {1, · · · , T}, ft : X 7→ R. We define the
first function as f1(x1) := p(x1)p(y1|x1) and then, we define ft(xt) = p(yt|xt)

∑
xt−1

ft−1(xt−1)p(xt|xt−1)
recursively until t = T .

Proposition 2.1.1.
ft(xt) = p(y1:t, xt) ∀t = 1, · · · , T

Proof. The property is true for f1(x1) = p(y1, x1). Suppose that 2.1.1 is true at time t− 1, then
we have:

ft(xt) = p(yt|xt)
∑
xt−1

p(y1:t−1, xt−1)p(xt|xt−1)

= p(y1:t, xt)
p(y1:t−1, xt)

∑
xt−1

p(y1:t−1, xt−1)p(y1:t−1, xt, xt−1)
y1:t−1, xt−1)

= p(y1:t, xt)
p(y1:t−1, xt)

∑
xt−1

p(y1:t−1, xt−1, xt)

= p(y1:t, xt)

By induction, it is true for all t ∈ {1, · · · , T}

Definition. Backward messages
Let (bt)1≤t≤T be a sequence of functions with for all t ∈ {1, · · · , T}, bt : X 7→ R. We define

the last function as bT ≡ 1 and then, we define bt(xt) =
∑
xt+1

bt+1(xt+1)p(yt+1|xt+1)p(xt+1|xt)
recursively until t = 1.

Proposition 2.1.2.
bt(xt) = p(yt+1:T |xt) ∀t = 1, · · · , T − 1

Proof. The property is true for

bT−1(xT−1) =
∑
xT

p(yT |xT)p(xT |xT−1) =
∑
xT

p(yT , xT , xT−1)
p(xT , xT−1)

p(xT , xT−1)
p(xT−1) = p(yT |xT−1)

Suppose that 2.1.2 is true at time t+ 1, then we have:

bt(xt) =
∑
xt+1

p(yt+2:T |xt+1)p(yt+1|xt+1)p(xt+1|xt)

=
∑
xt+1

p(yt+1:T , xt, xt+1)
p(yt+1, xt, xt+1)

p(yt+1, xt, xt+1)
p(xt, xt+1)

p(xt, xt+1)
p(xt)

= p(yt+1:T |xt)

By induction, it is true for all t ∈ {1, · · · , T − 1}

One example of using the messages is to compute marginals of the posterior distribution, i.e
p(xt|y1:T), ∀t ∈ {1, · · · , T}, ∀xt ∈ X . To do so, we multiply both messages:

p(xt|y1:T) ∝ ft(xt)bt(xt)

because ft(xt)bt(xt) = p(y1:t, xt)p(yt+1:T |xt) = p(y1:t, xt)p(y1:T ,xt)
p(y1:t,xt) = p(y1:T , xt) and p(xt|y1:T) =

p(y1:T ,xt)
p(y1:T) ∝ p(y1:T , xt).
However, these marginals do not help us directly to obtain samples from p(xt|y1:T , x−t) which

we would need to create a Gibbs sampler. Therefore, we are going to use another variation of
the Gibbs sampler which is called the blocked Gibbs sampler. This method consists in sampling
from the joint distribution given the observations y1:T instead of sampling each hidden state

12

individually given the observations and the other hidden states x−t. This way, we sample the
whole hidden states sequence in one go. To achieve this, we are going to decompose the posterior
joint distribution with Bayes’ rule and graphical models properties and then we are going to see
how to simulate each elements with values we know.

p(x1:T |y1:T) = p(x2:T |y1:T , x1)p(x1|y1:T) by Bayes’ rule
= p(xT |y1:T , x1:T−1)p(xT−1|y1:T , x1:T−2) · · · p(x2|y1:T , x1)p(x1|y1:T)
= p(xT |y1:T , xT−1)p(xT−1|y1:T , xT−2) · · · p(x2|y1:T , x1)p(x1|y1:T) by Markov chain properties
= p(xT |yT , xT−1)p(xT−1|yT−1:T , xT−2) · · · p(x2|y2:T , x1)p(x1|y1:T)

by graphical models properties. If we look at each individual elements, we can see that we can
simulate from them with the transitions probabilities p(xt|xt−1), the likelyhood terms p(yt|xt) and
the backward messages bt(xt) = p(yt+1:T |xt):

p(x1|y1:T) ∝ p(x1, y1:T) by Bayes’ rule
= p(x1)p(y1:T |x1)
= p(x1)p(y1|y2:T , x1)p(y2:T |x1)
= p(x1)p(y1|x1)b1(x1) by graphical model properties

∀t ∈ {2, · · · , T} p(xt|yt:T , xt−1) ∝ p(xt, xt−1, yt:T)
p(xt−1) by Bayes’ rule

= p(xt|xt−1)p(yt:T |xt, xt−1)
= p(xt|xt−1)p(yt|yt+1:T , xt, xt−1)p(yt+1:T |xt, xt−1)
= p(xt|xt−1)p(yt|xt)bt(xt) by graphical model properties

In conclusion, we can sample the whole hidden state sequence by first sampling x̃1 following
p(x1|y1:T) ∝ p(x1)p(y1|x1)b1(x1). Then, we iterate this process by sampling x̃t following p(xt|yt:T , x̃t−1) ∝
p(xt|x̃t−1)p(yt|xt)bt(xt).

2.1.2 Posterior of the observations and transitions parameters
In order to sample the observations and transitions parameters, we will use conjugacy. In Bayesian
statistics, if the posterior distribution is in the same family as the prior distribution, we say that
the prior is conjugate to the likelihood function. This means that if it is easy to sample from the
prior distribution, it will be easy to sample from the posterior distribution provided that you know
how to compute the new parameters for the posterior distribution. In section 1.1, we carefully
choose the prior distributions so that it is coherent with our application but also because they are
conjugate to their likelihood functions.

First, let us look at the observations parameters. Each parameter is tied to a hidden state
and thus only depends on the observations which are associated to this hidden state. We want to
be able to sample from p(θj |(yt)t∈Tj) (with Tj = {t : xt = j}) for all j = 1, · · · , J and we know
that yt|xt

i.i.d∼ N (θxt , σ2) and that θj ∼ N (µj , τ2
j). A Gaussian prior is conjugate to a Gaussian

likelihood and we get that

θj |(yt)t∈Tj ∼ N (µ̃j , τ̃2
j) with µ̃j =

(
µj
τ2
j

+
∑
t∈Tj yt

σ2

)
× τ̃2

j and τ̃2
j =

(
1
τ2
j

+ |Tj |
σ2

)−1

The (πj)j are i.i.d and their posterior distribution depends only on the (xt)t. So, we only
need to know how to sample from p(πj |(xt)t:xt−1=j) for all j. We have that xt ∼ πxt−1 so for all
t such that xt−1 = j, we have xt ∼ Cat(πj). Because πj ∼ Dir(α) and because the Dirichlet
distribution is conjugate to the categorical distribution, we have πj |(xt)s:xt−1=j ∼ Dir(α+ c) with
c = (c1, · · · , cN) and ci which is equal to the number of xt = i with t such that xt−1 = j.

13

2.2 HSMM Inference
The difference between the Hidden Semi-Markov Model (defined in section 1.2) and the Bayesian
HMM is that we added hidden super-states z1:S , durationsD1:S and their parameters (wj)j . More-
over, the hidden states are now entirely defined by the super-states and the durations. Therefore,
we only need to sample these two following their posterior distribution to obtain samples of the
hidden states. Thus, we will now use the following posterior joint density as the target density in
a Gibbs sampler:

p(z1:S , D1:S , (wj)j , (θj)j , (πj)j |y1:T)

We have already seen how to sample from the posterior distribution of the observation and tran-
sitions parameters in section 2.1.2. So, during this section, we will first see how to sample the
hidden super-states and the durations with a blocked Gibbs sampler. Then, we will see how to
sample the durations parameters with a Gibbs sampler for a mixture distribution.

2.2.1 Posterior of the hidden states

We use a similar method (blocked Gibbs sampling) as in section 2.1.1 to sample from the posterior
of the hidden super-states and the posterior of the durations. As previously, we will need to
compute backward messages. However, we cannot use the ones defined in section 2.1.1 as the
HSMM introduced durations variables. Thus, we will use the backward messages presented in [1]:

Bt(i) := p(yt+1:T |xt = i, Ft = 1)

=
∑
j

B∗t (j)p(xt+1 = j|xt = i)

B∗t (i) := p(yt+1:T |xt+1 = i, Ft = 1)

=
T−t∑
d=1

Bt+d(i)p(Dt+1 = d|xt+1 = i)p(yt+1:t+d|xt+1 = i,Dt+1 = d)

+ p(Dt+1 > T − t|xt+1 = i)p(yt+1:T |xt+1 = i,Dt+1 > T − t)
BT (i) := 1

where Ft is a variable which is equal to 1 if we jump to a new super-state at time t + 1 (i.e,
∃s ∈ {1, · · · , S} such that

∑
l<=sDl = t). Dt+1 is the duration variable associated to the super-

state we jumped to at time t+ 1 (i.e, Dt+1 := Ds+1 with s such that
∑
l<=sDl = t).

To sample the super-states, we are going to use the Blocked Gibbs sampler as we did in
section 2.1.1. To do so, we are going to again decompose the posterior joint distribution with
Bayes’ rule and graphical models properties:

p(z1:S |y1:T) = p(zS |y1:T , z1:S−1)p(zS−1|y1:T , z1:S−2) · · · p(z2|y1:T , z1)p(z1|y1:T)
= p(zS |y1:T , zS−1)p(zS−1|y1:T , zS−2) · · · p(z2|y1:T , z1)p(z1|y1:T)
= p(zS |yt1

S
:T , zS−1)p(zS−1|yt1

S−1:T , zS−2) · · · p(z2|yt12:T , z1)p(z1|y1:T)

with t2s =
∑
l≤sDl, t1s = t2s−1 + 1 and t20 = 0. If we look at each individual elements, we can see

that we can simulate from them with the transitions probabilities and the backward messages B∗t :

p(z1|y1:T) = p(z1, y1:T)
p(y1:T) ∝ p(z1, y1:T) = p(z1)p(y1:T |z1) = p(z1)B∗0(z1)

p(zs|yt1s:T , zs−1) ∝
p(zs, yt1s:T , zs−1)

p(zs−1) = p(zs|zs−1)p(yt1s:T |zs, zs−1) = p(zs|zs−1)B∗t2
s−1

(zs) ∀ s ∈ {2, · · · , S}

14

To sample the durations, we can use the same method (Blocked Gibbs sampler) and tricks
(Bayes’ rule and graphical models properties):

p(D1:S |y1:T , z1:S) =
S∏
s=1

p(Ds|yt1s:T , zs) by graphical models properties

If we look at each individual elements, we can see that we can simulate from them with likelihoods
on the observations and on the durations and the backward messages Bt and B∗t :

p(Ds = d|yt1s:T , zs) =
p(Ds = d, yt1s:T |zs)

p(yt1s:T |zs)

=
p(Ds = d|zs)p(yt1s:T |Ds = d, zs)

p(yt1s:T |zs)

=
p(Ds = d|zs)p(yt1s:t1s+d−1|Ds = d, zs)p(yt1s+d:T |Ds = d, zs)

p(yt1s:T |zs)

=
p(Ds = d|zs)p(yt1s:t1s+d−1|Ds = d, zs)Bt1s+d−1(zs)

B∗
t2
s−1

(zs)
(2.1)

In particular,
p(D1 = d|y1:T , z1) = p(D1 = d|z1)p(y1:d|D1 = d, z1)Bd(z1)

B∗0(z1) (2.2)

In conclusion, we can sample the whole hidden state sequence by first sampling z̃1 following
p(z1|y1:T) ∝ p(z1)B∗0(z1), then we sample D̃1 following (2.2). We iterate this process by sampling
z̃s following p(zs|yt̃1s:T , z̃s−1) ∝ p(zs|z̃s−1)B∗

t̃2
s−1

(zs) and D̃s following (2.1) with t̃2s =
∑
l≤s D̃l and

t̃1s = t̃2s−1 + 1. Finally, we set x̃t̃1s:t̃2s = z̃s ∀s ∈ {1, · · · , S}.

2.2.2 Posterior of the duration parameters
When we defined the HSMM in section 1.2, we choose a mixture distribution as the distribution
for the durations. So, to sample from the posterior of the duration parameters, we have to know
how to sample from the posterior of a mixture distribution. Because we will need this result in
the next sections, we will compute the posterior of a mixture distribution in a general setting.

Let ξ1, · · · , ξn be independent random variables with ξi distributed according to the mixture
distribution Mixture($1:M , f1:M) for all i = 1, · · · , n. We use the same notation as in section 1.2
which means that M is the number of components and $1:M are the weights associated to f1:M
which are the densities of the mixture. Let $ be a Dirichlet(α)-distributed random vector and
suppose that each density fm of the mixure has a parameter ϑm which has a conjugate prior (for
fm). Moreover, let Z1, · · · , Zn be the labels which indicate the component associated to each ob-
servation (i.e realisation of ξ1, · · · , ξn). This means that ∀i ∈ {1, · · · , n}, ∀m ∈ {1, · · · ,M}, p(Zi =
m) = $m. In order to understand the interaction between all these variables, we can look at the
graphical model:

Z1 Z2 Z3

ξ1 ξ2 ξ3

· · ·

· · ·

Zn

ξn

ϑm

M

$

To sample from the posterior of this mixture distribution, we will use a Gibbs sampler with
the following target density:

p($, (ϑm)m, Z1:n|ξ1:n)

15

Therefore, we need to be able to sample from those three densities:

p($|ξ1:n, (ϑm)m, Z1:n) = p($|Z1:n)

p((ϑm)m|ξ1:n, Z1:n, $) =
M∏
m=1

p(ϑm|ξ1:n, Z1:n) =
M∏
m=1

p(ϑm|ξl∈Zm) with Zm = {l : Zl = m}

p(Z1:n|ξ1:n, $, (ϑm)m) =
n∏
l=1

p(Zl|ξl, $, (ϑm)m) ∝
n∏
l=1

p(ξl|(ϑm)m, Zl)p(Zl|$)

The first one is easy to sample from because $ is Dirichlet(α)-distributed which is a conjugate
prior to the categorical likelihood of the labels Z1:n. For the same reasons, the second can also
be easily sampled from because we choose conjugate priors for the distributions of the parameters
(ϑm)m. Finally, for the third density, if M is not too big, we can compute p(ξl|ϑm, Zl = m)p(Zl =
m|$) = fm(ξl)$m for allm = 1, · · · ,M . Then, we can sample from these probabilities. Therefore,
we can derive the Gibbs sampler: Algorithm 1.

Algorithm 1: Gibbs sampler for Mixture distribution
Sample x1 with an initial distribution.
for k ∈ {1, · · · ,K} do

Sample the components parameters:
for m ∈ {1, · · · ,m} do

Compute Zkm = {l : Zkl = m}
Sample ϑk+1

m following p(ϑm|ξl∈Zkm)
end
Sample the mixture weights $k+1 following p($|Zk1:n)
Sample the labels:
for l ∈ {1, · · · , n} do

Sample Zk+1
l following p(ξl|(ϑk+1

m)m, Zl)p(Zl|$k+1)
end

end

In the end, we can use Algorithm 1 to sample from the posterior distribution of the duration
parameters. All we need is to specify the variables using the notations from section 1.2 and the
posterior distributions of the components parameters. For the HSMM, we have Ds|zs, (wj)j ∼
Mixture

(
(φzs , 1− φzs), (fP(λzs), fBeta(rzs ,ϕzs))

)
with D1, · · · , DS which are independent given

z1, · · · , zS . So, we have J mixtures (one for each possible hidden states). For each mixture,
the observations are (Ds)s:zs=j and the parameters are M = 2, ϑ1 = λj , ϑ2 = (rj , ϕj) and
$ = (φj , 1−φj). The labels were not defined in the section, so we have to introduce new variables
that we note U1:S . For the posterior distributions of the components parameters, we use conjugacy:

λj |(Ds)s∈Sj1 ∼ Gamma(α̈j +
∑
s∈Sj1

Ds, β̈j + |Sj1|) with Sj1 = {s : zs = j, Us = 1}

ϕj |(Ds)s∈Sj2 ∼ Beta(...αj +
∑
s∈Sj2

Ds,
...
β j + rj |Sj2|) with Sj2 = {s : zs = j, Us = 2}

2.3 HDP-HSMM Inference
The Hierarchical Dirichlet Process - Hidden Semi-Markov Model builds upon the HSMM by having
an infinite number of possible hidden states. It also introduces an HDP prior and adds a new

16

transition parameter β. Therefore, we will now use the following posterior joint density as the
target density in a Gibbs sampler:

p(z1:S , D1:S , (wj)j , (θj)j , (πj)j , β|y1:T)

We have already seen how to sample from the posterior distribution of the super-sates and dura-
tions in section 2.2.1. However, the method supposed that |X | < ∞ to make the computations
tractable. We will see during this section how we can sample from the posterior distribution of
the transitions parameters using a finite-dimensional approximation of the HDP. Thus, we also
get back tractability for the hidden states inference. Finally, the last difference between the HDP-
HSMM and the HSMM is the distributions chosen for the observations and durations parameters.
For the observations parameters, we chose a Gaussian mixture. So, to sample from its posterior
distribution, we can use Algorithm 1 presented in section 2.2.2. For the durations parameters, each
wj is now distributed as a mixture distribution. To sample from their posterior distribution, we can
use the same method as in section 2.2.2. However, now the components are mixture distributions
themselves and thus, to sample them we have to reuse Algorithm 1 instead of conjugacy.

2.3.1 Posterior of the transitions parameters
Let us recall that our transitions parameters are defined by a Hierarchical Dirichlet Process:

β ∼ GEM(γ)

πj |β
i.i.d∼ DP (α, β) (θj , wj) ∼ H for j = 1, 2, · · · ,

π̄j = πj,−j
1− πj,j

zs|zs−1, (πj)j ∼ π̄zs−1 for s = 1, · · · , S

To sample from the posterior of this HDP, we need to sample the posterior of the (πj)j and the
posterior of β. However, there is an infinity of πj and so we cannot compute all of them. There
are a few differents methods to solve this problem. We are going to look at one of them which
is presented in [1]: the Weak-Limit Gibbs Sampler. This method creates L-dimensional Dirichlet
distributions which approximate the HDP when L grows, then it uses Gibbs Sampling to sample
from the posterior of these distributions (which approximates the sampling from the posterior of
the HDP). For our model, the approximation is:

β ∼ Dir(γ
L
, · · · , γ

L
)

πj |β
i.i.d∼ Dir(αβ1, · · · , αβL) (θj , wj) ∼ H for j = 1, · · · , L

π̄j = πj,−j
1− πj,j

zs|zs−1, (πj)j ∼ π̄zs−1 for s = 1, · · · , S

The approximation of the HDP by L-dimensional Dirichlet distributions is presented in [5] and is
justified by a result of [8]. This finite approximation can now be computed, we need to determine
the posterior distribution of (πj)j and β:

p((πj)j , β|γ, α, (zs)s) = p((πj)j |β, γ, α, (zs)s)p(β|γ, α, (zs)s)

Sampling from posterior of (πj)j
First, let us recall that the π1, · · · , πL are conditionally independent and identically distributed
given β:

p(π1, · · · , πL|β, γ, α, (zs)s) =
L∏
j=1

p(πj |β, α, (zs)s∈Sj) with Sj = {s : zs−1 = j}

17

Now, let us look at only one of them:

p(πj |β, α, (zs)s∈Sj) ∝ p(πj |β, α)p((zs)s∈Sj |πj , β, α)
= p(πj |β, α)p((zs)s∈Sj |πj)

∝ παβ1−1
j1 · · ·παβL−1

jL

(
πj1

1− πjj

)nj1

· · ·
(

πjL
1− πjj

)njL

with njk = |{s : zs = k, zs−1 = j}| (note that njj = 0 so
(

πjj
1−πjj

)njj
= 1 because we do not allow

self-transitions). Normally, the (zs)s∈Sj follow a categorical law with πj as a Dirichlet prior and
so the posterior should be also a Dirichlet distribution with new parameters (actualised with our
observations) because they are conjugate. However, because we do not allow for self-transitions,
a new term

(
1

1−πjj

)njk
appears (it comes from the normalization of πj into π̄j) and we lose

conjugacy.

One way to recover conjugacy, is to use the data augmentation technique described in Van Dyk
and Meng (2001). This technique can be used here by creating new variables that will compensate
the additional terms in our computations. To do so, we introduce the (ρji)ji:

ρji|πjj
i.i.d∼ Geo(1− πjj) for j = 1, · · · , L and i = 1, · · · , nj·

with nj· =
∑L
k=1 njk. We can also show how these new variables are placed in our graphical model

(with only the HDP part):

z1 z2 · · · zS

πj

β

ρji

α

γ

Now, if we computes again the posterior of the π1, · · · , πL and (ρji)ji:

p(π1, · · · , πL, (ρji)ji|β, γ, α, (zs)s)

We use Gibbs sampling to sample first the (ρji)ji:

p((ρji)ji|(πj)j , β, γ, α, (zs)s) =
L∏
j=1

nj·∏
i=1

p(ρji|πjj)

Then, we sample from the posterior of the π1, · · · , πL:

p(π1, · · · , πL|β, γ, α, (zs)s, (ρji)ji) =
L∏
j=1

p(πj |β, α, (zs)s∈Sj , (ρji)1≤i≤nj·)

18

p(πj |β, α,(zs)s∈Sj , (ρji)1≤i≤nj·)
∝ p(πj |β, α)p((zs)s∈Sj |πj , β, α)p((ρji)1≤i≤nj· |πj , β, α, (zs)s∈Sj)

= p(πj |β, α)p((zs)s∈Sj |πj)
nj·∏
i=1

p(ρji|πjj)

∝ παβ1−1
j1 · · ·παβL−1

jL

(
πj1

1− πjj

)nj1

· · ·
(

πjL
1− πjj

)njL (nj·∏
i=1

π
ρji
jj (1− πjj)

)

= π
αβ1+nj1−1
j1 · · ·παβj−1+njj−1−1

jj−1 π
αβj+

∑nj·
i=1

ρji−1
jj π

αβj+1+njj+1−1
jj+1 · · ·παβL+njL−1

jL

∝ Dir(αβ1 + nj1, · · · , αβj−1 + njj−1, αβj +
nj·∑
i=1

ρji, αβj+1 + njj+1, · · · , αβL + njL)

We can see that we get back conjugacy and so we can easily sample from the posterior of the
π1, · · · , πL and (ρji)ji with Gibbs sampling and known distributions.

Sampling from posterior of β

To complete the Gibbs sampling from the posterior of our HDP, we need to sample from the
posterior of β given all other variables. This means that we have to compute:

p(β|{πj}, γ, α, (zs)s, (ρji)ji)

However, this distribution is quite hard to compute because of the {πj} so we will compute the
distribution without them and we will see later how it will be enough for our sampling method.
We can decompose this probability in values we know with Bayes’ rule:

p(β|γ, α, (zs)s, (ρji)ji) = p((πj)j , β|γ, α, (zs)s, (ρji)ji)
p((πj)j |β, γ, α, (zs)s, (ρji)ji)

Where the denominator is something we already computed in the previous section. From now on,
we define njj :=

∑nj·
i=1 ρji to simplify the notations.

p((πj)j |β, γ, α, (zs)s, (ρji)ji) =
L∏
j=1

Γ(
∑L
i=1 αβi + nji)∏L

i=1 Γ(αβi + nji)

L∏
i=1

π
αβi+nji−1
ji

=
L∏
j=1

Γ(α+ nj·)∏L
i=1 Γ(αβi + nji)

L∏
i=1

π
αβi+nji−1
ji

For the numerator, we can also decompose it in values we know:

p((πj)j , β|γ, α, (zs)s, (ρji)ji) ∝ p((ρji)ji|(πj)j , β, γ, α, (zs)s)p((zs)s|(πj)j , β, γ, α)p((πj)j |β, γ, α)p(β|γ, α)
= p((ρji)ji|(πj)j)p((zs)s|(πj)j)p((πj)j |β, α)p(β|γ)

=
Γ(
∑L
j=1

γ

L
)∏L

i=1 Γ(γ
L

)

L∏
j=1

β

γ

L
j (1− πjj)L

Γ(
∑L
i=1 αβi)∏L

i=1 Γ(αβi)

L∏
i=1

π
αβi+nji−1
ji

= Γ(γ)
Γ(γ
L

)L

L∏
j=1

β

γ

L
j (1− πjj)L

Γ(α)∏L
i=1 Γ(αβi)

L∏
i=1

π
αβi+nji−1
ji

19

Finally, we can compute the fraction where the πji term is simplified and we keep only the terms
that have β in it (because we only need to be proportional to):

p(β|γ, α, (zs)s, (ρji)ji) ∝

Γ(γ)
Γ(γ
L

)L
∏L
j=1 β

γ

L
j (1− πjj)L

Γ(α)∏L
i=1 Γ(αβi)

∏L
i=1 π

αβi+nji−1
ji

∏L
j=1

Γ(α+ nj·)∏L
i=1 Γ(αβi + nji)

∏L
i=1 π

αβi+nji−1
ji

= Γ(γ)
Γ(γ
L

)L

L∏
j=1

β

γ

L
j (1− πjj)L

Γ(α)∏L
i=1 Γ(αβi)

∏L
i=1 Γ(αβi + nji)

Γ(α+ nj·)

∝
L∏
j=1

β

γ

L
j

L∏
i=1

Γ(αβi + nji)
Γ(αβi)

As with the sampling of the πj , we can see that we have nearly a Dirichlet distribution (we have∏L
j=1 β

γ

L
j) but the term

∏L
i=1

Γ(αβi + nji)
Γ(αβi)

breaks it. In the same way as the previous section, we

will use a data augmentation technique. This means that we are going to introduce new variables
(mkj)1≤k,j≤L that are quick to compute and that give us back the Dirichlet distribution. These
new variables follow this distribution:

p(mkj |β, α, (zs)s, (ρji)ji) = Γ(αβj)
Γ(αβj + nkj)

|s(nkj ,mkj)|(αβj)mkj

Where nkj are the same as nji from before (this means that nkj is the number of transitions from
k to j in the (zs)s with nkk :=

∑nk·
i=1 ρki) and |s(nkj ,mkj)| are unsigned Stirling numbers of the

first kind. This distribution is also called the "Antoniak equation" and is due to Antoniak (1974).
We can as with the (ρji)ji show the place of our new variables in our graphical model (the HDP
part):

z1 z2 · · · zS

πj

β

ρji

mkj

α

γ

Definition. The unsigned Stirling numbers of the first kind, written |s(n,m)|, count the number
of permutations of n elements with m disjoint cycles.

Properties.

• |s(0, 0)| = |s(1, 1)| = 1

• |s(n, 0)| = 0 for n ≥ 1

• |s(n,m)| = 0 for m > n

• |s(n+ 1,m)| = |s(n,m− 1)|+ n|s(n,m)|

However, the unsigned Stirling numbers of the first kind can be quite long to compute if L is
big, so we can use another way to compute these variables. To do so, we use Algorithm 2.

20

Algorithm 2: Sampling method for the (mkj)k,j
for (k, j) ∈ {1, · · · , L}2 do

for i ∈ {0, · · · , nkj} do

sample bi ∼ Ber
(

αβj
i+ αβj

)
end
put mkj =

∑nkj
i=1 bi

end

This sampling method gives us samples from the distribution we introduced and the proof
follows the explication of the "Antoniak equation" by Tom Stepleton [9]. Let us compute the
probability of a sequence b = (bi)0≤i≤n−1 of length n with m =

∑n−1
i=0 bi, for example:

p(b = 1, 1, 0, 1, 0) =
(
αβj
αβj

)(
αβj

αβj + 1

)(
2

αβj + 2

)(
αβj

αβj + 3

)(
4

αβj + 4

)
We can factorize it in:

p(b = 1, 1, 0, 1, 0) = (αβj)m
Γ(αβj)

Γ(αβj + n)︸ ︷︷ ︸
G

1 · 1 · 2 · 1 · 4︸ ︷︷ ︸
Q

If we fix n and m, the first part G doesn’t change, only the part Q change. Suppose n fixed, the
probability that m = k is equal to G multiplied by the sum of all possible Q sequences for this
n and this k. Let us look at this sum of possible Q that we call SQ(n, k): we have SQ(0, 0) = 1
because this means we sample only b0 ∼ Ber(αβj

αβj
) = Ber(1), SQ(1, 0) = 0 because we cannot

have m = 0 as b0 = 1 necessarily and SQ(1, 1) = 1 because to sample b0, b1 and have m = 1
there can be only one possible Q which is Q = 1 · 1 = 1. Now, suppose that SQ(j, l) = |s(j, l)| for
0 ≤ l ≤ j ≤ n− 1, then for 0 < k < n we have:

SQ(n, k) = SQ(n− 1, k − 1) + n× SQ(n− 1, k) hyp= |s(n− 1, k − 1)|+ n× |s(n− 1, k)| = |s(n, k)|

Because you can have a b sequence of length n which sum to k with a b sequence of length n− 1
which sum to k−1 (this means the next draw is a 1 so we multiply Q by 1) or a b sequence of length
n− 1 which sum to k (this means the next draw is a 0 so we multiply Q by n). Moreover, we have
SQ(n, 0) because we cannot have m = 0 as b0 = 1 necessarily and SQ(n, n) = 1 because there is
only one possible Q = 1 · · · 1 = 1. Therefor, by induction we have proved that SQ(n, k) = |s(n, k)|
for all n ∈ N and for 0 ≤ k ≤ n. This prove that if our (mkj)1≤k,j≤L variables are sampled from
Algorithm 2 then we have for nkj ∈ N fixed:

p(mkj |β, α, (zs)s, (ρji)ji) = G · SQ(nkj ,mkj) = (αβj)mkj
Γ(αβj)

Γ(αβj + nkj)
|s(nkj ,mkj)|

Now that we have a simple way to sample these new variables, let us see how they can give us back
the Dirichlet distribution for the posterior of β. We sample β with the same method as developed
before but with the added (mkj)kj :

p(β|γ, α, (zs)s, (mkj)kj , (ρji)ji) = p((πj)j , β|γ, α, (zs)s, (mkj)kj , (ρji)ji)
p((πj)j |β, γ, α, (zs)s, (mkj)kj , (ρji)ji)

The denominator stays the same because of graphical model properties:

p((πj)j |β, γ, α, (zs)s, (mkj)kj , (ρji)ji) = p((πj)j |β, γ, α, (zs)s, (ρji)ji)

=
L∏
j=1

Γ(α+ nj·)∏L
i=1 Γ(αβi + nji)

L∏
i=1

π
αβi+nji−1
ji

21

For the numerator, the distribution of the (mkj)kj is introduced:

p({πj}, β|γ, α, (zs)s, (mkj)kj , (ρji)ji)
∝ p((mkj)kj |(πj)j , β, γ, α, (zs)s, (ρji)ji)p((ρji)ji|(πj)j , β, γ, α, (zs)s)
× p((zs)s|(πj)j , β, γ, α)p((πj)j |β, γ, α)p(β|γ, α)

= p((mkj)kj |β, α, (zs)s, (ρji)ji)p((ρji)ji|(πj)j)p((zs)s|(πj)j)p((πj)j |β, α)p(β|γ)

=
Γ(
∑L
j=1

γ

L
)∏L

i=1 Γ(γ
L

)

L∏
j=1

(αβj)m·jβ
γ

L
j (1− πjj)L

Γ(
∑L
i=1 αβi)∏L

i=1 Γ(αβi)

L∏
i=1

π
αβi+nji−1
ji

Γ(αβj)
Γ(αβj + nij)

|s(nij ,mij)|

= Γ(γ)
Γ(γ
L

)L

L∏
j=1

αm·jβ

γ

L
+m·j

j (1− πjj)L
Γ(α)∏L

i=1 Γ(αβi)

L∏
i=1

π
αβi+nji−1
ji

Γ(αβj)
Γ(αβj + nij)

|s(nij ,mij)|

Finally, we can compute the fraction where the πji term is simplified and we keep only the terms
that have β in it (because we only need to be proportional to):

p(β|γ, α, (zs)s, (mkj)kj , (ρji)ji)

∝

Γ(γ)
Γ(γ
L

)L
∏L
j=1 α

m·jβ

γ

L
+m·j

j (1− πjj)L
Γ(α)∏L

i=1 Γ(αβi)
∏L
i=1 π

αβi+nji−1
ji

Γ(αβj)
Γ(αβj + nij)

|s(nij ,mij)|

∏L
j=1

Γ(α+ nj·)∏L
i=1 Γ(αβi + nji)

∏L
i=1 π

αβi+nji−1
ji

= Γ(γ)
Γ(γ
L

)L

L∏
j=1

αm·jβ

γ

L
+m·j

j (1− πjj)L
Γ(α)

Γ(α+ nj·)

L∏
i=1

Γ(αβi + nji)
Γ(αβi)

Γ(αβj)
Γ(αβj + nij)

|s(nij ,mij)|

∝
L∏
j=1

β

γ

L
+m·j

j

L∏
i=1

Γ(αβi + nji)
Γ(αβi)

Γ(αβj)
Γ(αβj + nij)

=

 L∏
j=1

β

γ

L
+m·j

j

(Γ(β1)L · · ·Γ(βL)L

(Γ(β1) · · ·Γ(βL))L ·
Γ(αβ1 + n11) · · ·Γ(αβL + n1L) · · ·Γ(αβ1 + nL1) · · ·Γ(αβL + nLL)
Γ(αβ1 + n11) · · ·Γ(αβ1 + nL1) · · ·Γ(αβL + n1L) · · ·Γ(αβL + nLL)

)

=
L∏
j=1

β

γ

L
+m·j

j

with m·j =
∑L
k=1mkj . In the end, we can see that by introducing these new variables (mkj)kj ,

we were able to get back the Dirichlet distribution for the posterior of β with new parameters:
γ

L
+ m·1, · · · ,

γ

L
+ m·L. We have computed the posterior distributions of all the variables in-

cluded in the HDP part of the model but some doesn’t match with the distributions you should
know for a Gibbs sampling. Indeed, the joint posterior distribution of the HDP part of our
model is p((πj)j , (ρji)ji, β, (mkj)kj |γ, α, (zs)s), so a Gibbs sampling method would be Algorithm 3.
However, for β we only know the distribution without the (πj)j ; p(β|γ, α, (zs)s, (ρji)ji, (mkj)kj)

Algorithm 3: Gibbs sampling method for the posterior of the HDP part of the model
sample (πj)j ∼ p((πj)j |γ, α, (zs)s, (ρji)ji, β, (mkj)kj)
sample (ρji)ji ∼ p((ρji)ji|γ, α, (zs)s, (πj)j , β, (mkj)kj)
sample β ∼ p(β|γ, α, (zs)s, (πj)j , (ρji)ji, (mkj)kj)
sample (mkj)kj ∼ p((mkj)kj |γ, α, (zs)s, (πj)j , (ρji)ji, β)

22

and for (ρji)ji we only know the distribution without the (mkj)kj ; p((ρji)ji|γ, α, (zs)s, (πj)j , β).
This means that our sampler is not a Gibbs sampler and looks like Algorithm 4.

Algorithm 4: Sampling method for the posterior of the HDP part of the model
sample (πj)j ∼ p((πj)j |γ, α, (zs)s, (ρji)ji, β, (mkj)kj)
sample (ρji)ji ∼ p((ρji)ji|γ, α, (zs)s, (πj)j , β)
sample β ∼ p(β|γ, α, (zs)s, (ρji)ji, (mkj)kj)
sample (mkj)kj ∼ p((mkj)kj |γ, α, (zs)s, (πj)j , (ρji)ji, β)

To solve this problem, we are going to use a Partially Collapsed Gibbs Sampler which has been
introduced by David A. van Dyk and Taeyoung Park [10]. We will use the 3 tools (Marginalization,
Permutation and Trimming) the authors explained to modify the Gibbs sampler in the way that
the joint posterior distribution of our model (that we want to sample from) is still stationnary to
the kernel of the Markov chain created by the new algorithm. First, we marginalize Algorithm 3
which gives us Algorithm 5.

Algorithm 5: Marginalized Gibbs sampler
sample (πj)j ∼ p((πj)j |γ, α, (zs)s, (ρji)ji, β, (mkj)kj)
sample (ρji)ji, (mkj)kj ∼ p((ρji)ji, (mkj)kj |γ, α, (zs)s, (πj)j , β)
sample β, (πj)j ∼ p(β, (πj)j |γ, α, (zs)s, (ρji)ji, (mkj)kj)
sample (mkj)kj ∼ p((mkj)kj |γ, α, (zs)s, (πj)j , (ρji)ji, β)

Then we use permutation on Algorithm 5 to get Algorithm 6.

Algorithm 6: Permuted Gibbs sampler
sample (ρji)ji, (mkj)kj ∼ p((ρji)ji, (mkj)kj |γ, α, (zs)s, (πj)j , β)
sample (mkj)kj ∼ p((mkj)kj |γ, α, (zs)s, (πj)j , (ρji)ji, β)
sample β, (πj)j ∼ p(β, (πj)j |γ, α, (zs)s, (ρji)ji, (mkj)kj)
sample (πj)j ∼ p((πj)j |γ, α, (zs)s, (ρji)ji, β, (mkj)kj)

Finally, we use trimming to transform Algorithm 6 into Algorithm 7.

Algorithm 7: Trimmed Gibbs sampler
sample (ρji)ji ∼ p((ρji)ji|γ, α, (zs)s, (πj)j , β)
sample (mkj)kj ∼ p((mkj)kj |γ, α, (zs)s, (πj)j , (ρji)ji, β)
sample β ∼ p(β|γ, α, (zs)s, (ρji)ji, (mkj)kj)
sample (πj)j ∼ p((πj)j |γ, α, (zs)s, (ρji)ji, β, (mkj)kj)

In the end, we can follow Algorithm 7 because this method only needs the distributions we
computed and David A. van Dyk and Taeyoung Park [10] explain that this new algorithm will
alter the kernel of the Markov chain created but not its stationnary distribution compared to the
original Gibbs sampler. We note that the proof for this last property is not clearly given by the
authors and we should later get back to this point to write it ourselves. Supposing this property
is true, our algorithm should gives us samples from the joint posterior distribution we wanted.
We can developped Algorithm 7 with the distributions we computed during last sections to get
Algorithm 8.

The (mjk)jk variables can seem to have appeared out of nowhere but they are motivated
by a different representation of a Hierarchical Dirichlet Process. Indeed, these variables should
represents the table counts in a Chinese Restaurant Franchise which is another representation of
the HDP that we saw in section A.4.2.

23

Algorithm 8: Sampling method for the posterior of the HDP part of the model
for j ∈ {1, · · · , L} do

for i ∈ {1, · · · , nj·} do
sample ρji|πjj ∼ Geo(1− πjj)

end
put njj =

∑nj·
i=1 ρji

end
for k ∈ {1, · · · , L} do

for j ∈ {1, · · · , L} do
sample mkj following Algorithm 2

end
end
sample β ∼ Dir(γ

L
+m·1, · · · ,

γ

L
+m·L)

for j ∈ {1, · · · , L} do
sample πj ∼ Dir(αβ1 + nj1, · · · , αβL + njL)

end

24

Chapter 3

Online inference

In the previous part, we developped a method to infer the parameters of our HDP-HSMM. How-
ever, this method is essentially based on a variant of Gibbs sampling and it uses block sampling
to sample the whole sequence of hidden states at once. This means that it will not be efficient
with data arriving continuously. Suppose we use the method on observations y1, · · · , yn, then we
get a new observation yn+1, we’ll have to use the method on observations y1, · · · , yn+1. Therefore,
the time needed to infer the parameters of the model will grow with each new observations to
the point where it is no more sustainable. This is a major drawback as we want to combine the
desaggregation problem with control, so we are in a context of continuously arriving observations
and we want that the computational time needed to desaggregate does not depend on how long
the process has been active.

To solve this problem, we want to use online learning to infer the parameters of our model.
Ample literature can be find on particle filters. These methods suppose that data is structered as
an HMM (which matches with our model) and are broadly speaking Monte-Carlo estimators of
the posterior distribution of the hidden states that update quickly (by quickly we mean that each
update does not depend on how long it has been running) as each new observation arrives.

We will first present the Sequential Monte Carlo (SMC) framework that A. Doucet introduced
in [11] and explain some of the algorithms displayed in the paper that we believe are useful to
understand Particle filters and the building blocks of our final algorithm. Then, we will use the
method of parameters estimation explained by A. Rodriguez [12] in the SMC framework to develop
a Particle filter for Bayesian HMM under certain conditions. Finally, we will extend the latter
algorithm to Factorial Bayesian HMM with the assumption that the chains behave independantly.

3.1 Sequential Monte Carlo
This section is a general presentation of [11], its purpose is to introduce the Particles filters to the
reader, to show some intuition on the object and how it behaves and to explain the building blocks
that will help us construct our final algorithm. More detailed explications, theoritical results or
other varieties of the particles filters algorithms that fit in the SMC framework can be find in [11].
Before talking about SMC, we will make a brief review of the classic Monte Carlo method and
importance sampling. More informations on Monte Carlo methods can be found in [13].

3.1.1 Monte Carlo and importance sampling
The Sequential Monte Carlo framework makes the assumption that data follows a specific struc-
ture: we collect observations in sequence (usually it is associated with time) that are independant
given hidden states. This mirrors the context of the HMM that we discussed earlier. However,
here the states can live in a more general space and so these models are often called state space
models. Using similar notations as before, let us define our state space model: let y1:n ∈ Yn

25

be the sequence of observations, x1:n ∈ Xn (with |X | < ∞) be the sequence of hidden states.
Suppose that we know the initial density p(x1), the transitions p(xi|xi−1) (for i = 2, · · · , n) and
the likelihood p(yi|xi) (for i = 1, · · · , n).

Our goal is to compute the distribution of the hidden states given the observations: p(x1:n|y1:n),
at any time n ∈ N∗. For each n, we can construct an estimation of the target with a simple Monte
Carlo method. To give a quick reminder of this method, it consists in estimating a value of
the form I := E[φ(Z)] =

∫
φ(z)f(z)ν(dz) (where f is the density of Z with respect to a refer-

ence measure ν) by sampling z1, · · · , zk according to f and constructing the following estimator:
IMC := 1

k

∑k
i=1 φ(zi). One can easily show that this estimator is consistent (with the law of

large numbers) and it’s convergence speed (with the central limit theorem). If we suppose that
we know how to sample from p(x1:n|y1:n) (but we do not know how to compute it), we can use
this method to estimate p(x1:n|y1:n). Instead of Z, we have X1:n. f(x1:n) = p(x1:n|y1:n) and we
choose φ(X1:n) := δx1:n(X1:n) where δx is the Dirac function in x.

However, we can not easily sample from p(x1:n|y1:n) because we can not compute directly this
distribution and our Gibbs sampling method introduced before has a complexity that grows with
n. To solve this problem, we will use a famous tool used in the field of MC methods which is
importance sampling. The idea behind it is suppose that we can sample ξ1, · · · , ξk from an other
distribution (that we call the importance distribution) with density q and that we can compute

the following quantity w(ξ) := f(ξ)
q(ξ) for all ξ, then we can create another estimator for I which is

IIS := 1
k

∑k
i=1 w(ξi)φ(ξi) because we have:∫

φ(z)f(z)ν(dz) =
∫
w(ξ)φ(ξ)q(ξ)ν(dξ)

and IIS is an MC estimator for the right side of the equation. Again, one can easily show that
this estimator is consistent (with the law of large numbers) and it’s convergence speed (with the
central limit theorem).

We now have to choose an importance distribution q and we would like to choose the optimal
one. Usually, we define an importance distribution as optimal (noted as qopt) if it minimizes the
asymptotic variance of the estimator. In chapter 2 section 2.2.1 of [13], it is shown that qopt is
defined as:

qopt(ξ) := |φ(ξ)|f(ξ)∫
|φ(ξ)|f(ξ)ν(dξ)

We can see that qopt depends on φ. This is an issue because our goal is to estimate a distribution
of the form In :=

∫
φn(z1:n)fn(z1:n)ν(dz1:n) for each n ∈ N∗, so if we compute qoptn−1(ξ1:n−1) (which

is optimal for φn−1(z1:n−1)) there is no guarantee that it will be equal to qoptn (ξ1:n−1) (which is the
marginal of qoptn (ξ1:n) which is optimal for φn(z1:n)). So, we must use another way to get optimality
that does not depend on φ. A. Doucet propose to minimize the variance of the importance weights
w. This is justified by the following result:

V arf (φ(z))
V arq(φ(ξ)w(ξ)) '

1
1 + V arq(w(ξ))

which was proved by Liu in [14] (page 35-36). As V arf (φ(z)) is fixed (by what we want to esti-
mate), we can minimize the variance of our estimator by minimizing the variance of the importance
weights. From now on, we will define an importance distribution as optimal if it minimizes the
variance of the importance weights. It is obvious that we have qopt(ξ) = f(ξ) but we can’t use f
as we supposed that we can’t sample from f (this is why we use Importance Sampling) but this
shows that we have to find an importance distribution that is close to the target.

A good approximation of qopt can be found most of the time but until now, we worked with n
fixed. This means that for each n, we want to estimate a new distribution p(x1:n|y1:n), we have to

26

find a good importance distribution, sample from it and compute the estimator. Although each
time step is done independantly, we would want to use the estimator at time n − 1 to construct
the estimator at time n and so leverage our past work. To do so, we will use Sequential Monte
Carlo methods.

3.1.2 Sequential Importance Sampling
From now on, we will use the same notations as in [11]. This means that the distribution we want
to estimate is called πn(x1:n) := p(x1:n|y1:n), we define γn(x1:n) := p(x1:n, y1:n) and Zn := p(y1:n).

So we have πn(x1:n) = γn(x1:n)
Zn

. Moreover, the target is now γn(x1:n), so we define an importance

distribution qn(x1:n) and weights wn(x1:n) := γn(x1:n)
qn(x1:n) . It doesn’t matter that our target is now

γn(x1:n), even if we are interested in πn(x1:n) because we can still construct a Monte Carlo
estimator for πn(x1:n):

π̂n(x1:n) := 1
N

N∑
i=1

W i
nδXi1:n

(x1:n) with W i
n := wn(Xi

1:n)∑N
j=1 wn(Xj

1:n)
(3.1)

and where X1
1:n, · · · , XN

1:n are sampled from qn(x1:n).
In addition, we want to have a link between π̂n−1(x1:n−1) and π̂n(x1:n). This seems achievable

because we have this result:

γn(x1:n) = p(x1:n−1, y1:n−1)p(xn|xn−1)p(yn|xn) = γn−1(x1:n−1)p(xn|xn−1)p(yn|xn) (∗)

because data is structered like a state-space model and so we have:

πn(x1:n) = p(x1:n|y1:n) = p(x1:n−1|y1:n−1)p(xn|xn−1)p(yn|xn)
p(yn|y1:n−1) = πn−1(x1:n−1)p(xn|xn−1)p(yn|xn)

p(yn|y1:n−1)

Therefore, to leverage this induction, we suppose that we can decompose qn(x1:n) like this:

qn(x1:n) = qn−1(x1:n−1)qn(xn|x1:n−1) = q1(x1)
n∏
i=2

qi(xi|x1:i−1)

where qi(xi|x1:i−1) := qi(x1:i)
qi−1(x1:i−1) and that we can easily sample from q1(x1) and qi(xi|x1:i−1)

for all i = 2, · · · , n. This creates induction in the weights also:

wn(x1:n) = γn(x1:n)
qn(x1:n) = γn−1(x1:n−1)

qn−1(x1:n−1)
γn(x1:n)

γn−1(x1:n−1)qn(xn|x1:n−1) = wn−1(x1:n−1)αn(x1:n)

where αn(x1:n) := p(xn|xn−1)p(yn|xn)qn(xn|x1:n−1) because of (∗). All of this means that
from an estimator of πn−1(x1:n−1) (so knowing the samples X1

1:n−1, · · · , XN
1:n−1 and weights

W 1
n−1, · · · ,WN

n−1), we can easily compute an estimator of πn(x1:n) by sampling X1
n, · · · , XN

n given
X1

1:n−1, · · · , XN
1:n−1 and multiplying the weights of time step n − 1 by αn. This leads to Algo-

rithm 9.
To choose a good importance sampling for this method, we can look at the optimal one. We

have seen in the previous section that qoptn = γn, we also have qoptn = πn (because we only multiplied
by a constant, so the variance is still 0). This means that we should be able to sample easily from
qopt1 (x1) = π1(x1) = p(x1|y1) and

qopti (xi|x1:i−1) = qopti (x1:i)
qopti−1(x1:i−1)

= πi(x1:i)
πi−1(x1:i−1) = p(x1:i|y1:i)

p(x1:i−1|y1:i−1) = p(xi|x1:i−1, y1:i)

27

Algorithm 9: Sequential Importance Sampling
At time n = 1:

for i ∈ {1, · · · , N} do
sample Xi

1 ∼ q1(x1).
compute the unormalized weights w1(Xi

1)
end

compute the normalized weights W 1
1 , · · · ,WN

1 with W i
1 = w1(Xi

1)∑N
j=1 w1(Xj

1)
At time n ≥ 2:

for i ∈ {1, · · · , N} do
sample Xi

n ∼ qn(xn|Xi
1:n−1).

compute the unormalized weights wn(Xi
1:n) = wn−1(Xi

1:n−1)αn(Xi
1:n)

end

compute the normalized weights W 1
n , · · · ,WN

n with W i
n = wn(Xi

1:n)∑N
j=1 wn(Xj

1:n)

which can be developed as:

p(xi|x1:i−1, y1:i) = p(xi, yi|x1:i−1, y1:i−1)
p(yi|x1:i−1, y1:i−1)

= p(yi|x1:i, y1:i−1)p(xi|x1:i−1, y1:i−1)
p(yi|x1:i−1, y1:i−1)

= p(yi|xi)p(xi|xi−1)
p(yi|xi−1)

for all i = 2, · · · , n (with p(yi|xi−1) =
∫
p(yi|xi)p(xi|xi−1)dxi). Then, we would have:

αn(x1:n) = γn(x1:n)
γn−1(x1:n−1)p(xn|x1:n−1, y1:n) = p(xn, yn|x1:n−1, y1:n−1)

p(xn, yn|x1:n−1, y1:n−1)p(yn|xn−1) = p(yn|xn−1)

However, most of the time we can not sample from p(xn|x1:n−1, y1:n) and so we should choose an
importance distribution that estimates this distribution.

By construction, this algorithm gives at each time step n an estimator π̂n(x1:n) (defined as in
(3.1)) of πn(x1:n). In the same way as previous MC methods, we can easily show (with the law of
large numbers) that:

π̂n(x1:n) p.s−−−−−→
N→+∞

πn(x1:n)

3.1.3 Sequential Importance Resampling
This previous algorithm can be improved by what we call "Resampling". At each time step,
Algorithm 9 samples new states given particles from the previous step that were sampled from
the importance distribution. However, at each time step, we also construct an estimator of the
target distribution so we could resample new particles with this estimator (this is called resample
because these particles were already sampled from the importance distribution and we sample
them again). As the estimator is the empirical distribution associated to the target, the particles
with the most weight (so the more likely hidden states given the observations) will be the most
often sampled during this resampling step. This way, we only "keep" the "good" particles.

The resampling step can be done with various techniques. The idea behind all of them is to
sample offsprings N1

n, · · · , NN
n from a multinomial distribution with parameters N and W 1:N

n and
then to keep N i

n times the particle Xi
1:n for i = 1, · · · , N . The most famous technique is the

Systematic Resampling which goes as follows: Sample U1 ∼ U [0, 1
N] and define Ui = U1 + i−1

N for

28

i = 2, · · · , N , then setN i
n =

∣∣∣{Uj :
∑i−1
k=1W

k
n ≤ Uj ≤

∑i
k=1W

k
n

}∣∣∣ with the convention
∑0
k=1 := 0.

Other resampling techniques can be found in [11].
There is also a change in the weights because of this resampling step. Indeed, at time step

n > 1, we have particles that are sampled approximately from πn−1(x1:n−1), then we sample the
new states according to q(xn|x1:n−1) which means that weights are approximately equal to :

wn(x1:n) ' γn(x1:n)
πn−1(x1:n−1)q(xn|x1:n−1) = Zn−1

γn(x1:n)
γn−1(x1:n−1))q(xn|x1:n−1) ∝ αn(x1:n)

All of this leads to Algorithm 10.

Algorithm 10: Sequential Importance Resampling
At time n = 1:

for i ∈ {1, · · · , N} do
sample Xi

1 ∼ q1(x1).
compute the unormalized weights w1(Xi

1)
end

compute the normalized weights W 1
1 , · · · ,WN

1 with W i
1 = w1(Xi

1)∑N
j=1 w1(Xj

1)
for i ∈ {1, · · · , N} do

resample Xi

1 ∼ π̂1(x1).
set uniform weights W i

1 = 1
N

end

At time n ≥ 2:
for i ∈ {1, · · · , N} do

sample Xi
n ∼ qn(xn|X

i

1:n−1). Put Xi
1:n = (Xi

1:n−1, X
i
n)

compute the unormalized weights αn(Xi
1:n)

end

compute the normalized weights W 1
n , · · · ,WN

n with W i
n = αn(Xi

1:n)∑N
j=1 αn(Xj

1:n)
for i ∈ {1, · · · , N} do

resample Xi

1:n ∼ π̂n(x1:n).
set uniform weights W i

n = 1
N

end

3.1.4 Auxiliary Particle Filtering
The next improvement to our algorithm is to perform the resampling step before the sampling
step. This means that the resampling step will use the next observation, so it will only "keep" the
particles that will propagate with high probability towards the most likely hidden states given the
observations. However, to be able to switch these two steps, we need to have weights that does
not involve the current state in their computation. Therefore, we need to carefully choose our
importance distribution.

We’ve shown in previous section that the optimal importance distribution is qoptn (xn|x1:n−1) =
p(xn|x1:n−1, y1:n) and that for this distribution, we have weights proportionnal to αn(x1:n) =
p(yn|xn−1) which can be computed without knowing xn. From now on, we will use this optimal
importance distribution because we are going to apply these SMC algorithms in a context where
we can easily sample from p(xn|x1:n−1, y1:n) (see the derivations in section 3.2), this leads to

29

Algorithm 11. However, if the reader is interested in using this algorithm in a context where
he can’t easily sample from p(xn|x1:n−1, y1:n), Doucet explains in [11] how to get it around by
changing the target distribution (adding a predictive likelyhood to it) and making adjusments to
the weights.

Algorithm 11: Auxiliary Particle Filter
At time n = 1:

for i ∈ {1, · · · , N} do
sample Xi

1 ∼ q1(x1).
compute the unormalized weights w1(Xi

1)
end

compute the normalized weights W 1
1 , · · · ,WN

1 with W i
1 = w1(Xi

1)∑N
j=1 w1(Xj

1)
for i ∈ {1, · · · , N} do

resample Xi

1 ∼ π̂1(x1).
set uniform weights W i

1 = 1
N

end

At time n ≥ 2:
compute the unormalized weights αn−1(X1

1:n−1), · · · , αn−1(XN
1:n−1)

compute the normalized weights W 1
n−1, · · · ,WN

n−1 with W i
n−1 =

αn−1(Xi
1:n−1)∑N

j=1 αn−1(Xj
1:n−1)

for i ∈ {1, · · · , N} do
resample Xi

1:n−1 ∼ π̂n−1(x1:n−1).

set uniform weights W i
n−1 = 1

N
end
for i ∈ {1, · · · , N} do

sample Xi
n ∼ qn(xn|X

i

1:n−1). Put Xi
1:n = (Xi

1:n−1, X
i
n)

end

3.2 Bayesian particle filter
The Sequential Monte Carlo framework and all the algorithms that we derived in the previous
sections are powerful tools to do online learning with a state-space model, yet it doesn’t exactly
match our needs. Let’s recall that the model we constructed for our disaggregation problem (see
chapter 1) added several layers on top of the HMM structure (durations, bayesian non parametric
prior on transitions, etc...). We also want to estimate the power consumption of each device, this
means that we are interested not only in the posterior law of the hidden states but also in the
posterior law of the parameters.

To account for these, we will use what is called Particle Learning which was introduced by
C. M. Carvalho in [15]. This method allows us to estimate the parameters of our model under
the condition that there exists a low dimensionnal vector r of bayesian sufficient statistics for the
posterior distribution of the parameters and that we can update them recursively.

Definition. Let X a random variable distributed according to p(x|θ), θ a random variable with
prior p(θ) and T (X) a statistic. We define T (X) as a bayesian sufficient statistic if for almost
every x, we have:

p(θ|X = x) = p(θ|T (X) = T (x))

30

A. Rodriguez already used Particle Learning to derive an algorithm for the infinite HMM in
[16]. His model is not quite the same as ours and he integrates out the emission parameter (which
we are highly interested in) so although his work has greatly inspired us, the rest of the section
will have some differences in the derivations.

First of all, all our work in chapter 2 proves that there exists bayesian sufficient statistics for
the posterior distribution of our parameters (essentially because we put conjugate priors) and
we will use it to derive the algorithm. Therefore, we can use Particle Learning in our context
and now let’s present it. The main idea behind PL is to treat the parameters and their bayesian
sufficient statistics as part of the state space. Let’s call rn the vector of bayesian sufficient statistics
(computed with observations up to time n) and ζn all the parameters (estimated with observations
up to time n). The target distribution is now the posterior distribution of the hidden states, the
statistics and the parameters:

πn(x1:n, r1:n, ζ1:n) = γn(x1:n, r1:n, ζ1:n)
Zn

with γn(x1:n, r1:n, ζ1:n) := p(x1:n, r1:n, ζ1:n, y1:n)

For an Auxiliary particle filter, we would then have the following importance distribution:

qoptn (xn, rn, ζn|x1:n−1, r1:n−1, ζ1:n−1) = p(xn, rn, ζn|x1:n−1, r1:n−1, ζ1:n−1, y1:n)

that we can then develop this way:

p(xn, rn, ζn|x1:n−1, r1:n−1, ζ1:n−1, y1:n) = p(xn|x1:n−1, r1:n−1, ζ1:n−1, y1:n)
× p(rn|x1:n, r1:n−1, ζ1:n−1, y1:n)
× p(ζn|x1:n, r1:n, ζ1:n−1, y1:n)

= p(xn|xn−1, ζn−1, yn)
× p(rn|xn, rn−1, yn)
× p(ζn|rn)

because rn is a vector of bayesian sufficient statistics for ζn and where p(rn|xn, rn−1, yn) =
δR(rn−1,xn,yn)(rn) with R(rn−1, xn, yn) the function to update sequentially the statistics. We
can also develop p(xn|xn−1, ζn−1, yn):

p(xn|xn−1, ζn−1, yn) = p(yn|xn, ζn−1)p(xn|xn−1, ζn−1)
p(yn|xn−1, ζn−1)

with p(yn|xn−1, ζn−1) =
∫
p(yn|xn, ζn−1)p(xn|xn−1, ζn−1)dxn. Moreover, the importance weights

are define as αn(x1:n, r1:n, ζ1:n) = p(yn|xn−1, ζn−1). Now, each particle has a vector of statistics
and parameters associated with it. During the resampling step, we will keep only the statistics
and parameters associated to the particles we keep. During a sampling step, we will first sample
the hidden state given the new observation, then we update the statistics with the observation
and the estimated hidden state, finally we sample new parameters given the observation and the
estimated hidden state (through the updated statistics). This leads to Algorithm 12

Let’s compute all the needed distributions with the Bayesian HMM (which we have presented
in chapter 1 section 1.1) to show an example of this algorithm and to prove that we can easily
sample from p(xn|xn−1, ζn−1, yn) (which is the condition to be able to use an Auxiliary particle
filter) and that rn exists.

First, in the Bayesian HMM, the parameters are the emissions (which influence the observations
and which are called θj) and the transitions (which are called πj and represent the rows of the
transition matrix of the Markov chain), so we have ζ = ((θj)j , (πj)j). The transitions have
a Dirichlet prior (with parameter α) and as the hidden states are sampled from a Categorial
distribution (with parameter the πj), the prior is conjugate and we get the following posterior:

πj |x1:n ∼ Dir(α1 + nj1, · · · , αK + njJ) for j = 1, · · · , J

31

Algorithm 12: Bayesian Particle Filter
At time n = 1:

for i ∈ {1, · · · , N} do
sample Xi

1 ∼ q1(x1).
compute the bayesian sufficient statistics ri1 = R(Xi

1, y1).
sample the parameters ζi1 ∼ p(ζ1|ri1).
compute the unormalized weights w1(Xi

1, r
i
1, ζ

i
1).

end

compute the normalized weights W 1
1 , · · · ,WN

1 with W i
1 = w1(Xi

1, r
i
1, ζ

i
1)∑N

j=1 w1(Xj
1 , r

j
1, ζ

j
1)

for i ∈ {1, · · · , N} do
resample Xi

1, r
i
1, ζ

i

1 ∼ π̂1(x1, r1, ζ1).
set uniform weights W i

1 = 1
N

end

At time n ≥ 2:
compute the unormalized weights
αn−1(X1

1:n−1, r
1
1:n−1, ζ

1
1:n−1), · · · , αn−1(XN

1:n−1, r
N
1:n−1, ζ

N
1:n−1)

compute the normalized weights W 1
n−1, · · · ,WN

n−1 with

W i
n−1 =

αn−1(Xi
1:n−1, r

i
1:n−1, ζ

i
1:n−1)∑N

j=1 αn−1(Xj
1:n−1, r

j
1:n−1, ζ

j
1:n−1)

for i ∈ {1, · · · , N} do
resample Xi

1:n−1, r
i
1:n−1, ζ

i

1:n−1 ∼ π̂n−1(x1:n−1, r1:n−1, ζ1:n−1).

set uniform weights W i
n−1 = 1

N
end
for i ∈ {1, · · · , N} do

sample Xi
n ∼ p(xn|X

i

n−1, ζ
i

n−1, yn).
compute the bayesian sufficient statistics rin = R(rin−1, X

i
n, yn).

sample the parameters ζin ∼ p(ζn|rin).
Put Xi

1:n = (Xi

1:n−1, X
i
n), ri1:n = (ri1:n−1, r

i
n) and ζi1:n = (ζi1:n−1, ζ

i
n).

end

32

with njl = |{i : xi−1 = j, xi = l}| (the number of transitions from state j to state l) and
J the number of different states. This means that we have p(πj |x1:n) = p(πj |(njl)1≤l≤J), so
(njl)1≤j,l≤J) are bayesian sufficient statistics for the transition distribution. In the same way, if
we put a conjugate prior on the emissions, we will be able to find a bayesian sufficient statistic
most of the time. In our disaggregation problem, we will suppose Normal distributed observations
(yn ∼ N (θxn , σ2)) and use a Normal prior (θj ∼ N (µj , σ2

j)) on the mean. This way, we have:

θj |y1:n ∼ N

(µj
σ2
j

+
∑n
i=1 yi
σ2

)(
1
σ2
j

+ n

σ2

)−1

,
1
σ2
j

+ n

σ2

and so

∑n
i=1 yi is a bayesian sufficient statistics for the emissions distribution. We have rn =

((njl)1≤j,l≤J),
∑n
i=1 yi) and we can easily update them sequentially:

R(rn−1, xn−1:n, yn) = (rn−1[1]xn−1,xn += 1, rn−1[2] += yn)

for n ≥ 2, where rn[i] is the ith element of rn. For n = 1, we only update the emissions statistic and
we sample the transitions with their prior. The sampling of the parameters given their statistics
(p(ζn|rn)) can be done with the two posterior distribution computed just above. Therefore, all
that is left is the sampling of the particles and the importance weights. With the same method
as seen in section 3.1.2, we can show that:

p(xn|xn−1, ζn−1, yn) = p(yn|xn, ζn−1)p(xn|xn−1, ζn−1)
p(yn|xn−1, ζn−1)

with p(yn|xn−1, ζn−1) =
∫
p(yn|xn, ζn−1)p(xn|xn−1, ζn−1)dxn). We can compute this probability

for each possible xn as the dimension of the hidden states is finite in this case and because we can
compute p(yn|xn, ζn−1) which is the likelyhood of a normal distribution for parameter θxn (with θ
sampled at time step n−1) and p(xn|xn−1, ζn−1) which is the xthn element of πxn−1 (with π sampled
at time step n − 1). Then, we sample the particles according to Discrete distribution with the
probabilities we’ve just computed. As the importance weights are defined as αn(x1:n, r1:n, ζ1:n) =
p(yn|xn−1, ζn−1), we can obtain them by doing the sum of the unormalized probabilities computed
just before.

3.3 Factorial bayesian particle filter
The Bayesian Particle Filter that we derived last section allows us to do online learning for most
of the models introduced in chapter 1. However, for the disaggregation problem we are interested
in, we presented a Factorial model in section 1.4 and to use Particle Filters with this model, we
will need to make some changes to the previous algorithm.

First, let’s recall our Factorial model. The idea was that each device would be represented
by a HDP-HSMM, previous observations (the power consumption of each device) would now
become hidden emissions y(k)

n and the new observation ȳn would now be the aggregated power
consumption (the sum of the emission from each device plus a noise). To add some structure and
reduce computations, we also supposed that the hidden chains were independant:

p(xn|xn−1) =
K∏
k=1

p(x(k)
n |x

(k)
n−1)

where K is the number of devices (hidden chains) and xn = (x(1)
n , · · · , x(K)

n). We need the
emissions y(k)

n to be able to sample sequentially all the components of each model but they are
now hidden. One way around is to, in the same fashion as the last section, add them to the state
space. This way, we are going to sample the hidden emissions given the aggregated observation

33

and then sample the other components given these emissions. However, to do so, we need to
add an other condition on our model to make the computations tractable. From now on, we will
suppose that the hidden emissions and the aggregated observation are distributed as follows:

y(k)
n |x(k)

n
i.i.d∼ N (θ(k)

x
(k)
n

, σ2
(k)) for k = 1, · · · ,K (∗)

ȳn =
K∑
k=1

y(k)
n |xn ∼ N (

K∑
k=1

θ
(k)
x

(k)
n

,

K∑
k=1

σ2
(k))

From there, we can derive the target and the importance distribution for an Auxiliary Particle
Filter. Let x1:n = (x(1)

1:n, · · · , x
(K)
1:n), y1:n = (y(1)

1:n, · · · , y
(K)
1:n), r1:n = (r(1)

1:n, · · · , r
(K)
1:n) and ζ1:n =

(ζ(1)
1:n, · · · , ζ

(K)
1:n). We have the following target distribution:

πn(x1:n, y1:n, r1:n, ζ1:n) = γn(x1:n, y1:n, r1:n, ζ1:n)
Zn

γn(x1:n, y1:n, r1:n, ζ1:n) = p(x1:n, y1:n, r1:n, ζ1:n, ȳ1:n)
Zn = p(ȳ1:n)

We then have the following importance distribution:

qoptn (xn, yn, rn, ζn|x1:n−1, y1:n−1, r1:n−1, ζ1:n−1) = p(xn, yn, rn, ζn|x1:n−1, y1:n−1, r1:n−1, ζ1:n−1, ȳ1:n)

that we can then develop this way:

p(xn, yn, rn, ζn|x1:n−1, y1:n−1, r1:n−1, ζ1:n−1, ȳ1:n) = p(xn|x1:n−1, y1:n−1, r1:n−1, ζ1:n−1, ȳ1:n)
× p(yn|x1:n, y1:n−1, r1:n−1, ζ1:n−1, ȳ1:n)

×
K∏
k=1

p(r(k)
n |x

(k)
1:n, y

(k)
1:n, r

(k)
1:n−1, ζ

(k)
1:n−1, ȳ1:n)

×
K∏
k=1

p(ζ(k)
n |x

(k)
1:n, y

(k)
1:n, r

(k)
1:n, ζ

(k)
1:n−1, ȳ1:n)

= p(xn|xn−1, ζn−1, ȳn)
× p(yn|xn, ζn−1, ȳn)

×
K∏
k=1

p(r(k)
n |x(k)

n , r
(k)
n−1, y

(k)
n)

×
K∏
k=1

p(ζ(k)
n |r(k)

n)

We now have particles for each model and so there are hidden emissions, bayesian sufficient
statistics and parameters attached to each particle from each model. The bayesian sufficient
statistics and the parameters are computed in the same way as before (you just have to do it for
each model now). For the hidden states, it is also similar:

p(xn|xn−1, ζn−1, ȳn) =
p(ȳn|xn, ζn−1)

∏K
k=1 p(x

(k)
n |x(k)

n−1, ζ
(k)
n−1)

p(ȳn|xn−1, ζn−1)

except that now the normal likelihood is evaluated for the parameters
∑K
k=1 θ

(k)
x

(k)
n

and
∑K
k=1 σ

2
(k)

and that the number of possible states is JK (if we suppose that each model has the same number
of possible states J).

34

Finally, the hidden emissions can be easily sampled thanks to our Normal distributed condition.
Indeed, from (∗) we get that yn = (y(1)

n , · · · , y(K)
n) is distributed as a multivariate normal given xn

(because the components are independant normals). So (yn, ȳn) is also distributed as a multivariate
normal given xn (by linear transform) and we can then apply the following result:

Proposition 3.3.1. Let X = (X1, X2) be a random vector distributed as a multivariate normal

with parameters
(
µ1
µ2

)
and

(
Σ11 Σ12
Σ21 Σ22

)
. Then X1 given X2 is distributed as follows:

X1|X2 ∼ N (µ̄, Σ̄) with µ̄ = µ1 + Σ12Σ−1
22 (X2 − µ2)

Σ̄ = Σ11 − Σ12Σ−1
22 Σ21

Using this proposition with yn being X1 and ȳn being X2, we get that:

yn|xn, ζn−1, ȳn ∼ N (µ̄, Σ̄) with µ̄ =

θ
(1)
x

(1)
n

+ σ2
(1)

ȳn −
∑K
k=1 θ

(k)
x

(k)
n∑K

k=1 σ
2
(k)

...

θ
(K)
x

(K)
n

+ σ2
(K)

ȳn −
∑K
k=1 θ

(k)
x

(k)
n∑K

k=1 σ
2
(k)

Σ̄ = (Σ̄i,j)1≤i,j≤K =

−

σ2
(i)σ

2
(j)∑K

k=1 σ
2
(k)

if i 6= j

σ2
(i)

∑
k 6=i σ

2
(k)∑K

k=1 σ
2
(k)

else

Therefore, we can easily sample from p(yn|xn, ζn−1, ȳn) and we can present Algorithm 13

3.4 Smoothing
The Factorial Bayesian Particle Filter introduced last section works but can still be improve. It
suffers from a major drawback as all the particle filters we presented before. Indeed, the marginals
of our estimator p(xt|y1:n) doesn’t approximate well the true marginals of the target distribution
if too much time has passed t << n. This is mainly due to resampling. If we have t << n, then
a lot of resampling steps has been done and there is a strong probability that there will be only
one distinct particle at time t. Thus, we only use one particle to estimate the true marginal which
makes it not a good approximation. We could do less often the resampling step but it would
only push a bit further the time at which the estimation degenerates. We don’t want to remove
resampling neither because we’ve seen its advantages in the previous sections.

Our particle filter estimate at time t the target p(xt|y1:t). This means that it uses only the
observations up until time t to create particles. The resampling step after time t makes the
estimation of the marginal depends on the future observations too. However, it is done by removing
particles. So we would like our algorithm to create particles for the estimation of the marginal (at
time t) with the help of past observations y1:t and future observations yt+1:n. A solution to this
problem is to perform "Particle Smoothing". This method is presented in [11] and it has a few
variants. We are mostly interested in the "Two Filter Formula" as it is the one that samples new
particles. The others only compute new weights, for the particles generated by our particle filter,
based on all observations (past and future). Thus, the problem is still the same: there will be not
enough distinct particles to represent the true marginal.

The idea behind the "Two Filter Formula" is that we run two particle filter. One "Forward"
which is the one we already derived in the last section and one "Backward". The latter works in
the same way as the former but it runs backward in time. This means that it estimates the value

35

Algorithm 13: Factorial Bayesian Particle Filter
At time n = 0:

sample ζ0 according to the prior p(ζ).
At time n = 1:

for i ∈ {1, · · · , N} do
sample Xi

1 ∼ q1(x1).
sample Y i1 ∼ p(y1|Xi

1, ζ0, ȳ1).
for k ∈ {1, · · · ,K} do

compute the bayesian sufficient statistics ri(k)
1 = R(Xi(k)

1 , Y
i(k)
1).

sample the parameters ζi(k)
1 ∼ p(ζ1|ri(k)

1).
end
compute the unormalized weights w1(Xi

1, Y
i
1 , r

i
1, ζ

i
1).

end

compute the normalized weights W 1
1 , · · · ,WN

1 with W i
1 = w1(Xi

1, Y
i
1 , r

i
1, ζ

i
1)∑N

j=1 w1(Xj
1 , Y

j
1 , r

j
1, ζ

j
1)

for i ∈ {1, · · · , N} do
resample Xi

1, Y
i

1, r
i
1, ζ

i

1 ∼ π̂1(x1, y1, r1, ζ1).
set uniform weights W i

1 = 1
N

end

At time n ≥ 2:
compute the unormalized weights
αn−1(X1

1:n−1, Y
1
1:n−1, r

1
1:n−1, ζ

1
1:n−1), · · · , αn−1(XN

1:n−1, Y
N
1:n−1, r

N
1:n−1, ζ

N
1:n−1)

compute the normalized weights W 1
n−1, · · · ,WN

n−1 with

W i
n−1 =

αn−1(Xi
1:n−1, Y

i
1:n−1, r

i
1:n−1, ζ

i
1:n−1)∑N

j=1 αn−1(Xj
1:n−1, Y

j
1:n−1, r

j
1:n−1, ζ

j
1:n−1)

for i ∈ {1, · · · , N} do
resample Xi

1:n−1, Y
i

1:n−1, r
i
1:n−1, ζ

i

1:n−1 ∼ π̂n−1(x1:n−1, y1:n−1, r1:n−1, ζ1:n−1).

set uniform weights W i
n−1 = 1

N
end
for i ∈ {1, · · · , N} do

sample Xi
n ∼ p(xn|X

i

n−1, ζ
i

n−1, ȳn).
sample Y in ∼ p(yn|Xi

n, ζ
i

n−1, ȳn).
for k ∈ {1, · · · ,K} do

compute the bayesian sufficient statistics ri(k)
n = R(ri(k)

n−1, X
i(k)
n , Y

i(k)
n).

sample the parameters ζi(k)
n ∼ p(ζn|ri(k)

n).
end
Put Xi

1:n = (Xi

1:n−1, X
i
n), Y i1:n = (Y i1:n−1, Y

i
n), ri1:n = (ri1:n−1, r

i
n) and

ζi1:n = (ζi1:n−1, ζ
i
n).

end

36

of the hidden states at time t given all future observations yt+1:n. Then, we merge the two filters
to create a good estimator of each marginal that uses new particles sampled given all observations.
The method is based upon the following result:

p(xt|y1:n) = p(xt|y1:t−1)p(yt:n|xt)
p(yt:n|y1:t−1)

with 1 ≤ t ≤ n. Here, p(xt|y1:t−1) can be computed with the Forward filter: p(xt|y1:t−1) =∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 and its estimation p̂(xt|y1:t−1) =

∑N
i=1 p(xt|Xi

t)W i
t δXit (xt). p(yt:n|xt)

is what is going to be estimated by the Backward filter. The latter can be computed sequentially:

p(yt:n|xt) = p(yt|xt)
∫
p(xt+1|xt)p(yt+1:n|xt+1)dxt+1

However, it is not a density in xt and thus, we can’t directly use a particle filter to estimate it.
M. Briers and A.Doucet presented a solution to this problem in [17] by introducing a distribution
p̃(xt) and computing a particle filter for the following target:

p̃t(xt:n|yt:n) ∝ p̃(xt)p(yt:n|xt)

If we put p̃(xt) = p(xt) (the marginal of p(x1:n)), then we have p̃t(xt:n|yt:n) = p(xt:n|yt:n) and so
we can have a good approximation of p(yt:n|xt). p̃(xt) need to be computed exactly at each time
step which makes it most of the time impossible to choose p(xt). Therefore, the authors explain
that p̃(xt) should be close to p(xt) (a good approximation of it) and should verify this equation:

p̃(xt) =
∫
p(xt|xt−1)p̃(xt−1)dxt−1

To compute p̃(xt), we can put p̃(x1) = p(x1) and then use a Monte Carlo estimator of p(xt) for
each time t: p̃(xt) =

∑M
i=1 p(xt|Xi

t−1) where X1
1:n, · · · , XM

1:n are samples from the prior (the hidden
Markov chain) p(x1:n).

Now that we can compute p̃(xt), we should be able to derive a backward particle filter for the
target p̃t(xt:n|yt:n). First, let us define the importance distribution. Recall that we are using the
factorial bayesian model and thus, we want to sample the parameters and particles for each chain.
Using result from the last section, we could define the importance distribution like this:

qoptn (xt, yt, rt, ζt|xt+1:n, yt+1:n, rt+1:n, ζt+1:n) = p̃(xt, yt, rt, ζt|xt+1:n, yt+1:n, rt+1:n, ζt+1:n, ȳt:n)
= p̃(xt|xt+1:n, yt+1:n, rt+1:n, ζt+1:n, ȳt:n)
× p(yt|xt:n, yt+1:n, rt+1:n, ζt+1:n, ȳt:n)

×
K∏
k=1

p(r(k)
t |x

(k)
t:n , y

(k)
t:n , r

(k)
t+1:n, ζ

(k)
t+1:n, ȳt:n)

×
K∏
k=1

p(ζ(k)
t |x

(k)
t:n , y

(k)
t:n , r

(k)
t:n , ζ

(k)
t+1:n, ȳt:n)

= p̃(xt|xt+1, ζt+1, ȳt)
× p(yt|xt, ζt+1, ȳt)

×
K∏
k=1

p(r(k)
t |x

(k)
t , r

(k)
t+1, y

(k)
t)

×
K∏
k=1

p(ζ(k)
t |r

(k)
t)

We suppose that the backward filter is independant of the forward, this means that at time n we
don’t have information from time 1 to n. So the initial step (time n) uses the same prior as the

37

initial step from the forward filter (time 1). This assumption let us sample easily yt, rt and ζt: we
use the same method as last section. However, a difficulty appears in the sampling of xt. In [17],
the authors use this relation to sample xt:

p̃(xt|xt+1, yt) ∝ p(yt|xt)p̃(xt)p(xt+1|xt)

However in our context, this relation is:

p̃(xt|xt+1, ζt+1, ȳt) ∝ p(ȳt|xt, ζt+1)p̃(xt, ζt+1)p(xt+1|xt, ζt+1)

but we can not compute p̃(xt, ζt+1) easily, we can only compute p̃(xt, yt, rt, ζt) for each time t.
An other approach is to not decompose the importance distribution as we did just before but to
jointly sample everything at the same time:

p̃(xt, yt, rt, ζt|xt+1:n, yt+1:n, rt+1:n, ζt+1:n, ȳt:n) ∝ p(ȳt|xt, yt, rt, ζt)p̃(xt, yt, rt, ζt)
× p(xt+1, yt+1, rt+1, ζt+1|xt, yt, rt, ζt)

However, there is also a problem because p(ȳt|xt, yt, rt, ζt) = δ∑K

k=1
y

(k)
t

(ȳt). So, our Monte Carlo
estimator p̃(xt, yt, rt, ζt) will almost surely be equal to zero (as yt is an absolute continuous random
vector and so the event

∑K
k=1 y

(k)
t = ȳt has probability zero).

For now, we don’t know how to derive an importance distribution for the backward filter.

38

Chapter 4

Control

The power network is like a market, it needs balance between supply and demand. Usually, the
demand is predicted by different models and the power producer will produce according to this
prediction. However, sometimes the predictor makes some errors or unpredicted events happen on
the grid which creates a need to balance supply and demand. The resources required to maintain
this balance are called "ancillary services". Most of the time, these ancillary services are provided
by supply. They switch off or on means of production or use batteries. However, this type of
balancing is not very flexible because it takes too long to react to sudden changes. Moreover, the
increase of renewable energy makes it even harder because we cannot control these resources.

Therefore, the idea is that demand could also provide ancillary services. One way to do
so is "demand response" where the customers (essentially retail customers or industrial plants)
are requested to reduce their power consumption to help balancing. Another way is "Demand
Dispatch" which was introduced by A. Busic in [2]. This method does not require any actions
from the customers. It uses distributed controlled algorithms which increase or decrease the
power consumption of customers’ devices based on information sent from the Balancing Authority
(BA). The customers do not see the difference because the algorithms maintain for each device
quality of service and over time, its total energy deviation is zero. So, this method exploits the
inherent flexibility in power consumption of devices to create virtual energy storage which are
then used to help balancing supply and demand.

In [2], the authors developed the control architecture to perform "Demand Dispatch". They
introduced several designs for local randomized controllers, showed performance through the bode
plot of a linearized mean-field model and applied it to pool pumps and thermostatically controlled
loads. During this chapter, we will present this architecture and how we can leverage our work on
disaggregation.

4.1 Local control design
We suppose that we have for each load a Markov chain, with transition matrix P0 and with state-
space X = {x1, · · · , xd}, which models its normal operating behavior. The control architecture
revolves around using a distributed randomized controller for each load. A controller transform
the transition matrix of the load in Pζ at each time step t based on signal ζt which comes from
the BA (this signal is computed using another controller, see section 4.3). This way, the controller
influences the load to switch on or off based on what is happening on the grid.

Now, we have to define the family of transition matrix Pζ that the controller will use. In
many cases, the behavior of load depends on elements that we cannot control (for example the
temperature inside the tank of a water heater). To take into account these uncontrollable dynam-
ics, we suppose that the state-space of the Markov chain is the cartesian product of two finite
state-space X = Xu ×Xn where Xu is the set of states which can be controlled and Xn is the set
of states which cannot. Moreover, we suppose that for a new state x′ = (x′u, x′n), x′u and x′n are

39

independant given the previous state x. This means that the family of transition matrix Pζ have
the following structure:

∀ x ∈ X,x′ = (x′u, x′n) ∈ X Pζ(x, x′) = Rζ(x, x′u)Q0(x, x′n)

Rζ gives the transition probabilities to the controlled part of the new state, so 0 ≤ Rζ(x, x′u) ≤ 1
∀ x ∈ X,x′u ∈ Xu and

∑
x′u∈Xu

Rζ(x, x′u) = 1. Q0 gives the transition probabilities to the uncon-
trolled part of the new state, so 0 ≤ Q0(x, x′n) ≤ 1 ∀ x ∈ X,x′n ∈ Xn and

∑
x′n∈Xn

Q0(x, x′n) = 1.
In [2], it is assumed that Rζ is of the form:

Rζ(x, x′u) = R0(x, x′u)exp
(
hζ(x, x′u)− Λhζ (x)

)
where hζ is continuously differentiable in ζ and Λhζ is the normalizing constant:

Λhζ (x) = log
(∑
x′u∈Xu

R0(x, x′u)exp (hζ(x, x′u))
)

The design of the local controller comes down to choosing a specific hζ . Several designs are
presented in [2], such as the Individual Perspective Design (IPD), the System Perspective Design
(SPD) or the exponential family. We choose to use the myopic design (which is a special case of
the exponential family) where hζ(x, x′u) := ζ U(x′u). U(xu) is defined as the power consumption
of the load when it is in the controlled state xu. For example, we could have Xu = {⊕,	}
where ⊕ means that the load is ON and 	 means that the load is OFF. Then, U(⊕) is the power
consumption of the load when it is ON and U() when it is OFF.

To combine this control architecture with our disaggregation algorithm, we replaced the current
state and the power consumptions by estimations from the Factorial bayesian particle filter (seen
in section 3.3). In our application, we only estimate the controlled part xu of the state but
we could also consider the estimation of xn. However, the latter requires a different model for
each type of device, which were not developped in this paper. Each local controller receives at
time step t the aggregated power consumption (of the place they are in charge). They use the
disaggregation algorithm to obtain samples for each device (what we called particles in the previous
chapter) of the hidden states x1

1:t, · · · , xN1:t (N is the number of particles) and all the parameters
(θ1
j , · · · , θNj for the observations parameters) from the posterior joint distribution. Then, they

compute an estimator x̂u of the current state of each of their devices and an estimator Û of the
power consumption of these states:

x̂u = argmax
xu∈Xu

N∑
i=1

1xit=xu MAP (Maximum A Posteriori) estimator

∀xu ∈ Xu Û(xu) = 1
N

N∑
i=1

θixu Empirical posterior mean estimator

Finally, they change the state of each device at time t + 1 using the following transitions proba-
bilities:

Pζ(x̂, x′) = Q0(x̂, x′n)R0(x̂, x′u)exp
(
ζ Û(x′u)− Λζ Û (x̂)

)
with x̂ = (x̂u, xn)

Another important part of the control architecture is the Quality of Service (QoS) of a load (i.e
how well a load fulfill its purpose). Indeed, the goal of "demand dispatch" is to use the inherent
flexibility of the loads without decreasing the QoS. This means that the QoS should be the same
with or without control. In our application, we only looked at Thermostatically Controlled Loads
(TCLs), so we maintained QoS (which for this type of load translates into keeping the temperature
within specific bounds) through the design of the nominal model P0 (see section ??). See [3] for
more details on the control of QoS.

40

4.2 Mean-field model
In [2], the authors introduced a mean-field model which serves two purposes. The first one is to
evaluate the performance of the control architecture and the second one is to be able to define
a PI controller (see section 4.3) at the BA level. In this section, we will present the model and
how it is fulfilling the first purpose. A mean-field model can be defined as a simple model which
approximates a more complex stochastic model (composed of several small components). For
our application, the complex stochastic model is the control architecture (that we defined in the
previous section) and the small components are the local controllers. The interaction we are
looking at is how the signal ζ (which is broadcast from the BA to every local controller) changes
the total power consumption (because we want to control the total power consumption to help
balance supply and demand).

Let Xi
t be the state of the ith load at time t and N the number of loads. If we assume that

we are only looking at the same type of loads and that each load of a same type follows the same
nominal model. Then, we can define the following empirical probability mass function:

∀x ∈ X, µNt (x) = 1
N

N∑
i=1

1Xit=x

Under general conditions on the model, µNt tends to µt (when N tends to infinity) where µt is
defined by µ0 and the following dynamics:

µt+1 = µtPζt ∀ t ≥ 0 (4.1)

Moreover, we have a similar result for the average power consumption:

yNt = 1
N

N∑
i=1
U(Xi

t)

and yNt tends to yt (when N tends to infinity) where yt is defined as:

yt =
∑
x∈X

µt(x)U(x) ∀ t ≥ 0 (4.2)

Therefore, we choose our mean-field model as the deterministic system defined by (4.1) and (4.2).
This simple model approximates (assuming N is large enough) the interaction between ζ and the
total power consumption in our control architecture (this interaction is described through µNt and
yNt).

We will use a bode plot of the whole system to evaluate the performance of our control archi-
tecture. However, to plot the bode plot we need a linear system and the system defined by (4.1)
and (4.2) is not linear in ζ. Thus, we need to linearized it in ζ. Using proposition 3.1 of [2], we
have that:

∀ z ∈ C, Gζ(z) = C(I|X|z −A)−1B

is the transfer function of the linearization of the system defined by (4.1) and (4.2) at a particular
value ζ, with A = PTζ , Ci = Ũ(xi) and Bi =

∑
x∈X πζ(x)Eζ(x, xi) for all i = 1, · · · , d. πζ

is the invariant probability mass function of Pζ (assuming Pζ is irreductible), Ũ(x) = U(x) −∑
x′∈X πζ(x′)U(x′) and Eζ = d

dζ
Pζ . The transfer function of a system is a function which describes

the behavior of the output given a specific input, it is equal to the Laplace transform of the output
divided by the Laplace transform of the input. In order to better see the properties of this function
we can look at a graphical representation called the bode plot. This representation consists in
two plots. The first one looks at the magnitude 20 log10(|Gζ(z)|) (in dB) of the transfer function
depending on frequencies (z = wi) on a log scale. The second looks at the phase shift arg(Gζ(z))

41

Magnitude plot

Phase plot

Figure 4.1: Bode plot of the mean-field model linearized in ζ = 0

(in degrees) of the transfer function depending on frequencies (z = wi) on a log scale. Figure 4.1
is the bode plot of the linearized mean-field model in our application. From this plot, we can see
that the magnitude is constant around 10−3 frequency (which is a period of about 30 minutes).
This means that the control architecture should work for signals with a frequency around 10−3.

4.3 Feedback loop
In [2], the authors tackle balancing supply and demand of power by first decomposing the power
production curve into several signals with different frequencies, see Figure 2 and 3 in [2] for more
details. Then, they suppose that the components with low frequency should be handled by supply
and that the components with high frequency could be handled by demand. Therefore, the goal
of the whole control architecture is to increase or decrease the total power consumption in order
to track a reference signal rt which is the result of a high pass filter on the power production
curve. To do so, the authors used a feedback loop: at each time step t, the BA mesures the total
power consumption yt, computes the power deviation ỹt = yt − ȳt (where ȳt is the nominal power
consumption without control, ỹt represents the output of the mean-field model) which should be
equal to the reference signal. So then, the BA computes the error et = rt − ỹt, sends it to a
controller which computes the signal ζt that is broadcasted to all of the local controllers.

In our application, we chose a Proportional Integral (PI) controller for the controller at the

42

BA. It computes ζt given et with the following formula:

ζt = KP et +KI

t∑
l=0

el

where KP and KI are two scalar parameters that need to be fitted so that the output of the
mean-field model ỹt can properly track the reference signal rt. We fitted these parameters by
hand: we looked at the magnitude m of the transfer function for frequencies where it is constant
(see Figure 4.1), we set KP = m

20 and KI = 60wc5 KP with wc the cutoff frequency (the frequency
just before the phase shifts too much, 3 × 10−3 in our application) and 60 because we looked at
1−min sampled data and the frequency in the bode plot is in rad/s. Figure 4.2 is the bode plot

of the transfer function H(z) = K(z)G0(z)
1 +K(z)G0(z) of the feedback loop, with K(z) = KP + KI

z
the

transfer function of the PI controller.

Figure 4.2: Bode plot of the feedback loop

From this plot, we can see that the whole control architecture should be able to track a reference
signal with frequency around 10−3 because the magnitude/gain is 0 (so the output ỹt and the input
rt have the same amplitude) and the phase is 0 (so the two signals evolves at the same time).

43

Chapter 5

Application

We applied the disaggregation algorithm and the control techniques to data from Pecan Street
using Python. We collected, from their Dataport, the power consumption of about a hundred
houses (id 26 to 2401) over one month: august, 2016. The measurements were taken every minute
and give the power consumption of several devices and the total power consumption of the house.
We stored the data in a sqlite3 database to be able to ask queries about the usage of the different
devices in those houses.

One drawback with the model we chose is that you have to choose the devices (i.e the compo-
nents in the factorial model) which should explain the total power consumption (i.e the aggregated
observations). However, each house has different devices and if we choose a model with a device
that is not present in the house, it will still try to force it to explain the part that is not explained
by the other components or noise. Therefore, we decided to carefully choose the devices of our
model. We asked queries to our database in order to find devices that are often used and that
explain an important part of the total power consumption. Figure 5.1 is one result of these queries.

Figure 5.1: Devices usage

44

http://www.pecanstreet.org/
https://dataport.cloud/

This figure shows a boxplot for each of the 20 most used devices (we consider that a house
uses a device if the latter has at least once a power consumption strictly greater than zero during
the observed period). The devices are ordered from the most used one (left) to the least used one
(right). Each boxplot is constructed with the part of the device power consumption in the total
power consumption for all houses. In our application we chose the following devices to construct
our model: the air compressor, the furnace, the refrigerator, the dishwasher.

In order to apply our disaggregation algorithm, we had to select the parameters of our priors
(which we call hyper-parameters). Usually, these hyper-parameters are given by experts of the
field who know which parameter would best fit. Because we had not any knowledge about which
parameter to choose, we decided to estimate them with Pecan Street data. First, we selected some
houses where the four devices represent the most part of the total consumption and some houses
where they represent only a small part. This way, we can test the disaggregation algorithm in
different situations. We also separated the houses in a training set and a test set. The training
set is there to compute estimators of the priors hyper-parameters and is the test set is there to
test the algorithm on houses where we did not learn. Then, for each device of each house from
the training set, we estimated hidden states with a HDP-HSMM (using the pyhsmm package
from [1]) and separated the observations given the hidden states because the hyper-parameters
depends on the hidden states. See Figure 5.2 for a result of the hidden states estimation on
the refrigerator of house 189. Finally we computed estimators of the hyper-parameters using the
method of moments (we used an EM algorithm for the durations hyper-parameters because it is
a mixture distribution) and plug-in techniques (when we did not have access to a value but we
could compute an estimator).

Figure 5.2: Hidden states estimation on the refrigerator of house 189

We applied the factorial Bayesian particle filter (from section 3.3) to the test houses using
the computed priors. The algorithm performed well for the devices with the highest power con-
sumption, which is the air compressor in our application. Figure 5.3 is the result of the algorithm
for house 1830. The estimation of the refrigerator, the furnace and the dishwasher are not good
enough but the method estimated well the hidden states of the air compressor and thus, we tried
to apply control for this device.

In order to apply the control architecture (seen in chapter 4), we have to specify the nominal
model P0 for an air compressor. To do so, we used the model for thermostatically controlled

45

https://github.com/mattjj/pyhsmm

loads presented in [2]. We simulated the power consumption of the four devices, using the priors
computed previously, for 100 houses. At each time step t, each local controller measures the
aggregated power, disaggregates it and uses the air compressor state and power consumption
estimation to sample the new state with Pζt . The BA measures the new total power consumption
yt+1 and uses the PI controller (seen in section 4.3) given the reference signal rt+1. We did the
experiment with a simple reference signal (a sinusoid) and the result is shown in figure 5.4. We
were able to track the reference signal except for the hotter part of the day (from observation 1100
to the end) but this could be a consequence of poorly chosen parameters for the ODE of the inside
temperature. We did not have time to experiment with a reference signal obtained through real
data but this should be done to confirm these results. All the code in Python for this application
can be found here.

46

https://github.com/ArnaudCadas/Internship-report

Figure 5.3: Disaggregation of house 1830

47

Figure 5.4

48

Conclusion
To conclude, motivated by the work on "demand dispatch" by Ana Busic, we tackled a power
disaggregation problem. We started by looking at the factorial HDP-HSMM to solve it. Thus, we
presented the model and how to infer its parameters for a finite number of observations. Because
we wanted to apply the disaggregation algorithm to control in real time, we developed an online
inference algorithm based on particle filters and the idea of particle learning. Finally, we applied
this method to data from Pecan Street. Only the device which consumes the most power was
properly retrieved but combining this device estimation with control seems promising.

We believe that the algorithm could be improved with smoothing by computing a backward
filter at regular intervals (once a day for example) and merging it with the forward filter. Our
algorithm also depends heavily on the priors. Therefore, future work could be done on computing
more precise priors. One idea is to have several classes of priors for each device (the classes could
be created by unsupervised learning on the mean consumption for each operating mode) and
a learning phase before starting disaggregation. During this phase, we would only look at the
aggregated power consumption (in order for the method to stay non intrusive) and we would use
supervised learning (using the Pecan Street data) to find the best class for each device.

49

Appendices

50

Appendix A

Preliminary knowledge

A.1 Graphical models
In this section, we will very briefly introduce graphical models as they are quite useful to represent
the structure and the dynamics in the models of chapter 1. We also review two important results
about the graphical models that greatly helped us for the inference part.

Definition. Graphical Model
A graphical model is a probabilistic model in which a graph represents the dependancy structure

of a set of random variables. The graph can be directed or not.
When the graph is directed and acyclic (DAG), we can construct the moral graph which is the

undiricted graph obtained by linking the parents of a same node (for each node) and by removing
the direction of the edges.

Example.

X2

X1

X3

X4

X5 X6

Graphical model
X3

X2

X1

X5

X4

X6

Moral graph

In chapter 2, we computed challenging distributions. Using the graphical models that are
presented in chapter 1, the next two propositions allowed us to ease these derivations.

Proposition A.1.1. Factorisation of the joint distribution
If the graph is a DAG, the joint probability density function can be factorized given the parents

of each random variable:
p({Xi}i∈V) =

∏
i∈V

p(Xi|parents(Xi))

where parents(Xi) is the set of parents of the node Xi.

Example. Using the factorisation of the joint distribution with the previous graphical model, we
obtain:

p(X1, · · · , X6) = p(X1)p(X3)p(X2|X1, X3)p(X4|X2)p(X5|X2)p(X6|X5)

Proposition A.1.2. Markov property
Let G(V,E) a DAG, I,J ,K disjoint subsets of V . Then, in the moral graph associated to G, if

all paths from I to J go through K, we have {Xi}i∈I |= {Xj}j∈J |{Xk}k∈K

51

Example. Using the Markov property with the previous graphical model, we have that:

• X3 is independent of X4 given X2.

• X1 and X3 are not independent.

• {X5, X6} is independent of {X1, X3, X4} given X2.

A.2 Bayesian statistics
In inferential statistics, we suppose that we observe a realization of independent and identically dis-
tributed (i.i.d) random variables. The objective is to infer some properties about the distribution
of these variables. Bayesian statistics tackle the same problem but with a different perspective.
In the latter, we suppose that we have some information about the data (through what is called
the "prior") and then with the realizations we update this information (through what is called the
"posterior"). Finally, we infer some properties on the distribution with the updated information.

To make this more formal, let us introduce some notations. Let X : Ω→ E and θ : Ω→ Θ be
two random variables, ν a measure on E and λ a measure on Θ. We note π the density of θ (also
called the prior) with respect to λ, f(·|θ) the conditional density of X given θ = θ (also called
the likelihood) with respect to ν and π(·|x) the conditional density of θ given X = x (also called
the posterior) with respect to λ. Usually, the prior is given by the knowledge we have or some
expert has on the data we are looking at and the likelihood is given by the statistical model you
choose to represent your data. However, the posterior depends on the realizations and has to be
computed. To do so, we often use a well known theorem:

Theorem A.2.1. Bayes’ theorem

π(θ|x) = f(x|θ)π(θ)
f(x) = f(x|θ)π(θ)∫

Θ f(x|t)π(t)λ(dt)
∝ f(x|θ)π(θ)

Here the symbol ∝ means "proportional to", so π(θ|x) equals f(x|θ)π(θ) up to a normalization
constant (everything that doesn’t depend on θ). This symbol is often used in Bayesian statistics
as we do not need to compute the normalization constant if we recognize the distribution of
f(x|θ)π(θ) or if we only want to sample from the posterior (like for Monte Carlo methods). As
with inferential statistics, we can define estimators and their expected loss:

Definition. Posterior expected loss
Let θ̂ = θ̂(X) be a statistic to estimate θ and l : Θ × Θ → R+ a loss function. We define the

posterior expected loss as:

RB(π, θ̂) = E[l(θ, θ̂(X))] =
∫

Θ

(∫
E

l(θ, θ̂(x))f(x|θ)ν(dx)
)
π(θ)λ(dθ)

Definition. Bayesian statistic
Let θ̃ = θ̃(X) a statistic to estimate θ and l : Θ × Θ → R+ a loss function. θ̃ is a Bayesian

statistic for the loss l if:
θ̃ = argmin

θ̄∈S
RB(π, θ̄)

where S = {φ : E → Θ} is the set of estimators of θ.

We give the examples of the Bayesian estimators for the most used loss functions:

Example. - θ̃ = E[θ|X] for the loss l(θ, t) = (θ − t)2

- θ̃ = The median of θ given X for the loss l(θ, t) = |θ − t|

- θ̃ = argmax
θ∈Θ

π(θ|x) for the loss l(θ, t) = 1θ 6=t

52

In the following example, we are given a statistical model and a prior on the parameter of the
model. We compute the posterior distribution and then a Bayesian estimator of the parameter
for a specific loss:

Example. Let X = (Xi)i∈{1,··· ,n} with Xi
i.i.d∼ Binomial(N, θ) and θ ∼ Beta(α, β). So we have

the following likelihood

f(x|θ) = θ
∑n

i=1
xi(1− θ)nN−

∑n

i=1
xi

n∏
i=1

(
N

xi

)
and the following prior

π(θ) = Γ(α+ β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1
1[0,1](θ)

We compute the posterior by using Bayes’ theorem:

π(θ|x) ∝ f(x|θ)π(θ)

∝ θα+
∑n

i=1
xi−1(1− θ)β+nN−

∑n

i=1
xi−1

1[0,1](θ)

We recognize the beta distribution and so we have θ|x ∼ Beta(α+
∑n
i=1 xi, β+nN−

∑n
i=1 xi). We

can then infer a bayesian estimator for the loss l(θ, t) = (θ−t)2. As the mean of a Beta-distributed
random variable is equal to α

α+ β
, we have:

θ̃(X) = E[θ|X] =
α+

∑n
i=1 xi

α+ β + nN

The models that are presented in chapter 1 use the Bayesian framework as they have priors
on the parameters of the models. The inference of these models that is made in chapter 2 follows
the same idea as the previous example, we compute the posterior distribution of these parameters
and then derive Bayesian estimators for them (using loss functions adapted to the space on which
they are defined).

A.3 Dirichlet distribution
This section presents some properties about the Dirichlet distribution and their proof. The mo-
tivation behind this section is that we believe these results will help in the understanding of the
different models in chapter 1 and of section A.4. First, let us recall the definition of the Dirichlet
distribution introduced in section 1.1:

Definition. Dirichlet distribution
Let X = (X1, · · · , XK) be a random vector with K ∈ N∗. We say that X is distributed as

a Dirichlet of parameter α = (α1, · · · , αK) ∈ RK+ (noted X ∼ Dir(α1, · · · , αK)) if for every
x ∈ ∆K−1 = {(t1, · · · , tK) : ti ≥ 0,

∑K
i=1 ti = 1}, its density (with respect to the Lebesgue measure

on RK−1) is:

f(x) =
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

xαk−1
k with Γ(y) =

∫ +∞

0
ty−1e−tdt (A.1)

If we have αi = 0 (i ∈ {1, · · · ,K}), we say that Xi is degenerate and we put Xi = 0.

The Lebesgue measure is on RK−1 because the simplex ∆K−1 is of dimension K − 1: if we
know the value of K − 1 coordinates, then the last one is 1 minus the sum of these coordinates.
Because of this, the density should only have K − 1 variables and a more suited definition should
be with the following density:

f(x) =
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

(
K−1∏
k=1

xαk−1
k

)(
1−

K−1∑
k=1

xk

)αK−1

∀ x ∈ SK−1 (A.2)

53

where SK−1 = {(t1, · · · , tK−1) : ti ≥ 0,
∑K−1
i=1 ti ≤ 1}. So, in (A.1), xK is just a notation and

we have xK = 1 −
∑K−1
k=1 xk (we have chosen xK but we could have chosen any i ∈ {1, · · · ,K})

which turns ∆K−1 into SK−1 because
∑K
i=1 xi =

∑K−1
i=1 xi + 1 −

∑K−1
i=1 xi = 1 is always verified

and xK ≥ 0 is equivalent to
∑K−1
i=1 xi ≤ 1. We kept (A.1) throughout the paper because it is

more clear, it eases the notations and we do not go into any integral computation in most of the
paper. So, if no precision is given, (A.1) is assumed. However, (A.2) is much more useful to prove
properties about the Dirichlet distribution. So, we will use (A.2) for the next two results in this
appendix.

Proposition A.3.1. Let X = (X1, · · · , XK) be a random vector distributed as a Dirichlet of
parameter α = (α1, · · · , αK). We have the following result:

E[Xk] = αk∑K
i=1 αi

for k ∈ {1, · · · ,K}

Proof. Let X = (X1, · · · , XK) with (X1, · · · , XK−1) ∼ Dir(α1, · · · , αK) and XK = 1−
∑K−1
k=1 Xk.

For any k ∈ {1, · · · ,K − 1}:

E[Xk] = E[gk(X1, · · · , XK−1)] with gk : y = (y1, · · · , yK−1) 7→ yk

=
∫
· · ·
∫

SK−1

xkf(x1, · · · , xK−1)dx1 · · · dxK−1 with f as (A.2)

=
∫
· · ·
∫

SK−1

Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)
xαk+1−1
k

∏
i6=k

xαi−1
i

(1−
K−1∑
i=1

xi

)αK−1

dx1 · · · dxK−1

= Γ(αk + 1)
Γ(αk)

Γ(
∑K
i=1 αi)

Γ(1 +
∑K
i=1 αi)

×
∫
· · ·
∫

SK−1

Γ(1 +
∑K
i=1 αi)

Γ(αk + 1)
∏
i 6=k Γ(αi)

xαk+1−1
k

∏
i 6=k

xαi−1
i

(1−
K−1∑
i=1

xi

)αK−1

︸ ︷︷ ︸
density of a Dir(α1, · · · , αk + 1, · · · , αK)

dx1 · · · dxK−1

= αk∑K
i=1 αi

For k = K, we have E[XK] = 1−
∑K−1
j=1 E[Xj] = 1−

∑K−1
j=1

αj∑K
i=1 αi

= αK∑K
i=1 αi

.

Proposition A.3.2. Let X = (X1, · · · , XK) be a random vector distributed as a Dirichlet of
parameter α = (α1, · · · , αK). For any k ∈ {1, · · · ,K}, define Y = (Y−k, Yk) where Y−k =
(Y1, · · · , Yk−1, Yk+1, · · · , YK), Yi = Xi

1−Xk
for i ∈ {1, · · · ,K}\{k} and Yk = Xk. Then, we have:

• Y−k is distributed as a Dirichlet of parameter α−k.

• Yk is distributed as a Beta of parameter αk and
∑
i 6=k αi.

• Y−k and Yk are independent.

Because Y−k and Yk are independent for any k ∈ {1, · · · ,K}, we also say that X is neutral.

Proof. LetX = (X1, · · · , XK) be a random vector distributed as a Dirichlet of parameter α. With-
out loss of generality, we prove this proposition for k = 1. We choose XK to be our "dummy vari-
able" (its subscript must be different from k), so we have (X1, · · · , XK−1) ∼ Dir(α1, · · · , αK) and

54

XK = 1−
∑K−1
k=1 Xk. We define Y = (Y−1, Y1) where Y−1 = (Y2, · · · , YK) = (X2

1−X1
, · · · , XK

1−X1
)

and Y1 = X1. For any measurable function φ : RK−1 −→ R∗+, we have:

E[φ(Y1, Y2, · · · , YK−1)]

= E[φ(X1,
X2

1−X1
, · · · , XK−1

1−X1
)]

=
∫
· · ·
∫

SK−1

φ(x1,
x2

1− x1
, · · · , xK−1

1− x1
)
Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)

(
K−1∏
i=1

xαi−1
i

)(
1−

K−1∑
i=1

xi

)αK−1

dx1 · · · dxK−1

we use the transformation (y1, y2, · · · , yK−1) = (x1,
x2

1− x1
, · · · , xK−1

1− x1
) which has the following

Jacobian:

J =

1 (O)
−y2 (1− y1)
...

. . .
−yK−1 (O) (1− y1)

 and |det(J)| = (1− y1)K−2

=
∫
· · ·
∫

[0,1]×SK−2

φ(y1, y2, · · · , yK−1)
Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)
yα1−1

1

(
K−1∏
i=2

(yi(1− y1))αi−1

)

×

(
1− y1 −

K−1∑
i=2

yi(1− y1)
)αK−1

(1− y1)K−2dy1 · · · dyK−1

=
∫
· · ·
∫

[0,1]×SK−2

φ(y1, y2, · · · , yK−1)
Γ(
∑K
i=2 αi)∏K

i=2 Γ(αi)

(
K−1∏
i=2

yαi−1
i

)(
1−

K−1∑
i=2

yi

)αK−1

︸ ︷︷ ︸
density of a Dir(α−1)

×
Γ(
∑K
i=1 αi)

Γ(α1)Γ(
∑K
i=2 αi)

yα1−1
1 (1− y1)

∑K−1
i=2

αi−1

︸ ︷︷ ︸
density of a Beta(α1,

∑K

i=2
αi)

dy1 · · · dyK−1

A.4 Nonparametric Bayesian statistics
The HDP-HSMM that we presented in section 1.3 is based on the idea that we do not want to
specify the number of hidden states but we want the model to infer it. This means that we can
have, in theory, an infinite number of hidden states and therefore, a transition matrix of infinite
dimension. In addition, we want to choose a prior on this matrix. To do so, we need some models
from the nonparametric Bayesian statistics that we are going to study in this section. First we will
present the Dirichlet process and two of its representations to better understand it. Then we will
introduce the Hierarchical Dirichlet Process and the extension of the two previous representations.
This section is merely a preamble of these two objects, see [5] for more details.

A.4.1 Dirichlet Process
The Dirichlet process (DP) is stochastic process which was introduced by Thomas Ferguson in
1973. It has been used a lot in machine learning, genetics, information retrieval and speaker
diarization problems. We will first present it with a formal definition given by Y. W. Teh in [5]:

55

Definition. Dirichlet process
Let (E, E) be a measurable space, H a base probability measure on that space and γ a positive

real number. A Dirichlet process, noted DP (γ,H), is defined as the distribution of a random
probability measure G over (E, E) such that for any partition (A1, · · · , Ar) of E, the random vector
(G(A1), · · · , G(Ar)) is distributed as a finite-dimensional Dirichlet distribution with parameters
(γH(A1), · · · , γH(Ar)):

(G(A1), · · · , G(Ar)) ∼ Dir(γH(A1), · · · , γH(Ar))

Ferguson has proven that draws from G are almost surely discrete probability measures.
We are going to see briefly what is the influence of the two parameters H and γ in the draws

we can get from G. First, let us talk about H:

Proposition A.4.1. Let G ∼ DP (γ,H). For any subset A of E, we have:

E[G(A)] = H(A)

Proof. Let G ∼ DP (γ,H). For any subset A of E, {A,E\A} is a partition of E. So, by definition,
(G(A), G(E\A)) ∼ Dir(γH(A), γH(E\A)). Using proposition A.3.1, we have that:

E[G(A)] = γH(A)
γ(H(A) +H(E\A)) = H(A)

because H is a probability measure on E and {A,E\A} is a partition of E.

This proposition shows that the base probability measure H is the expected value of the
process. Therefore, a realization of G will be "near" this base probability measure. For example, if
H is a normal distribution, then a realization of G would "look" like a discretization of this normal
distribution.

The parameter γ acts as a concentration parameter. When γ is close to 0, the mass (of
a realization of G) is spread among very few values. However, when γ tends to infinity, the
realization tends to a continuous probability measure. To justify this result, we will now present
another representation of the Dirichlet process which uses the stick-breaking process.

Stick-breaking representation of the DP

The stick-breaking representation is a more constructive view of the Dirichlet process. The idea
is that because draws from G are discrete probability measure, they can be decomposed in two
parts: their support and the probability they attach to each of its elements. Therefore, we could
construct the random support, the random probabilities and combine them to get G.

First, let us note that the support of G is contained in the support of H because if we have
H(A) = 0 (for a subset A of E) then by definition of the Dirichlet distribution G(A) is degenerate
and equals zero. So, taking proposition A.4.1 into account, it seems natural to construct the
random support by sampling from H so that the values stay within the support of H and are
more likely to be in the regions of high density.

Then, to construct the random probabilities, the idea is to generalize the Dirichlet distribution.
We want to be able to sample an infinite number of positive values that all sum to 1. This is where
the stick-breaking name takes its full meaning, it is an image to represent the process of sampling
these probabilities. We start with a stick of length 1, we choose a random point on the stick by
sampling from a Beta distribution with parameters 1 and γ and we break the stick, at that point,
into two parts. The length of the first part (the value of our sample) is our first probability. Then,
we consider the second part to be our new stick of length 1 and we repeat the process (an infinite
number of times).

56

Finally, to combine both parts, we just have to attach each random probability to an element
of the random support. The whole construction can be sum up as:

β′k ∼ Beta(1, γ)

βk = β′k

k−1∏
l=0

(1− β′l) with β0 = β′0

µk
i.i.d∼ H for k = 0, 1, 2, · · ·

G =
∞∑
k=0

βkδµk (A.3)

If G is a random probability measure constructed as (A.3), then Sethuraman showed in [6], that
G is distributed as a Dirichlet process with parameters γ and H. We can also consider only β
which is in this case a random probability measure on N (so a generalization of the categorical
distribution) and we note β ∼ GEM(γ) (GEM stands for Griffiths, Engen and McCloskey).

In this representation of the DP, we can see more clearly why α is a concentration parameter.
If γ is close to 0, then the realizations of the β′k have a high probability to be close to 1. This means
that the first few βk will get all the mass and the probability measure will be highly concentrated
on the first few µk. If γ is very high, then the realizations of the β′k have a high probability to
be close to 0. This means that the mass will be spread among a lot of the βk and the probability
measure will be spread among a lot of the µk.

Chinese Restaurant Process

Another representation of the Dirichlet process is the Chinese Restaurant Process (CRP) which
uses a metaphor to express the probability of θi given θi−1, · · · , θ1, γ,H where θ1, · · · , θi are
random variables distributed according to G with G ∼ DP (γ,H). In this representation, we do
not explicitly define G but we can observe its properties and create a generative model with the
help of realisations from G.

The metaphor of the CRP is as follows: a client θi enters the restaurant where K tables
are indexed by distinct values (φk)1≤k≤K . He sits at a table indexed by φk with probability
proportional to number of clients nk already seated there (we put θi = φk and nk = nk + 1), and
sits at a new table with probability proportional to γ (we put K = K + 1, we draw φK ∼ H and
θi = φK). Therefore, the probability of θi given θi−1, · · · , θ1 is defined by this mixture:

θi|θi−1, · · · , θ1 ∼
K∑
k=1

nk
i− 1 + γ

δφk + γ

i− 1 + γ
H

This representation clearly shows that draws from the DP have a clustering property ("Rich gets
richer").

A.4.2 Hierarchical Dirichlet Process
A Hierarchical Dirichlet Process (HDP) defines a set of random probability mesuresGj and a global
random probability measure G0. All the random measures Gj are conditionally independent given
G0 and distributed as a Dirichlet Process with concentration parameter α and base probability
measure G0. G0 is distributed as a Dirichlet Process with concentration parameter γ and base
probability measure H:

G0 ∼ DP (γ,H)
Gj |G0 ∼ DP (α,G0)

As we introduced the Stick-Breaking process to better understand what is a Dirichlet Process, we
can do the same for the HDP.

57

Stick-breaking representation of the HDP

First, as G0 is distributed as a DP (γ,H) we can use its stick-breaking representation:

G0 =
∞∑
k=0

βkδθk

with β ∼ GEM(γ) and θk
i.i.d∼ H. Then, all the Gj are distributed as a DP (α,G0), so we can

also use their stick-breaking representation:

Gj =
∞∑
k=0

πjkδθk

Note that we used the same atoms θk as with G0. This is because the base probability measure of
the Gj is G0, so when we will draw atoms for the Gj , we will draw them from G0 and therefore,
Gj and G0 will have the same support. We can also note that the new probabilities πj = (πjk)∞k=0
are independent given β because the Gj are independent given G0.

If we suppose that H is a non-atomic probability measure (which will be the case in our next
model), we can show the link between the πj and β. Let (A1, · · · , Ar) be a partition of E and
let Kl = {k : θk ∈ Al} for l = 1, · · · , r. Then, (K1, · · · ,Kr) is a partition of N and by the
stick-breaking representation, we have Gj(Al) =

∑
k∈Kl πjk (for each j) and G0(Al) =

∑
k∈Kl βk

for l = 1, · · · , r. Because all the Gj are distributed as a DP (α,G0), by definition, we have for
each j:

(
∑
k∈K1

πjk, · · · ,
∑
k∈Kr

πjk) ∼ Dir(α
∑
k∈K1

βk, · · · , α
∑
k∈Kr

βk) (A.4)

With the assumption that H is non-atomic, all the θk are almost surely distinct. This means that
for any partition (K1, · · · ,Kr) of N, there is a partition of E (Al = {θk : k ∈ Kl} for l = 1, · · · , r)
which verifies (A.4). So, by definition, we have πj ∼ DP (α, β) for each j.

Furthermore, we can also specify a stick-breaking construction for the πj . Let us use (A.4)
with the partition ({0, · · · , k − 1}, {k}, {k + 1, k + 2, · · · }):

(
k−1∑
l=0

πjl, πjk,

∞∑
l=k+1

πjl) ∼ Dir(α
k−1∑
l=0

βl, αβk, α

∞∑
l=k+1

βl)

Using the proposition A.3.2, we have:

1
1−

∑k−1
l=0 πjl

(πjk,
∞∑

l=k+1
πjl) ∼ Dir(αβk, α

∞∑
l=k+1

βl)

If we define π′jk := πjk

1−
∑k−1
l=0 πjl

with π′j0 := πj0, we get:

π′jk ∼ Beta(αβk, α(1−
k−1∑
l=0

βl))

πjk = π′jk

k−1∏
l=0

(1− π′jl) by induction

because a Dirichlet distribution of dimension 2 is a Beta distribution and
∑∞
l=k+1 βl = 1−

∑k−1
l=0 βl.

This result shows that given β, we can construct the πj in a stick-breaking way.

58

Chinese Restaurant Franchise

To extend the CRP as the HDP extended the DP, we are going to see what is the Chinese
Restaurant Franchise (CRF). In the same way of the CRP, the CRF uses a metaphor to express
the probability of random variables (given the previous draws) that are distributed according to
a set of random probability measures which are themselves distributed according to a HDP. In
this representation, each Gj represents a restaurant and all of them are tied together by G0 which
represents the dishes served at each restaurant.

The metaphor is as follows: a client θji enters the restaurant j where there are mj· tables
(with mj· =

∑
kmjk and mjk the number of tables in restaurant j where dish k is served). He

sits at a table (indexed by tji) with probability proportional to number of clients njt that already
seated there (we put tji = t), and sits at a new table with probability proportional to α (we put
mj· = mj· + 1 and tji = mj·). If the client is the first to sit at that table (which means it is a
new table), he orders a dish ψjt that all the clients that will sit there afterwards will share. To
choose the dish, the client will look at the menu H and the popularity of already K unique served
dishes across all restaurants (φ1, · · · , φK), he will choose a dish already served (we put ψjt = φk
and kjt = k) with probability proportional to m·k (with m·k =

∑
jmjk), and will chose a new

dish from the menu with probability proportional to γ (we put K = K + 1, we draw φK ∼ H, we
put ψjt = φK and kjt = K). If the client sits at a table where a dish is already served, he will
share this dish with the people already present at that table, so every table serves only one dish.
In the end, we have θji = ψjtji = φkjtji .

The order of arrivals from the client is not really defined in [5] but to link this representation
to our next model, we suppose that there exists a bijection f : n 7→ j, i and that if client θf(n)
arrives at a restaurant j and sits at a table with a dish k served, then the next client θf(n+1) will
arrive at restaurant k. To sum it all up, we can define the probabilities of the clients and the
dishes (given the previous arrivals) by:

θji|θji−1, · · · , θj1, G0 ∼
mj·∑
t=1

njt
i− 1 + α

δψjt + α

i− 1 + α
G0

ψjt|(ψ̄l)l ∼
K∑
k=1

m·k
m·· + γ

δφk + γ

m·· + γ
H

with ψ̄l = (ψl1, · · · , ψlml·) and m·· =
∑K
k=1m·k.

A.5 Gibbs Sampling
Gibbs sampling is a Markov chain Monte Carlo (MCMC) method to obtain a sequence of samples
which approximates samples from a target probability distribution. This method is used when
direct sampling from the target is too difficult.

Let p(x) = p(x1, · · · , xd) be a density, with respect to a reference measure ν on X d, that we
want to sample from. We note x−l = (x1, · · · , xl−1, xl+1, · · · , xd). Suppose that we know how to
sample from the conditional density p(·|x−l) for all l ∈ {1, · · · , d} and all x−l ∈ X d−1. A Gibbs
sampler can be derived using Algorithm 14.

The deterministic variant of the Gibbs sampler makes the same assumptions as the original
one but uses a deterministic order for the sampling step: Algorithm 15.

The initial distribution for both algorithms can be anything, for example we could draw x1

uniformly on X d. However, choosing an initial distribution close to the target one would generate
better results. In order to understand why these two algorithms can produce samples from the
target density, we can look at the following result.

Suppose that we are given a sample x and that we choose coordinate l (either it was drawn
uniformely or it is the lth step for the deterministic sampler). Then, the next sample x′ is obtained

59

Algorithm 14: Random Gibbs sampler
Sample x1 with an initial distribution.
for n ∈ {1, · · · , N} do

Draw uniformely a coordinate l between 1 and d.
Sample x′l following p(·|xn−l).
Set xn+1 = (x′l, xn−l).

end

Algorithm 15: Deterministic Gibbs sampler
Sample x1 with an initial distribution.
for n ∈ {1, · · · , N} do

for l ∈ {1, · · · , d} do
Sample x′l following p(·|x′1, · · · , x′l−1, x

n
l+1, · · · , xnd).

end
Set xn+1 = (x′1, · · · , x′d).

end

following the density p(x′l|x−l) if x′−l = x−l. Let us define the following transition kernel for any
l ∈ {1, · · · , d}:

Pl(x, x′) =
{
p(x′l|x−l) if x′−l = x−l

0 else

The target density is reversible for this transition kernel because

p(x)Pl(x, x′) = p(xl, x−l)
p(x′l, x−l)
p(x−l)

= p(xl, x′−l)
p(x′l, x′−l)
p(x′−l)

= p(x′)Pl(x′, x)

if x′−l = x−l and p(x)Pl(x, x′) = p(x′)Pl(x′, x) = 0 if x′−l 6= x−l. Therefore, the target density is
invariant for Pl:

p(x′) =
∫
Xd

p(x)Pl(x, x′)ν(dx)

We can view the samples of a Gibbs sampler as a realisation of a Markov chain with a specific
transition kernel. For the random sampler, we have the following kernel:

PR = 1
d

(P1 + · · ·+ Pd)

because we choose a coordinate l with probability 1
d

and then use the kernel Pl. For the deter-
ministic sampler, we have the following kernel:

PD = Pd ◦ · · · ◦ P1

because we use successively each kernel Pl. We can show that the target density is invariant for
both transition kernel PR and PD:∫
Xd

p(x)PR(x, x′)ν(dx) = 1
d

(∫
Xd

p(x)P1(x, x′)ν(dx) + · · ·+
∫
Xd

p(x)Pd(x, x′)ν(dx)
)

= p(x′)

∫
Xd

p(x)PD(x, x′)ν(dx) =
∫
Xd
· · ·
∫
Xd

p(x)P1(x, x1)ν(dx) · · ·Pd(xd, x′)ν(dxd)

=
∫
Xd
· · ·
∫
Xd

p(x1)P2(x1, x2)ν(dx1) · · ·Pd(xd, x′)ν(dxd)

...
= p(x′)

60

Under some conditions (irreductibility if |X | < ∞ or positive Harris recurrent if X is more gen-
eral) on the transition kernel, we can use the Law of Large Numbers (LNN) for Markov chains.
Because the target density is invariant for both transition kernel PR and PD, the LNN shows
that with enough sampling steps, we can use the samples to create Monte-Carlo estimators of∫
φ(x)p(x)ν(dx) for any φ. Moreover, if the transition kernel is aperiodic, with enough sampling

steps, the samples are drawn following the target density.

61

Bibliography

[1] M. J. Johnson. and A. S. Willsky. Bayesian Nonparametric Hidden semi-Markov Models. The
Journal of Machine Learning Research. February 2013, volume 14, issue 1, pages 673-701.

[2] Bušić, A. and Meyn, S. Distributed Randomized Control for Demand Dispatch. 55th IEEE
Conference on Decision and Control (CDC), December 2016, Las Vegas, United States.

[3] Y. Chen, A. Bušić, and S. Meyn. Estimation and control of quality of service in demand
dispatch. IEEE Trans. on Smart Grid, PP(99):1-1, 2017.

[4] G. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80(12), 1992.

[5] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. Journal
of the American Statistical Association, 101(476):1566-1581, 2006.

[6] J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica 4(1994), 639-650

[7] E. B. Fox. Bayesian Nonparametric Learning of Complex Dynamical Phenomena. Ph.D. thesis,
MIT, Cambridge, MA, 2009.

[8] H. Ishwaran. M. Zarepour. Exact and Approximate Sum Representations for the Dirichlet
Process. The Canadian Journal of Statistics, Vol. 30, No. 2. (Jun., 2002), pp. 269-283.

[9] Understanding the "Antoniak equation" by Tom Stepleton.
http://www.cs.cmu.edu/ tss/antoniak.pdf

[10] Van Dyk, D. A., and Park, T. (2008). Partially collapsed Gibbs samplers: Theory and methods.
Journal of the American Statistical Association, 103(482), 790-796.

[11] A. Doucet and A. M. Johansen. A Tutorial on Particle Filtering and Smoothing: Fifteen years
later. 2008.

[12] A. Rodriguez. On-line learning for the infinite Hidden Markov Model. Department of Applied
Mathematics and Statistics, University of California

[13] "Simulations Monte-Carlo" lessons by A. Guyader.
http://www.lsta.lab.upmc.fr/modules/resources/download/labsta/Pages/Guyader/MonteCarlo.pdf

[14] J. S. Liu. Monte Carlo Strategies In Scientific Computing. 2001

[15] Carvalho, C. M.; Johannes, M. S.; Lopes, H. F.; Polson, N. G. Particle Learning and Smooth-
ing. Statistical Science 25 (2010), no. 1, 88–106.

[16] A. Rodriguez. On-Line Learning for the Infinite Hidden Markov Model. Communications in
Statistics - Simulation and Computation. 40, 6, p.879-893, 2011.

[17] M. Briers, A. Doucet and S. Maskell. Smoothing algorithms for state-space models. Annals of
the Institute of Statistical Mathematics. June 2009, volume 62, number 1, page 61.

62

	Models
	Bayesian Hidden Markov Model
	Hidden Semi-Markov Model
	Hierarchical Dirichlet Process - HSMM
	Factorial HDP-HSMM

	Batch Inference
	Bayesian HMM Inference
	Posterior of the hidden states
	Posterior of the observations and transitions parameters

	HSMM Inference
	Posterior of the hidden states
	Posterior of the duration parameters

	HDP-HSMM Inference
	Posterior of the transitions parameters

	Online inference
	Sequential Monte Carlo
	Monte Carlo and importance sampling
	Sequential Importance Sampling
	Sequential Importance Resampling
	Auxiliary Particle Filtering

	Bayesian particle filter
	Factorial bayesian particle filter
	Smoothing

	Control
	Local control design
	Mean-field model
	Feedback loop

	Application
	Appendices
	Preliminary knowledge
	Graphical models
	Bayesian statistics
	Dirichlet distribution
	Nonparametric Bayesian statistics
	Dirichlet Process
	Hierarchical Dirichlet Process

	Gibbs Sampling

