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Abstract. Population protocols have been introduced as a model of
sensor networks consisting of very limited mobile agents with no control
over their own movement. A population protocol corresponds to a col-
lection of anonymous agents, modeled by finite automata, that interact
with one another to carry out computations, by updating their states,
using some rules.
Their computational power has been investigated under several hypothe-
ses but always when restricted to finite size populations. In particular,
predicates stably computable in the original model have been character-
ized as those definable in Presburger arithmetic.
We study mathematically the convergence of several population protocols
when the size of the population goes to infinity. We do so by giving
general results, that we illustrate through the example of a particular
population protocol for which we obtain a full asymptotic development.
This example shows in particular that these protocols seem to have a
rather different computational power when a huge population hypothesis
is considered.

1 Motivation

The computational power of networks of finitely many anonymous resource-
limited mobile agents has been investigated in several recent papers. In partic-
ular, the population protocol model, introduced in [1], consists of a population
of finite-state agents that interact in pairs, where each interaction updates the
state of both participants according to a transition based on the previous states
of the participants. When all agents converge after some finite time to a common
value, this value represents the result of the computation.

Several variants of the original model have been considered but with com-
mon features. See for example this ollowing survey [3] for some variant mod-
els: anonymous finite-state agents (the system consists of a large population



of indistinguishable finite-state agents), computation by direct interaction (an
interaction between two agents updates their states according to a joint tran-
sition table), unpredictable interaction patterns (the choice of interactions is
made by an adversary, possibly limited to pairing only agents in an interaction
graph), distributed input and outputs (the input to a population protocol is
distributed across the initial state of the entire population, similarly the output
is distributed to all agents), convergence rather than termination (the agent’s
output are required to converge after some time to a common correct value).

Typically, in the spirit of [1] and following papers (see again [3] for a sur-
vey), population protocols are assumed to (stably) compute predicates: a pop-
ulation protocols stably computes a predicate φ, if for any possible input x of
φ, whenever φ(x) is true all agents of the population eventually stabilize to a
state corresponding to 1, and whenever φ(x) is false, all agents of the population
eventually stabilize to a state corresponding to 0.

Predicates stably computable by population protocols in this sense have been
characterized as being precisely the semi-linear predicates, that is to say those
predicates on counts of input agents definable in first-order Presburger arithmetic
[9]. Semilinearity was shown to be sufficient in [1] and necessary in [2].

Here, we study a new variant: we assume a population close to infinity (we
call this a huge population hypothesis), and we don’t want to focus on protocols
as predicate recognizers, but as computing functions. We assume outputs to
correspond to proportions, which are clearly the analog of counts whenever the
population is infinite or close to infinity.

We do so by providing general results that we illustrate by considering a
particular population protocol, that we prove to converge to a fraction of
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agents in a given state whatever its initial state is. We hence show that some
algebraic irrational values can be computed in this sense. Then we show how
the reasoning behind the proof of convergence of this particular protocol can be
generalized to any such protocol to prove that it’s behaviour can be analyzed
through use of deterministic differential equations. We also give an asymptotic
development of the convergence in the case of the protocol computing
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2 .
Our motivation is twofold. First, to prove formally that population protocol

with a huge population hypothis can be mathematically studied using popula-
tion models and ordinary differential equations. Second, to show that protocols
considered with these two hypotheses (huge population, computing functions
and not only predicates), have a rather different power.

We consider this work as a first step towards understanding which numbers
can be computed by such protocols. Whereas we prove that

√
2

2 can be computed,
and whereas this is easy to see that computable numbers in this sense must
be algebraic numbers of [0, 1], we didn’t succeed yet to characterize precisely
computable numbers.

In this more long term objective, the aim of this current work is first to
discuss in which sense one can say that these protocols compute an irrational
algebraic value such as

√
2

2 , and second to study mathematically formally the
convergence.



Our discussion is organized as follows. In Section 2, we present classical finite-
size population protocols and related work. In Section 3, we recall our model of
population protocols. In Section 4, we present a particular population protocol
and we explain in which sense we would like to say that this protocol computes
some irrational algebraic value, with a huge population hypothesis. We do so
first by some informal study, that we justify mathematically in the rest of the
paper. We first do some mathematical computations in Section 5, in order to
use a general theorem presented in Section 6 from [10] about approximation
of diffusions. This theorem yields the proof of convergence in Section 7. Then
in Section 8 we show how the method used on this particular example can be
used to prove that the study of such protocols can be reduced to the study of
differential systems. The following two sections deal with additional results that
can be given on restricted parts of the model. We prove in Section 9 that this
is even possible to use the same theorem to go further and get an asymptotic
development of the convergence on the example of
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2 . Section 10 gives, without
proof, some first results on the type of algebraic numbers that can be computed
in this model using only two possible states for all agents. Finally, Section 11 is
devoted to a conclusion and a discussion.

2 Related Work

Population protocols have been introduced in [1]. In [1], the authors proved that
all semi-linear predicates can be computed but left open the question of their
exact power. This was solved in [2], where it has been proved that no-more
predicates can be computed.

The population protocol model was inspired in part by the work by Diamadi
and Fischer on trust propagation in social networks [5]. The model proposed in
[1] was motivated by the study of sensor networks in which passive agents were
carried along by other entities. The canonical example given in this latter paper
was sensors attached to a flock of birds.

Most of the works so far on population protocols have concentrated on char-
acterizing what predicates on the input configurations can be stably computed in
different variants of the models and under various assumptions, such as bounded-
degree interaction graphs and random scheduling [3].

Variants considered includes restriction to one-way communications, restric-
tion to particular interaction graphs, random interactions, self-stabilizing solu-
tions through population protocols to classical problems in distributed algorith-
mic, the taking into account of various kind of failures of agents, etc. See survey
[3]. As far as we know, a huge population hypothesis in the sense of this paper,
has not been considered yet.

Notice that we assume that interactions happen in probabilistic way, accord-
ing to some uniform law. In the original population protocol model, only specific
fairness hypotheses were assumed on possible adversaries [1]. When the size of
the population goes to infinity, uniform sampling of agents seems to us the most
natural way to extend the fairness hypothesis. This assumption is consistent



with the interpretation of agents as autonomous biological entities moving at
random. Notice that this notion of adversary has already been investigated for
finite state systems [3].

The result proved in this paper can be considered as a macroscopic abstrac-
tion of a system given by microscopic rules of evolutions. See survey [7] for
general discussions about extraction of macroscopic dynamics.

Whereas the ordinary differential equation (8) can be immediately abstracted
in a physicist approach from the dynamic (1), the formal mathematical equiva-
lence of the two approaches is not so trivial, and is somehow a strong motivation
of this work.

Actually, these problems seem to arise in many macroscopic justifications of
models from their microscopic description in experimental science: See for ex-
ample the very instructive discussion in [8] about assumptions required for the
justification of the Lotka-Volterra (predator-prey) model of population dynam-
ics. In particular, observe that the fact that microscopic correlations must be
neglected (i.e. E[XY ] = E[X]E[Y ] is needed, where E is expectation). With a
rather similar hypothesis (here assuming E[p2] = E[p]2), dynamic (8) is clear
from rules (1). Somehow, we prove here that this hypothesis is not necessary for
our system.

The techniques used in this paper are based on weak convergence techniques,
introduced in [10], relating a stochastic differential equation (whose solutions are
called diffusions) to approximations by a family of Markov processes. Refer also
to [6] for an introduction to these techniques. The theorem used here is actually
based on the presentation of [4] of a theorem from [10].

Moreover in [?], somes probabilistic population protocols, are studied using
the differential equations approach. In this case, the population is finite and using
the Markov Chain stationary distribution argument, the protocol population are
always stable in terms of their eventual subpopulation percentages.

3 Population Protocols

We now recall definitions from [1]. A protocol is given by (Q,Σ, ι, ω, δ) with
the following components. Q is a finite set of states. Σ is a finite set of input
symbols. ι : Σ → Q is the initial state mapping, and ω : Q → {0, 1} is the
individual output function. δ ⊆ Q4 is a joint transition relation that describes
how pairs of agents can interact. Relation δ is sometimes described by listing all
possible interactions using the notation (q1, q2) → (q′1, q

′
2), or even the notation

q1q2 → q′1q
′
2, for (q1, q2, q

′
1, q

′
2) ∈ δ (with the convention that (q1, q2) → (q1, q2)

when no rule is specified with (q1, q2) in the left hand side).
Computations of a protocol proceed in the following way. The computation

takes place among n agents, where n ≥ 2. A configuration of the system can
be described by a vector of all the agent’s states. The state of each agent is an
element of Q. Because agents with the same states are indistinguishable, each
configuration can be summarized as an unordered multiset of states, and hence
of elements of Q.



Each agent is given initially some input value from Σ: Each agent’s initial
state is determined by applying ι to its input value. This determines the initial
configuration of the population.

An execution of a protocol proceeds from the initial configuration by inter-
actions between pairs of agents. Suppose that two agents in state q1 and q2 meet
and have an interaction. They can change into state q′1 and q′2 if (q1, q2, q

′
1, q

′
2) is

in the transition relation δ. If C and C ′ are two configurations, we write C → C ′

if C ′ can be obtained from C by a single interaction of two agents: this means
that C contains two states q1 and q2 and C ′ is obtained by replacing q1 and q2

by q′1 and q′2 in C, where (q1, q2, q
′
1, q

′
2) ∈ δ. An execution of the protocol is an

infinite sequence of configurations C0, C1, C2, · · · , where C0 is an initial configu-
ration and Ci → Ci+1 for all i ≥ 0. An execution is fair if for all configurations C
that appears infinitely often in the execution, if C → C ′ for some configuration
C ′, then C ′ appears infinitely often in the execution.

At any point during an execution, each agent’s state determines its output
at that time. If the agent is in state q, its output value is ω(q). The configuration
output is 0 (respectively 1) if all the individual outputs are 0 (respectively 1). If
the individual outputs are mixed 0s and 1s then the output of the configuration
is undefined.

Let p be a predicate over multisets of elements of Σ. Predicate p can be con-
sidered as a function whose range is {0, 1} and whose domain is the collection
of these multisets. The predicate is said to be computed by the protocol if, for
every multiset I, and every fair execution that starts from the initial configura-
tion corresponding to I, the output value of every agent eventually stabilizes to
p(I).

The following was proved in [1, 2]

Theorem 1 ([1, 2]). A predicate is computable in the population protocol model
if and only if it is semilinear.

Recall that semilinear sets are known to correspond to predicates on counts
of input agents definable in first-order Presburger arithmetic [9].

4 A Simple Example

Consider the following population protocol, with Q = {+,−}, and the following
joint transition relation. 

++ → +−
+− → ++
−+ → ++
−− → +−

(1)

Using previous (classical) definition, this protocol does not stably compute
anything. Indeed, if we put aside the special configuration where all agents are
in state − which is immediately left in any next round, any configuration is
reachable from any configuration.



However, suppose that we want to discuss the limit of the proportion p(k)
of agents in state + in the population at discrete time k. If n+(k) denotes the
number of agents in state +, and n−(k) = n − n+(k) the number of agents in
state −,

p(k) =
n+(k)

n
.

From now on, we suppose that at each time step, two different agents are
sampled uniformly among the n particles, independently from the past. Since we
are dealing with n indistinguishable agents, the population protocol is completely
described by the number of agents in state +. We are then reduced to determine
the evolution of the Markov chain

(p(k))k∈N ∈
{

0
n

,
1
n

, . . . ,
n

n

}
.

The above discussion ensures that (p(k)) is an irreducible Markov chain in
{ 1

n , . . . , n
n}. Let us now compute the transition probabilities of this irreducible

Markov chain. We have

p(k + 1)− p(k) ∈ {−1, 1}.

The, we have to determine for each i = 1, 2, . . . , n

π(n)( i
n → i−1

n ) := P
(

p(k + 1) =
i− 1

n
| p(k) =

i

n

)
,

π(n)( i
n → i+1

n ) := P
(

p(k + 1) =
i + 1

n
| p(k) =

i

n

)
.

Assume that p(k) = i/n, the only possibility for p(k) to decrease is to fire 2 of
the i agents in state +. That is,

π(n)( i
n → i−1

n ) =

(
i
2

)(
n
2

) =
i(i− 1)
n(n− 1)

.

In any other case, p(k) increases by one :

π(n)( i
n → i+1

n ) = 1− π(n)( i
n → i−1

n )

= 1− i(i− 1)
n(n− 1)

.

A consequence of the ergodic theorem is that the chain (p(k)) admits an unique
stationary distribution µ. By definition, it is the only application

µ :
{

1
n

, . . . ,
n

n

}
→ [0, 1]

such that



1.
∑n

i=1 µ(i/n) = 1.
2. µ satisfies the balance equation, i.e. for each i

µ(
i

n
) = µ(

i− 1
n

)π(n)( i−1
n → i

n ) + µ(
i + 1

n
)π(n)( i+1

n → i
n )

We do not pay attention to the exact expression of µ. We only notice that, as
the unique solution to a rational system, it is an element of Qn. Hence, its mean∑

i µ(i/n)i/n is a rational number, that we denote p(n). The second consequence
of the ergodic theorem is the following convergence :

p(1) + p(2) + ... + p(k)
k

k→∞→ p(n), almost surely.

The purpose of the rest of the discussion is to show that however, when n goes
to infinity, the mean value of p(k) converges to the irrational number

√
2/2. To

see why this is true, we write

E[n+(k + 1)− n+(k) | n+(k)] = (n+(k) + 1) π(n)
(
p(k) → p(k) + 1

n

)
+(n+(k)− 1) π(n)

(
p(k) → p(k)− 1

n

)
−n+(k)

E[n+(k + 1)− n+(k) | n+(k)] = (n+(k) + 1)
(
1− n+(k)

n
n+(k)−1

n−1

)
+(n+(k)− 1) n+(k)

n
n+(k)−1

n−1 − n+(k)
= 1− 2n+(k)

n
n+(k)−1

n−1

= 1− 2p(k)
(
p(k)n−1

n + 1
n−1

)
.

From this, we can derive (not yet rigourously) the asymptotic behavior of
p(k). Take indeed n large, so that the right-hand term is close to 1 − 2p(k)2.
Now, when k goes large, the system concentrates on configurations that does
not create or destroy +, in mean. Thus, the left-hand side should vanish, and
p(k) ≈

√
2/2.

The remaining problem is hence to justify and discuss mathematically the
convergence.

5 Computing Expectation and Variance of Increments

We now justify mathematically this convergence.
We will first compute

E[∆2
n|n+(k)] = 1× π+1 + 1× π−1

= 1.
(2)

It follows, from Equations (??) and (2), that we have

E[p(k + 1)− p(k)|p(k)] =
1
n

(1− 2p(k)2
n

n− 1
+ p(k)

2
n− 1

), (3)



which yields the equivalent

nE[p(k + 1)− p(k)|p(k)] ≈ 1− 2p(k)2 (4)

when n goes to infinity, and

E[(p(k + 1)− p(k))2|p(k)] =
1
n2

, (5)

which yields the equivalent

nE[(p(k + 1)− p(k))2|p(k)] ≈ 1
n

, (6)

when n goes to infinity.

6 A General Theorem about Approximation of Diffusions

We will use the following theorem from [10]. We use here the formulation of it
in [4] (Theorem 5.8 page 96).

Suppose that for all integers n ≥ 1, we have an homogeneous Markov chain
(Y (n)

k ) in Rd of transition π(n)(x, dy), that is to say so that the law of Y
(n)
k+1

conditioned by Y
(n)
0 , · · · , Y

(n)
k depends only on Y

(n)
k and is given, for all Borelian

B, by
P (Y (n)

k+1 ∈ B|Y (n)
k ) = π(n)(Y (n)

k , B).

almost surely.
Define for x ∈ Rd,

b(n)(x) = n

∫
(y − x)π(n)(x, dy),

a(n)(x) = n

∫
(y − x)(y − x)∗π(n)(x, dy),

K(n)(x) = n

∫
(y − x)3π(n)(x, dy),

∆(n)
ε (x) = nπ(n)(x,B(x, ε)c),

where B(x, ε)c is the complement of the ball centered in x of radius ε.
In other words,

b(n)(x) = nEx[(Y1 − x)],

and
a(n)(x) = nEx[(Y1 − x)(Y1 − x)∗]

where Ex stands for ”expectation starting from x”, that is,

Ex[(Y1 − x)] = E[(Y1 − x)|Y0 = x].

Define
X(n)(t) = Y

(n)
bntc + (nt− bntc)(Y (n)

bnt+1c − Y
(n)
bntc).

The coefficients b(n) and a(n) can be interpreted as the instantaneous drift
and variance (or matrix of covariance) of X(n).



Theorem 2 (Theorem 5.8, page 96 of [4]). Suppose that there exist some
continuous functions a, b, such that for all R < +∞,

lim
n→∞

sup|x|≤R|a(n)(x)− a(x)| = 0

lim
n→∞

sup|x|≤R|b(n)(x)− b(x)| = 0

lim
n→∞

sup|x|≤R∆(n)
ε = 0,∀ε > 0

sup
|x|≤R

K(n)(x) < ∞.

With σ a matrix such that σ(x)σ∗(x) = a(x), x ∈ Rd, we suppose that the
stochastic differential equation

dX(t) = b(X(t))dt + σ(X(t))dB(t), X(0) = x, (7)

has an unique weak solution for all x. This is in particular the case, if it admits
an unique strong solution.

Then for all sequences of initial conditions Y
(n)
0 → x, the sequence of random

processes X(n) converges in law to the diffusion given by (7).
In other words, for all function F : C(R+, R) → R bounded and continuous,

one has
lim

n→∞
E[F (X(n))] = E[F (X)].

7 Proving Convergence

Consider Y
(n)
i as the homogeneous Markov chain corresponding to p(k), when n

is fixed. From previous discussions, π(n)(x, .) is a weighted sum of two Dirac that
weight x− 1

n and x + 1
n , with respective probabilities π−1 and π+1, whenever x

is of type i
n for some i.

Set a(x) = 1− 2x2, and b(x) = 0. From equivalent Equations (4) and (6), we
have clearly

lim
n→∞

sup|x|≤R|a(n)(x)− a(x)| = 0

lim
n→∞

sup|x|≤R|b(n)(x)− b(x)| = 0

for all R < +∞.
Since the jumps of Y (n) are bounded in absolute value by 1

n , ∆
(n)
ε is null, as

soon as 1
n is smaller than ε, and so

lim
n→∞

sup|x|≤R∆(n)
ε = 0,∀ε > 0

sup
|x|≤R

K(n)(x) < ∞

is easy to establish.



Now, (ordinary and deterministic) differential equation

dX(t) = (1− 2X2)dt (8)

has an unique solution for any initial condition.
It follows from above theorem that the sequence of random processes X(n)

defined by
X(n)(t) = Y

(n)
bntc + (nt− bntc)(Y (n)

bnt+1c − Y
(n)
bntc)

converges in law to the unique solution of differential equation (8).
Clearly, all solutions of ordinary differential equation (8) converge to

√
2

2 .
Doing the change of variable Z(t) = X(t)−

√
2

2 , we get

dZ(t) = (−2Z2 + 2
√

2Z)dt, (9)

that converges to 0.
Coming back to p(k) using definition of X(n)(t), we hence get

Theorem 3. We have for all t,

p(bntc) =
√

2
2

+ Zn(t),

where Zn(t) converges in law when n goes to infinity to the (deterministic) solu-
tion of ordinary differential (9). Solutions of this ordinary differential equation
go to 0 at infinity.

This implies that p(k) must converge to
√

2
2 when k and n go to infinity.

8 Generalization To General Population Protocols

We will now generalize the reasonning made on this particular example in order
to prove that the behaviour of any such protocol can be approximated by a
deterministic differential equation in a similar way.

To generalize our model, we shall consider the set of states possible for any
one agent to be an arbitrary finite set Q and transition rules of the dynamic to
be of the form :

q q′ → δ1(q, q′) δ2(q, q′)

for all (q1, q2) ∈ Q2.
As previously, we consider pairwise interactions between two agents chosen

randomly according to an uniform law in a population of size n.
Let us define the Markov chain Y

(n)
i corresponding to the vector of RQ whose

components are the proportions of agents in the different states and

X(n)(t) = Y
(n)
bntc + (nt− bntc)(Y (n)

bnt+1c − Y
(n)
bntc).



Theorem 4. Le b be the function defined by :

b(x) =
∑

(q,q′)∈Q

xqxq′(−(eq + e′q) + eδ1(q,q′) + eδ2(q,q′))

where (eq)q∈Q is the canonical base of RQ.
Then for all sequences of initial conditions Y

(n)
0 → x, the sequence of ran-

dom processes X(n) converges in law to the solution of the stochastic differential
equation (with degenerated brownian motion) :

dX(t) = b(X(t))dt, X(0) = x, (10)

Remark 1. The stochastic differential Equation (10) being deterministic, we are
sure that it has an unique weak solution for all x.

Proof. Y n
i is of the form required by Theorem 2 with pi(n)(x, .) being the sum

of 5|Q| Dirac : the variation of the proportion of agents in any one given state is
in {−2

n , −1
n , 0, 1

n , 2
n , } and the probabilities of any of these variations are clearly

only dependant on the current state x.
Now let us define a(n)(x), b(n)(x),K(n)(x) and ∆

(n)
ε as in Theorem 2. Let R

be any finite non-negative real number.
As in the example above, since at any given time step at most two out of n

agents change state, ∆n
ε = 0 if ε > 4

n and thus

lim
n→∞

sup|x|≤R∆(n)
ε = 0,∀ε > 0.

sup
|x|≤R

K(n)(x) < ∞

is also easy to establish.
Similarly

∀x ∈ R|Q|, |x| ≤ R, |a(n)(x)| ≤ 4|Q|
n

.

So if we take a(x) = 0, we have

lim
n→∞

sup|x|≤R|a(n)(x)− a(x)| = 0.

If we write, for all (q, q′) ∈ Q2, q 6= q′,

Π
(n)
q,q′(x) = xqxq′

n

n− 1

and

Π(n)
q,q (x) = xqxq

n

n− 1
− xq

n− 1
.

Then Π
(n)
q,q′(x) is exactly the probability of an encounter between an agent in

state q and an agent in state q′ to happen when the population is in configuration
x. We then have :



b(n)(x) =
∑

(q,q′)∈Q

Π
(n)
q,q′(x)(−(eq + e′q) + eδ1(q,q′) + eδ2(q,q′)),

or

b(n)(x) =
n

n− 1
b(x)− 1

n− 1

∑
q∈Q

xq(−2eq + eδ1(q,q) + eδ2(q,q)).

Thus, finally,

lim
n→∞

sup|x|≤R|b(n)(x)− b(x)| = 0.

We can now conclude by Theorem 2.

This means that to understand the asymptotical behaviour of any such pro-
tocol, we can study the associated differential equation. It is also of interest to
note that the function b defined here is a quadratic form over RQ.

9 An Asymptotic Development of the Example Dynamic

It is actually possible to go further, at least in some cases like the example used
here and prove the equivalent of a central limit theorem, or if one prefers, to do
an asymptotic development of the convergence, in terms of stochastic processes.
We shall do so for the example dynamic used before using the same notations
as in previous sections.

In our prevous example, as p(k) is expected to converge to
√

2
2 , consider the

following change of variable:

Y (n)(k) =
√

n(p(k)−
√

2
2

).

The subtraction of
√

2
2 is here to get something centered, and the

√
n factor

is here in analogy with classical central limit theorem.
Clearly, Y (n)(.), that we will also note Y (.) in what follows when n is fixed,

is still an homogeneous Markov Chain.
We have

E[Y (k + 1)− Y (k)|Y (k)] =
√

n(E[p(k + 1)− p(k)|p(k)]),

hence, from (3),

E[Y (k + 1)− Y (k)|Y (k)] =
1√
n

(1− 2p(k)2
n

n− 1
+ p(k)

2
n− 1

).

Using p(k) =
√

2
2 + Y (k)√

n
, we get

E[Y (k + 1)− Y (k)|Y (k)] =
√

2−1√
n(n−1)

+ Y (k)(− 2
√

2
n−1

+ 2
n(n−1) ) + Y (k)2(− 2√

n(n−1)
)



which yields the equivalent

nE[Y (k + 1)− Y (k)|Y (k)] ≈ −2
√

2Y (k)

when n goes to infinity.
We have

E[(Y (k + 1)− Y (k))2|Y (k)] = n(E[(p(k + 1)− p(k))2|p(k)]),

hence, from Equation (5),

nE[(Y (k + 1)− Y (k))2|Y (k)] = 1.

Set a(x) = −2
√

2x, b(x) = 1.
From the above calculations we have clearly

lim
n→∞

sup|x|≤R|a(n)(x)− a(x)| = 0

lim
n→∞

sup|x|≤R|b(n)(x)− b(x)| = 0

for all R < +∞.
Since the jumps of Y (n) are bounded in absolute value by 1√

n
, ∆

(n)
ε is null,

as soon as 1√
n

is smaller than ε, and so

lim
n→∞

sup|x|≤R∆(n)
ε = 0,∀ε > 0

sup
|x|≤R

K(n)(x) < ∞

is still easy to establish.
Now stochastic differential equation

dX(t) = −2
√

2X(t)dt + dB(t) (11)

is of a well-known type. This is an Orstein-Uhlenbeck process, i.e. a stochastic
differential equation of type

dX(t) = −bX(t)dt + σdB(t).

Such an equation is known to have a unique solution for all initial conditions
X(0) = x. This solution is given by (see e.g. [4])

X(t) = e−btX(0) +
∫ t

0

e−b(t−s)σdB(s).

It is known for these processes, that for all initial conditions X(0), X(t)
converges in law when t goes to infinity to the Gaussian N (0, σ2

2b ). This latter
Gaussian is invariant. See for e.g. [4].

We have all the ingredients to apply Theorem 2 again, and get:



Theorem 5. We have for all t,

p(bntc) =
√

2
2

+
1√
n

An(t),

where An(t) converges in law to the unique solution of stochastic differential
equation (11), and hence to the Gaussian N (0,

√
2

8 ) when t goes to infinity.

10 Some Other Algebraic Numbers

We have treated in detail the case of
√

2/2. We present in this Section, without
proofs, the extension of our result to 2-states protocols, with pairing of agents.

At each time step, two agents are fired and their states are possibly changed,
according to the fixed rule δ. These protocols are completely described by the
three mean increments

α = E[n+(k + 1)− n+(k)|{+,+}have been fired],
β = E[n+(k + 1)− n+(k)|{+,−}have been fired],
γ = E[n+(k + 1)− n+(k)|{−,−}have been fired].

Thus, there are 27 = 33 different rules, we denote them by the corresponding
triplet (α, β, γ). For instance, the rule computing

√
2/2 is denoted by (−1,+1,+1).

We exclude the identity rule (0, 0, 0).
We also set

a = α− 2β + γ,

b = 2β − 2γ,

c = γ.

We associate then to each triplet (α, β, γ) the polynomial

P = aX2 + bX + c.

The following Lemma, whose proof is omitted, is the basis of the next discussion.

Lemma 1 The polynomial P = aX2 + bX + c admits at most one root in (0, 1),
which we denote by p?. Moreover,

q := (α2 − 2β2 + γ2)(p?)2 + (2β2 − 2γ2)p? + γ2 > 0
2ap? + b < 0.

We will see that the computational power of a protocol population reads on the
corresponding polynomial P .

Case 1: P has no root in (0,1). Monotonic convergence.



For 10 rules, P does not admit a root in (0, 1). In this case, the convergence
of the corresponding protocol is easy to establish. Take for instance (0, 1, 2) :

++ 7→ ++
+− 7→ ++
−− 7→ ++

It is clear that the protocol converges to the configuration {+}n. We summarize
the behaviors of the 9 remaining rules in the following table.

α β γ Convergence
0 1 0 {+}n (or {−}n if it is the init. config.)
0 1 1 {+}n

0 1 2 {+}n

0 0 1 {−} {+}n−1

0 0 2 {+}n or {−} {+}n−1

0 −1 0 {−}n (or {+}n if it is the init. config.)
−1 0 0 {+} {−}n−1

−1 −1 0 {−}n

−2 0 0 {−}n ou {+} {−}n−1

−2 −1 0 {−}n

Case 2: P has a unique root in (0,1). Approximation with a diffusion.
According to α, β, γ, p? has one of the three following expressions :

p? =


−b+

√
b2−4ac
2a ,

−b−
√

b2−4ac
2a ,

− c
b .

As in the previous section, we set

Yk = Y
(n)
k :=

√
n(p(n)

k − p?),

and X is the linear interpolation of Y :

X(n)(t) = Y
(n)
bntc + (nt− bntc)(Y (n)

bnt+1c − Y
(n)
bntc).

Theorem 6. Assume that p
(n)
0 converges to a r.v. X0 in (0, 1). When n goes to

infinity, the process
(
X(n)(t)

)
t≥0

converges to the unique (weak) solution X of
the Stochastic Differential Equation

dXt = (2ap? + b)Xtdt + qdBt. (12)

By the previous Lemma, 2ap? + b < 0 and q > 0. This solution X has the
representation

Xt = X0e
(2ap?+b)t + q

∫ t

0

exp(2ap?+b)(t−s) dBs.



Proof. The proof for the case of
√

2/2 extends easily, so we omit the proof.

In particular, Theorem 3 of Section 7 . There exists a random variable Zn(t),
vanishing when t →∞, such that

p(bntc)=p? + Zn(t).

There are 16 rules for which P has a root in (0, 1). They compute 13 different
algebraic numbers.

α β γ Polynomial P p?

0 −1 1 3X2 − 4X + 1 1/3
0 −1 2 4X2 − 6X + 2 1/2

−1 1 0 −3X2 + 2X 2/3
−1 1 1 −2X2 + 1

√
2/2

−1 1 2 −X2 − 2X + 2
√

3− 1
−1 0 1 −2X + 1 1/2
−1 0 2 X2 − 4X + 2 2−

√
2

−1 −1 1 2X2 − 4X + 1 1−
√

2/2
−1 −1 2 3X2 − 6X + 2 1−

√
3/3

−2 1 0 −4X2 + 2X 1/2
−2 1 1 −3X2 + 1

√
3/3

−2 1 2 −2X2 − 2X + 2 (
√

5− 1)/2
−2 0 1 −X2 − 2X + 1

√
2− 1

−2 0 2 −4X + 2 1/2
−2 −1 1 X2 − 4X + 1 2−

√
3

−2 −1 2 2X2 − 6X + 2 (3−
√

5)/2

11 Conclusion

In this paper we considered population protocols with a huge population hy-
pothesis. These protocols have been introduced in [1] as a sensor network model.
Whereas for original definitions of the latter paper some population protocols
are not considered as (stably) convergent, we proved through an example that
they sometime actually computes in some natural sense some irrational algebraic
value: indeed, in a simple example, the proportion of agents in state + converges
to

√
2

2 , whatever the initial state of the system is.
One aim of this paper was to formalize the proof of convergence. We did

it using a diffusion approximation technique, using a theorem due to [10]. We
detailed fully the proof in order to convince our reader that our reasoning can
be easily generalized to other kinds of rules of the same type. In particular, this
is easy to derive from the protocol considered here another protocol that would

compute
√√

1
2 , by working with an alphabet made of pairs of states. Clearly,

the arguments here would prove its convergence.



We consider this work as a first step towards understanding which numbers
can be computed by such protocols. Whereas we prove in this paper that

√
2

2
can be computed and we have given a detailed description of , and whereas this
is easy to see that computable numbers in this sense must be algebraic numbers
of [0, 1], we didn’t succeed yet to characterize precisely computable numbers.
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