Game Theory Framework Help

Fabien Dufoulon

23/07/2015
Contents
1 Introduction
2 Games
2.1 Utility
2.2 GetReward
2.3 PlayTurn
2.4 Factory Part
2.5 Regret print functions L oL oL
2.6 Game information print function
2.7 Game basic initialization information
3 Player
4 Learning Algorithms
4.1 GetVector
4.2 TransformVector,
4.3 NormalizeVector oL
4.4 Decide
4.5 Update
4.6 Initialization Lo oL
4.7 Factory Part oo
5 Learning Algorithms Encyclopedia
5.1 Partial Information L.
5.1.1 BestResponseAverage
5.1.2 Logit.
5.1.3 UCBfamily,
51.3.a ScoreUCB.
513b UCB.......
5.1.3.c TemporalUCB
5.1.3.d DiscountUCB
513e KLUCB
514 Exp3family oo
5.14.a Exp3 L.
5.14b Exp3l
5.1.5 Epsilon-greedy family
5.1.5.a Epsilon-greedy

5.1.5.b EpsilonN-greedy 14

5.2 Full Information, 15
5.2.1 RandomizedMajorityMyopic. 15
5.2.2 FollowTheLeader 15
5.2.3 Hedge 15

Game Encyclopedia 16

6.1 Twoplayer Game 16

6.2 ResourceAccessBased Game L. 16

6.3 Congestion Game Lo 16

6.4 Multichannel Opportunistic Game (MOA) 17

6.5 Random Multichannel Opportunistic Game (RMOA) 17

6.6 ResourceSimplePayoff 000000 17

6.7 Server Distribution o oo 18
6.7.1 Server Distribution with predictions variant 18

6.8 MetaGame 18

6.9 MassLaunchGame 18

1 Introduction

This work was written to help in the use of the Game Theory Framework ap-
plication.

The Game Theory Framework application focuses on providing simulations
of games, with players simulated by learning algorithms implemented in the
application itself. It allows to play out scenarios which would be complicated
to visualize theoretically, mostly in the case of multi-player scenarios, but also
when the players or/and actions for each player are numerous.

The aim of this help is to explain the underlying structure used in the frame-
work, as well as the way games and learning algorithms should be understood
and expanded upon. Moreover, it should give an idea of why each structure of
the project were used, and what compromise was struck in doing so.

o

NN

W

© 0~ o

COWND UK WN -

2 Games

The Games are focused around the playTurn(), getRewards() and utility() func-
tions. Another important functionality is the part that links games to the Game-
Factory. This part needs to be implemented in all instantiable derived classes,
in order for GameFactory can instantiate this class properly.

The random generator of a game is default_random_engine, from the C'++ STL,
as it is rarely used.

2.1 Utility

The utility function takes in a vector of strategies describing what each player
has chosen to do this turn, and outputs the rewards for each player in this given
situation.

The utility function is specific to the problem and will need to be imple-
mented in each class directly inheriting from the Game class.

As said above, the utility requires game-specific information. This informa-
tion will need to be given to the constructor of the class, and stored in member
variables. This is done mainly by giving the name of text files to the constructor
of the class, in which the text files will be parsed.

It is possible to change the state of the game in utility, the playTurn function
makes sure the updates are correct.

std::vector <double> Game2by2::utility(const std::vector<int> &strategies){
int k = (strategies[0]-1) * 2 + (strategies[1]-1);
std::vector<double> v = {payoffMatrixP1[k], payoffMatrixP2[k]l};
return v; }

2.2 GetReward

The getReward function takes in a vector of strategies describing what each
player has chosen to do this turn, and a player, and outputs all the possible
rewards the player could have received by changing the action chosen(amongst
the available actions) and the reward returned by his chosen action, with every
other player having the same action.

Normally, this function does not need to be overridden in derived classes.
However, it happens when you need rewards from one arm to depend on the
rewards from the other arms. An example is the ServerDistribution game, where
the rewards are normalized so that the worst arm receives a loss of 1, therefore
a reward of 0.

//Here, player is index, returns this player’s possible rewards according to his available strategies
std::vector<double> Game::getReward(int player, std::vector<int> strategies){
auto rewards = std::vector<double>(players[player].playerMaximumStrategyNumber, 0.);
for (auto &1 : players[player].availableStrategies){ //Test out only the strategies available to the
player. Other are given reward O
strategies [player] = 1;
rewards[1-1] = utility(strategies) [player];
}

return rewards;

std::vector<double> ServerDistribution::getReward(int player, std::vector<int> strategies){
std::vector<double> rewards(Game::getReward(player, strategies));

//Normalize depending on trace or cost here
if (rewardTypeServerActivation == "COST") { //Take distance from smallest cost
double minEl = *std::min_element (std::begin(rewards), std::end(rewards));
std::transform(std::begin(rewards), std::end(rewards), std::begin(rewards),
[%] (double d) {return d - minEl;})
}

//now normalize

12
13
14
15

0O W N

double maxEl = *std::max_element(std::begin(rewards), std::end(rewards));

std::transform(std::begin(rewards), std::end(rewards), std::begin(rewards),
[&] (double d) {return 1 - d / maxEl;});

return rewards;

}

2.3 PlayTurn

The playTurn function takes in a vector of strategies describing what each player
has chosen to do this turn. It polls each player to obtain the strategy chosen by
their current learning algorithm. It then updates every player with the vector
of his possible rewards, then makes sure utility is called one last time to update
the game properly if so needed.

This function can be overridden in derived classes, however it is interesting
to call Game::playTurn in the override then code whatever is needed afterwards
(Examples : MOA, MetaGame and ServerDistributionGame).

void Game::playTurn(){

std::vector<int> strategies;

strategies.reserve(players.size());

//Get all of the strategies chosen by the current learning algorithm of each player.

for (auto &p : players){
//Update available strategies for sleeping bandits
std::vector<int> availableStrategies(p.playerMaximumStrategyNumber);
std::iota(std::begin(availableStrategies), std::end(availableStrategies), 1); //Range from 1 to

maxStrategyNumber

//Act upon available strategies here
p.createAvailableStrategies (availableStrategies); //Update player available action set.

//Get the strategy chosen by this player.
strategies.push_back(p.getCurrentLearningAlgorithm()->choice(p));
¥

//Utility called a lot more than the timeStep
//Return to player k all possible rewards for his action, knowing that all other players do not change
their own actionms.
for (std::size_t k = 0; k < players.size(); ++k){
players[k].updateRewards (getReward(k, strategies), strategies[k]);

//To have the game finish with the correct update if utility modifies the game state to return the
appropriate information.
utility(strategies);

//Store the current time step.
++timeStep;

2.4 Factory Part

The derived classes who want to be instantiable by call to GameFactory need
to possess a public static member function create with the correct signature as
well as private static member variable from AlgorithmRegister templated with
the derived class.

Normally, it is mostly sufficient to take the existing code from already existing
header files and implementations files and modify it slightly to fit the needs of
the new derived class(especially in the create function() definition, where some
conditions can be defined on the number of inputs and so on).

The detailed explanation is that the GameFactory class holds a static mem-
ber variable describing the mapping from a name to a function returning a
newly created corresponding game instance. That function is the corresponding
create function defined in the corresponding game derived class(Static member
variables are accessible to all instances of a class, therefore the mapping is the
same for all GameFactory instances no matter which one updates it).

This static member variable is also accessible by GameRegister<Template>, a

derived class of GameFactory. Moreover, the constructor of GameRegister<Template>

takes in a vector of names(ids) and associates the corresponding create function

defined in the Template class(This is why the signature of create is very impor-
tant).

The constructor of all GameRegister instances is called when member variables
of class GameRegister are defined, and static member variables require to be
defined, therefore all static member variables of class GameRegister in game
classes need to be defined in the implementation file so that they update the
mapping in GameFactory.

After all this work, all that is needed to create a game instance is to call
GameFactory::createlnstance correctly(As a bonus, it is possible to associate
multiple names to a single class so that it’s easier to use).

The following code example is from Game2by?2 :

© 00O U W=

e e
W= O

//Header file
public:

static Game* create(std::vector<std::string> inputFiles, int seed);
private:

static GameRegister <Game2by2> reg;

//Implementation file

//If not enough input text files, return nullptr.

Game* Game2by2::create(std::vector<std::string> inputFiles, int seed){
if (inputFiles.size() >= 2) return new Game2by2(inputFiles[0], inputFiles[1], seed);
else return nullptr;

} //Initialize identifier of this game.

GameRegister <Game2by2> Game2by2::reg({"Game2by2", "G2x2"});

2.5 Regret print functions

The printRegret function takes in a file name and a sampling integer, and out-
puts the external regret of all players in the file. This regret is computed by
comparing the highest cumulative reward possible by choosing the same action
over and over again, to the cumulative reward of the player’s algorithm.

The printInternalRegret has exactly the same input and outputs the regret
of the player. This regret is computed by accumulating the comparative loss at
each time step between the player’s choice and the optimal action within the
current game state.

2.6 Game information print function

The Game class holds a printInformation function, with the same input as above,
that is to say a file name and sampling. As implemented in the base class, it
does nothing.

This function is to be implemented if wanted in the derived base classes, in
order to get information about the evolution of the game state for example. It
can even be used to print the regret again in a more compatible format for the
user.

2.7 Game basic initialization information

Any game simulating class needs a basic amount of information. This infor-
mation is treated in the base Game class. The constructor takes in a text file
describing the initialization parameters, the text file is parsed, and the infor-
mation is used and stored in game. The constructor can also take in a extra
parameter, a seed, to allow for fast instantiation of the same game with different
seeds by the GameFactory.

The parameters common to every game are the maximum number of players
at any time in the game, a seed, and for each player the maximum number of
strategy available to him at any time step followed by the learning algorithms
he has access to. The first learning algorithm in the list is chosen as his current
algorithm, and currently there is no way to customize the change of algorithms
from the text file.

number of players
seed

MaxStrategy player 1 + whitespace + LearningAlgorithms list(separated by spaces)

same thing for last player

Therefore, all derived classes’ constructors require such a text file as input, but
will call upon a base class constructor to process the file.

When writing new game derived classes, it is very helpful to check out the
other parse constructors in order to get a good idea of what methods are given
by the Game class(for example a method to split string according to a certain
character) and to see what kind of parse treatment has already been done before.
The constructors already implemented work on the following principle :

1. First, surround the parse of a file itself by a try-catch block, which will
allow you to know which file exactly is non conform, if exceptions are pre-
pared in the surrounded code (That means you need to put the exceptions
yourself for special stuff, like making sure that the number of channels and
the number of descriptions of these channels match).

2. Then, inside that try-catch block, use the getLine and split method to
efficiently parse the text file. These methods will allow other users to
have an easy time following your code.

3. Last, throw exceptions when there is an implicit constraint in the game
parameters (With : throw std::logic_ error(string)) or in the previous step
parse(for example if you know the line is supposed to be split into exactly
four parameters).

An example of a constructor parsing extra information in a relatively simple
manner can be found in Game2by?2.

CongestionGame::CongestionGame (const std::string &initSettings, const std::string &userSettings, const std::
string &weightSettings, int seed) : ResourceAccessBased(initSettings, userSettings, seed)
{
//Buffer for parsing text files
std::string strOneLine;
std::vector<std::string> vect;

try{
std::ifstream inFile(weightSettings.c_str());

//Player weights parse

for (int i = 0; i < numberOfPlayers(); i++){
getline (inFile, strOneLine);
vect = split(strOneLine, ’ ’);
//get mapping for each player
if (vect.size() != 1) throw std::logic_error("Weights not well defined.");

playerWeights.push_back(std::stoi(vect[0]));
}
} catch(const std::exception& e){
std::cout << "Check out Weight Settings file." << std::emndl;
std::cout << e.what() << std::endl;

© 00O U W

3 Player

The player has a very specific goal in the Game Theory Framework. His goal is
to store all information on the rewards, the strategies he has chosen and the al-
gorithms he has access to. However, he has no information on the game played,
or on how to take advantage of the structure of the game. The mapping from
the finite state space the player has access to, to the real actions in the game is
implemented in the game class(in each derived game class).

The player receives feedback from the game in the form of rewards. That means
the learning algorithms associated to a player will seek to maximize the rewards
received by the player. The player will also store the regret(external and in-
ternal) throughout the game. All these informations are stored in order have
a better understanding of how the game developed. The player has access to
multiple algorithms but only has one current algorithm(defined by index). How-
ever, he can be made to change learning algorithms.

So that algorithms are not shared between players through the copy of pointers,
player instance are forbidden from being copied.

Finally, in order to implement a sleeping bandit variation, the player holds
a vector describing all the available actions, that is to say some actions can be
forbidden during a certain period of time.

class Player

{
public:
/// Maximum number of strategies available to player
int playerMaximumStrategyNumber;
/// Strategies available to the player.
std::vector<int> availableStrategies;
/// Current time step of the player in the game (different from that of the game if the player went
to sleep).
int timeStep;
/// Vector of the number of times the player has played one strategy(=index+1).
std::vector<int> numberOfTimesPlayed;
/// Vector of average rewards of player when he has played one strategy(=index+1).
std::vector<double> averageRewards;
/// Vector of the strategies chosen in the past.
std::vector<double> pastStrategies;
/// Vector of the possible payoffs if only this player had changed his move. [0] is zero payoff, [t]
corresponds to the t turn payoff.
std::vector<std::vector<double>> possibleRewards;
/// Vector of the sum of the rewards if the player only played a specific strategy.
std::vector<double> sumRewards;
/// Reward accumulated by player with his algorithm.
double sumRewardsAlgorithm;
/// Vector of learning algorithms available to the player.
std::vector<LearningAlgorithms*> playerLearningAlgorithms;
/// Index of the current learning algorithm of the player(0 to n-1).
int playerCurrentLearningAlgorithm;
/// Vector of probability distribution of the player.
std::vector<std::vector<double>> probabilities;
/// Vector of the external regret of the player over time.
std::vector<double> regrets;
/// Vector of the average external regret of the player over time.
std::vector<double> averageRegrets;
/// Vector of the internal regret of the player over time.
std::vector<double> intRegrets;
/// Vector of the internal regret of the player over time.
std::vector<double> averageIntRegrets;
/// Vector of the internal regret of the player over time.
std::vector<double> worstRegrets;
/// Vector of the internal regret of the player over time.
std::vector<double> averageWorstRegrets;
};

NENCI

o o

10
11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27

29
30

32
33

35
36
37

class Player

public:

/// The player is initialised with the maximum number of strategies available to him and the
learning algorithms he has access to.

/// He starts here with the first algorithm by default.

Player (int maxStrategy, std::vector<LearningAlgorithms#*> learningAlgorithms, int startAlgorithmIndex
= 0);

virtual “Player() = default;

//Move operators defined as default
Player (Player&&) = default;
Player& operator=(Player&k) = default;

//Forbid Copying players
Player (const Playerk) = delete;
Player& operator=(const Player&) = delete;

/// Returns a pointer to the currently used learning algorithm.
LearningAlgorithms* getCurrentLearningAlgorithm() const;

/// Returns a pointer to the currently used learning algorithm.

int getLastStrategyChosen() const;

/// Changes the vector of available strategies.

void createAvailableStrategies(std::vector<int> availableStrategies);

[x*
Updates most of the local variables, that is to say the knowledge of the player,
so that learning algorithms have access to that through a reference to the player.

*/

void updateRewards(std::vector<double> reward, int correspondingStrategy);

/// Calculates the external regret based on past history and possible rewards.
void updateExternalRegret () ;

/// Calculates the internal regret based on past history and possible rewards.
void updatelnternalRegret () ;

/// Calculates worst possible internal regret

void updateWorstRegret ();

///Change the current learning algori

0N DU WN

4 Learning Algorithms

Learning algorithms are all based on the same structure. The core function of
any learning algorithm is choice(). It returns a strategy (Warning : strategy
and the index corresponding to a strategy are to be understood as index =
strategy — 1).

Moreover, another important fact is that learning algorithms possess a prob-
ability vector as a member variable(p), this allows the player to retrieve this
information for his own use. The random generator of the learning algorithms
is pcg32, from the PCG C++ library.

The main structure of the choice function is :

e Use the getVector() function to retrieve the appropriate information from
the corresponding player, and change the probability vector accordingly.

e Then, transform the probability vector through transformVector() (For
example, here Hedge uses an exponential).

e After that, normalize the probability vector through normalizeVector().
This gives us a vector whose elements sum up to one, so it can be treated
as a probability vector.

e Finally, decide according to the probability vector.

int LearningAlgorithms::choice(const Player &player){
if (player.timeStep == 0) p = std::vector<double>(player.playerMaximumStrategyNumber ,0.);

getVector (player);
transformVector (p);
normalizeVector (p);
return decide(p);

The learning algorithms classes inheritance tree is structured according to
the getVector() function. For example, learning algorithms using the average
rewards of the player derive from BestResponseAverage, whereas learning al-
gorithms using the vector of possible rewards of a player derive from Random-
izedMajorityMyopic. Moreover, if the vector does not need to be transformed
after the getVector() function, then either use the LearningAlgorithms imple-
mentation of it or override a previous implementation by writing an empty
transformVector() function.

A possible idea would be to implement templates, in order to avoid this
kind of inheritance tree, as it could be argued that inheritance over getVector()
will cause problem if we want to reduce the number of times we use the same
transformVector() function.

10

© 00N U A W

COWNO UK WN -

-

N O Uk W N

4.1 GetVector

This function takes a player reference as input and extracts information from
it. Its return type is void, that means that it is supposed to modify p. It is also
supposed to take care of the initialization conditions and of the fact that non
available actions have a probability set to 0.
A sliding-window mechanism can be implemented here (Ex : RandomizedMa-
jorityMyopic, FollowTheLeader and Hedge). The following convention has been
used : a negative or null window is used to denote the fact that a window is not
used.

The following code examples are from BestResponseAverage and FollowThe-
Leader respectively :

void BestResponseAverage::getVector (const Player &player){
auto initNecessary = false;
for (auto &strat : player.availableStrategies){
if (player.numberOfTimesPlayed[strat-1] == 0){
initNecessary = true;
break;
}
}

if (initNecessary) getInitialVector(player);

elsed{
std::fill(std::begin(p), std::end(p), 0.);
for (auto &strat : player.availableStrategies){
plstrat-1] = player.averageRewards[strat-1]
}
}

This function can do more than just recover information from a player. For
example, UCB and Exp3 do not hold the same internal structure.

4.2 TransformVector

This function takes a vector reference and transforms it. This can generally
done nicely through application of a std::transform operation and the use of a
lambda function.

A code example can be found in the description of Hedge. Moreover, if
the learning algorithm needs to always return the element with the highest
probability, then it is possible to use convertVectorMaxProbabilist() :

void LearningAlgorithms::convertVectorMaxProbabilist (std::vector<double> &v){
// Iterator to max element
auto MaxEl = *std::max_element (std::begin(v), std::end(v));

//Choose probabilistically between the tied max elements (uniform)
for (int i = 0; i < v.size(); i++){

v[il = (v[i] == MaxEl) ? 1 : 0;
}

normalizeVector (v);

4.3 NormalizeVector

This function takes a vector reference and normalizes it. It is implemented in
LearningAlgorithms and thus does not need to be reimplemented again in the
derived classes.

The following code example is from LearningAlgorithms :

void LearningAlgorithms::normalizeVector (std::vector<double> &v){
//Takes highest element then normalizes vector by the highest element.
auto normalTerm = std::accumulate(std::begin(v), std::end(v), 0.0);
if (normalTerm == 1) return;
std::transform(std::begin(v), std::end(v), std::begin(v),
[&] (double d){ return d / normalTerm; });

11

© 00U W

NO U W N R

14
15
16
17
18
19
20
21
22

24
25

4.4 Decide

This functions decide which strategy to return according to the input probability
distribution. There also shouldn’t be any need to override this function.
The following code example is from LearningAlgorithms :

int LearningAlgorithms::decide(const std::vector<double> &v){
std::uniform_real_distribution<double> distribution(0.0,1.0);

double proba = distribution(rng);

double sumProba = 0;
int 1 = 1;
for (auto it : v){
sumProba += it;
if (sumProba > proba) {
strategyChosen = 1;
return strategyChosen;
}
1++;

}

//not supposed to reach here

strategyChosen = v.size();

//std::cout << "out" << p.size() << std::endl
return strategyChosen;

4.5 Update

The learning algorithms all possess an update() function. The base implemen-
tation is an empty function.

It is used for example in Exp3 to update the weights according to the reward
given by the previous chosen arm.

4.6 Initialization

The base LearningAlgorithms class implements a method called getInitialVec-
tor(). Basically, if there are actions that have not been played, this function will
give equal probability to all such actions. This needs to be called in getVector().

void LearningAlgorithms::getInitialVector (const Player &player){
std::fill(std::begin(p), std::end(p), 0.);
for (auto &strat : player.availableStrategies){
if (player.numberOfTimesPlayed([strat-1] == 0) plstrat-1] = 1;
¥
¥

4.7 Factory Part

There is also a Factory mechanism which allows the games to easily instantiate
learning algorithms. It works similarly to the mechanism in the game classes,
however the signature for the create function is a bit different. Moreover, the cor-
responding classes are now AlgorithmFactory and AlgorithmRegister<Template>.
However the basic principle is the same.

The following code example is from Best Response Average :

//Header file
public:

static LearningAlgorithms* create(Game* creator, std::vector<double> params);
private:

static AlgorithmRegister <BestResponseAverage> reg;

//Inplementation file
//Always create instance.
LearningAlgorithms* BestResponseAverage::create(Gamex creator, std::vector<double> params){
return new BestResponseAverage(creator);
} //Initialize identifiers of this algorithm.
AlgorithmRegister <BestResponseAverage > BestResponseAverage::reg({"BRA", "BestResponseAverage",
BESTRESPONSEAVERAGE"}) ;

12

5 Learning Algorithms Encyclopedia

Here, we will describe what parameters the implemented learning algorithms
need, so that users who wish to use the Game Theory Framework do not need
to look in the source code for the specific behaviours.

5.1 Partial Information
5.1.1 BestResponseAverage

This learning algorithm derives directly from LearningAlgorithms(for the mo-
ment at least). It requires each arm to be played at least once at the beginning.
Afterwards, it chooses the arm with the highest average reward. It overrides
both getVector() and transformVector().

5.1.2 Logit

This learning algorithm derives from Logit. It also requires each arm to be
played at least once at the beginning. Instead of choosing the highest average
reward, it chooses probabilistically after doing an exponential transformation
on the average rewards(Overrides transformVector).

5.1.3 UCB family

5.1.3.a ScoreUCB

This class derives from LearningAlgorithms. It requires each arm to be played
at least once at the beginning. It transforms the average rewards to model a
confidence bound. It chooses probabilistically. It overrides getVector().

5.1.3.b UCB

This class derives from ScoreUCB, and is representative of the basic UCB algo-
rithm. It also requires each arm to be played at least once at the beginning. It
transforms the average rewards to model a confidence bound and it chooses the
highest score value. It overrides transformVector().

5.1.3.c TemporalUCB

This class derives from ScoreUCB, and is representative of the basic UCB algo-
rithm. It also requires each arm to be played at least once at the beginning. It
transforms the average rewards to model a confidence bound and it chooses the
highest score value. It overrides getVector().

5.1.3.d DiscountUCB

This class is representative of the UCB algorithm with discounted variables.
Therefore it derives from UCB and overrides both getVector() and update(). It
has a parameter gamma, which should be between 0 and 1.

13

5.1.3.e KLUCB

This class is an abstract class. It allows to derive multiple algorithms with dif-
ferent distances but the same concept. There are currently two derived classes.
The first implements the Bernoulli distance(KLUCBBernoulli), and the second
the Gaussian distance(KLUCBGaussian).

5.1.4 Exp3 family

5.1.4.a Exp3

This class derives from LearningAlgorithms. It is representative of the Exp3
algorithm.

5.1.4.b Exp31

This class derives from Exp3. It is representative of the Exp31 algorithm.

5.1.5 Epsilon-greedy family
5.1.5.a Epsilon-greedy

This class derives from LearningAlgorithms. It is representative of the e-greedy
algorithm. It has one parameter, €, which is contained between 0 and 1 and
is the probability of choosing one random available action. Otherwise, it will
choose the action with the highest average rewards.

5.1.5.b EpsilonN-greedy

This class derives from EpsilonGreedy. It is representative of the eN-greedy
algorithm. This class’ epsilon parameter decreases over time proportional to
the square of the time. It has two parameters, ¢ and d, which model the rate
of decrease of epsilon. The rest of the algorithm works just like the e-greedy
algorithm.

14

-

B

5.2 Full Information
5.2.1 RandomizedMajorityMyopic

This class is the base class of all classes needing to extracts information from the
vector of all the possible rewards the player could have received when changing
his action compared to a certain set of actions chosen by the other players. It
sums the possible rewards over time for each arm, and adds a window mechanism
to the sum. This sum is then averaged by either the time step or the window.
It also takes care of choosing only available actions.

This class overrides the getVector() function to extract this information and
have a window. If the class has a window member variable of 0 or less, then
there is no window mechanism.

5.2.2 FollowTheLeader

This class derives from RandomizedMajorityMyopic. It overrides the tranfor-
mVector() function, where it gives the arm with the highest sum of possible
rewards a probability of one.

void FollowTheLeader::transformVector (std::vector<double> &v){
convertVectorMaxProbabilist (v);

}

5.2.3 Hedge

This class also derives from RandomizedMajorityMyopic. Like FollowTheLeader,
it also overrides the tranformVector() function, where it shifts to an exponential
representation of the sum of all possible rewards for each arm.

void Hedge::transformVector (std::vector<double> &v){
std::transform(std::begin(v), std::end(v), std::begin(v),
[%&] (double d) -> double { return exp(eta * d); });
}

15

6 Game Encyclopedia

Here, we will describe what file format the implemented games need, so that
users who wish to use the Game Theory Framework do not need to look in the
source code for the specific behaviours.

6.1 Two player Game

This game simulates a two player game(strategic form). The utility function is
implemented through pay-off matrices. The elements of the matrices need to be
written in a text file in the same format as below :

ul(1,1) uil(1,2)
ul(2,1) ul(2,2)
u2(1,1) u2(1,2)
ul(2,1) u2(2,2)

The first four elements are the rewards for the first player, and the others for
the second player. (i, j) is the reward if the first player plays action i and the
second action j.

6.2 ResourceAccessBased Game

Abstract class used to model games using resources. The main purpose of this
class is to factor the code of the constructor, in order for it not to be copied
across multiple resource based games. This class takes in an extra text file in
the constructor, which defines the number of resources and the user access to
resources.

5 (Total number of resources)
1 2 5 (Set of resources accessible to the first player)

1 2 3 4 5 (Set of resources accessible to the last player)

6.3 Congestion Game

This class models congestion games, and derives from ResourceAccessBased.
Each player have a given weight in this game, non-dependant on the particular
resource accessed. When multiple players access the same resource, the given
reward is divided. This class takes in an extra text file in the constructor, which
defines the weights of every player.

1 (Weight of the first player)

6 (Weight of the last player)

16

6.4 Multichannel Opportunistic Game (MOA)

This class models the Multichannel Opportunistic Access Game, also referred
to as Dynamic Spectrum Access. It derives from ResourceAccessBased. This
is supposed to model a network where a set of primary users are already using
some channels, with their actions changing over time, and where we are studying
a secondary set of players with lesser rights trying to exploit the remaining
capacity of the network channels without collisions.

There are multiple resources available and the players need to choose one
amongst those they can access. The resources are modeled by two-state Markov
Chains, with one state being the "Bad State”(0) and the other the ”Good
State” (1).

If multiple players choose the same resource, they both receive no reward at
all(There is also theoretically a variant where they can share the resources).
Moreover, even if there is only one player on a resource but that resource is in
state 0, then they receive nothing.

Finally, at the end of a turn, all resources undergo a transformation based on
their underlying Markov Chain transition probabilities.

The specific elements to this game in the constructor is a single text file,
which describes the Markov Chain transition probabilities of the resources.

p00 pO1 p10 pil1l (First resource)

p00 pO1 pl0 pll (Last resource)

With pg o the transition from state 0 to itself, pp; from 0 to 1, p; ¢ from 1 to 0,
and p; ; the transition from state 1 to itself.

6.5 Random Multichannel Opportunistic Game (RMOA)

This class is derived from the previous class, the Multichannel Opportunistic
Access game. The only change is that the transitions are not done on resources
which are not chosen by any player.

There are no changes on the input text files compared to MOA.

6.6 ResourceSimplePayoff

This class models a game where players have access to a set of resources which
always give out a certain pay-off, regardless of the number of players(for each
player). It derives from ResourceAccessBased.

The specific elements to this game in the constructor is a single text file,
which describes the pay-offs of all resources.

p-1
p_n
With p; the pay-off of resource i.

17

©00 oUW =

6.7 Server Distribution

6.7.1 Server Distribution with predictions variant

6.8 MetaGame

This class is derived from Game directly. It is also a friend of the Game class.
This class only requires a Game object pointer in addition to the normal text
file required for games.

The concept behind this class is that each player of this game has a number of
actions equal to the number of learning algorithms of the corresponding player
in the game inside the pointer. Therefore, he chooses which algorithm the
corresponding player will use at each time step.

The rewards for each action corresponding to a learning algorithm is the
rewards received by the action chosen by the corresponding player with this
specific learning algorithm. (Not up to date)

6.9 MassLaunchGame

Although technically not a game, this class allows the user to launch a game
multiple times with a variable amount of seeds. This class therefore does not
need the normal game initialization file, however it is given a file with the seeds
it will use later on, as input of the constructor.

MassLaunchGame has a createSeeds static member function. This allows users
to easily create files with a huge number of seeds automatically, without having
to instantiate a MassLaunchGame instance(but still store the function some-
where near MassLaunchGame). The file will contain the number of seeds spec-
ified, as a sequence beginning at the starting seed input, with an unitary incre-
ment.

The most important function of MassLaunchGame is play(). In play(), Mass-
LaunchGame will create the first game with the first seed. It will be played the
total number of turns, the information taken care of, then MassLaunchGame
will throw the game away and start using the next seed to create another in-
stance. The averaging the internal and external regret over all the various games
is done little by little, before MassLaunchGame throws away each game.

Using MassLaunchGame is very easy. If a file with seeds has not been cre-
ated, it can be created through the createSeeds static member function, then
we can instantiate a MassLaunchGame instance and use play. Finally, using
printRegret() and printInternalRegret() will output text files we can then plot.
The following example is used to launch a Multichannel Opportunistic Access
game with 1000 seeds and 1000 turns, and then print out 100 points amongst
the regrets.

std::string initSettings = "initSettings.txt";
std::string userSettings = "userSettings.txt";
std::string channelSettings = "channelSettings.txt";
std::string resourceSettings = "resourceSettings.txt";
std::string extraSeedSettings = "extraSeedSettings.txt";

MassLaunchGame: : createSeeds (extraSeedSettings, 1000, 200);
std::vector<std::string> inputFiles = {initSettings, userSettings, channelSettings}

MassLaunchGame massLaunch = MassLaunchGame (extraSeedSettings);
int playSize = 1000;
massLaunch.play ("MOA", inputFiles, playSize, 1);

massLaunch.printInternalRegret ("intDataMass.txt", std::ceil(playSize/100.));
massLaunch.printRegret ("intDataMassExt.txt", std::ceil(playSize/100.));

18

The first file ”initSettings.txt” is written according to the following format.

number of players
seed
MaxStrategy player 1 + whitespace + LearningAlgorithms list(separated by spaces)

TR W N

same thing for last player

The second ”userSettings.txt” has this format :

5 (Total number of resources)
1 2 5 (Set of resources accessible to the first player)

NS

1 2 3 4 5 (Set of resources accessible to the last player)

The third ”channelSettings.txt” has this format :

[

p00 pO1 pl10 pl1l (Probability transitions of first channel)

3| po0 po1 p10 pii (Probability transitions of last channel)

And ”extraSeedSettings.txt” has this format :

1' 10 12 35 46 98 85 14 (seed list)

19

