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Abstract

In this paper, we focus on convergence packet routing techniques in a network, obtained
from an Eulerian routing in the digraph modeling the target network. Given an Eulerian circuit
C in a digraph G, we consider the maximal number diamW¢ of arcs that a packet has to follow
on C from its origin to its destination (we talk about the ending guarantee of the routing). We

consider the Eulerian diameter of G as defined by £(G) = . r]?i?(c) diamWe¢, where Eul(G) is
cFEu

the set of all the Eulerian circuits in G. After giving a preliminary result about the complexity
of finding £(G) for any digraph G, we give some lower and upper bounds of this parameter. We
conclude by giving some families of digraphs having good Eulerian diameter.

Keywords : network routing, ending routing guarantee, digraphs, Fulerian circuits, Fulerian
diameter.

1 Introduction

In this paper, we focus on some digraph parameters to evaluate the quality of a network, whoose
the digraph is the topology, in terms of performances of specific packet routing algorithms. We
consider packet routing strategies without intermediate storage of data packets (hereafter simply
called packets) [1,16], such as deflection routing [5,6,18] !. These techniques are known to clearly
avoid deadlocks (packets in the network do not move) but livelocks could occur (packets move
but never reach their destination), except for some cases of deflection routing in some classes of
networks such as trees or triangulated graphs [8].

Thus, we want the techniques of routing to give performance guarantees about the life-time
of a packet in the target network, similar to the ones defined in [7]. These techniques of routing

*This work was carried out within the working group RHODe of the LRI, Université Paris-Sud and is partially
supported by the French RNRT Telecommunication Project n. 9950201 ROM.
!We especially focus on it in the RNRT project ROM dealing with all-optical telecommunication networks



Figure 1: An example of Eulerian circuit C in a digraph G with d¢(u,v) = 5.

without intermediate storage we consider, are such that any emitted packet reaches its destination
within a finite maximal number of steps (i.e., no livelock). If such a number exists, we talk about
the ending guarantee of the routing technique. For example, to obtain this ending guarantee with
a deflection routing method, one solution is to use some priorities on the packets, depending on
the time they have spent in the network [5,7,12,19]. These techniques give various good ending
guarantees in meshes under a batch-routing model (i.e., where each node is initially the origin of at
most a fixed number k of packets and there is no new packet appearing in the node during time).

Another way to obtain an ending guarantee is to use a convergence routing technique [15, 16, 21].
Using such a routing strategy, packets are routed along a global sense of direction, which gives a
ending guarantee. As proposed in [7,15,21], such a global sense of direction can be created by
using decompositions of the target digraph (or of a covering sub-digraph of it) into circuits [2, 23].
In [7], Feige gives a technique, based on an Eulerian circuit in a sub-digraph, ensuring an ending
guarantee equals to O(n3/ 2) for any graph with a minimal number of edges. Here, as a particular
case, we focus on the use of an Fulerian routing, i.e., a routing in which packets follow an Eulerian
circuit in the digraph modeling the network.

Eulerian circuits are well known combinatorial structures in digraphs [4,9]. The main strategies
used to obtain Eulerian circuits in a digraph are given in [4,11]. The most part of studies about
these structures concerns the way to find pairwise compatible Eulerian circuits in a digraph [3, 13].
Here, we consider original combinatorial properties of an FEulerian circuit related to the quality of
the ending guarantee of the related routing. Consider an Eulerian circuit C in a digraph G, where
G represents the network. Each emitted packet follows C and, at each step, has priority on the
next arc on this circuit. Then, a packet emitted by a node u and having destination node v will
hopefully reach v. Let d¢(u,v) be the maximal number of arcs on C between one occurrence of the
source vertex v and the first occurrence of vertex v encountered by following C from this occurrence
of u. This parameter d¢(u,v) is the major parameter of this routing strategy. It represents the
longest delay for packet delivery from vertex u to vertex v. In Figure 1, this maximal distance is
5, even if there exists a path of length 2 in C between u and v.

Using C, any packet emitted in G reaches its destination in at most diamW; steps, where

diamWe = max  de(u,v).
u,weV(G)
This Eulerian routing technique is clearly interesting to obtain a good ending guarantee, but it
gives poor average performance in comparison with classical deflection routing. Some authors have
proposed to use it as a secure routing technique coupled to a deflection routing [2] and/or to use



shortcuts [2,14,22], i.e., a packet can jump from an occurrence of a vertex to another one on the
Eulerian circuit trying to go to a portion of the circuit where the relative distance to the destination
is smaller than the distance it remains to do on the current part of the circuit. Note also that this
routing technique can be implemented as a simple distributed algorithm in the network [2,22].

In this paper, we only focus on the ending guarantee of an Eulerian routing and particularly on
the Eulerian diameter of a digraph G defined as follows. Let Ful(G) be the set of all the Eulerian
circuits of G. The Eulerian diameter of GG is defined by

E(G)= min diamWg.
CeFul(G)
In fact, this parameter diamW; is the best ending guarantee that can be obtained in G by using
an Eulerian routing technique.

Our results : in the next section, we give some definitions and results about the NP-completeness
of the problem of determining the Eulerian diameter of a digraph; we also provide some lower and
upper bounds for the Eulerian diameter of a digraph. In Section 4, we show some families of digraphs
having good Eulerian diameter. We conclude by giving some open problems and conjectures.

2 Definitions and preliminary results

2.1 Definitions

In this paper, we use the general digraph theory definitions of [4]. In particular, we say that
that a digraph G is a multi-digraph if there are at least two occurrences of a same arc in A(G);
otherwise, we talk about simple digraph. Unless specified, we always consider simple digraphs in
this paper. We deal here with Eulerian digraphs. Thus, for any vertex v of such a symmetric
digraph G, the incoming degree § (v) of v is equal to its outgoing degree 67 (v). We denote by
§(v) = 6T (v) = 6~ (v) the degree of vertex v, and by d the minimum degree of G.

Let G be a digraph and C an Eulerian circuit in G. Consider a vertex v and an arc a = (u,y)
of G. We denote by tpc(a,v) the length of the path on C beginning in « and ending in the first
occurrence of v on C, using « as first arc. In Figure 1, tpe((u,y),v) = 3.

We also define the parameter 7(C, u) by:

7(C,u) = a:(ur,r;ag © tpe (o, u).

Thus, 7(C,u) is the maximal distance on C between two consecutive occurrences of v on C. In the
example of Figure 1, 7(C,u) = 7.

We finally define the stretch S¢ of C as S¢ = H%?Z)c(;) 7(C,u).
ue

2.2 Eulerian routing and NP-Completeness

Given a digraph G, the problem we focus on is to determine £(G). We first show that the parameters
diamW, and S¢ are simply connected, which is interesting since S¢ is simpler to use (and compute)
than diamWpe.

Lemma 1 For each Eulerian circuit C in a digraph G, we have:

diamWe = S¢ — 1. (1)



Proof: Let u be a vertex of G, and v another vertex such that ¢p¢((u,v),u) is maximal and equal
to S¢. Let w be the vertex such that the arc (v, w) follows (u,v) in C as shown in Figure 2 below.
Thus, by definition, we have tpc((v,w),u) = S¢ — 1. Since, diamWe = max, ,cv(q) dc(u,v) and
since diamWe > d¢(v,u) > tpe((v, w),u), we obtain :

Se — 1 < diamWe.

Figure 2: Lower bound of diamW; Figure 3: Upper bound of diamW;

In order to show the other part, we consider a triplet of vertices (u,v,w) that maximizes the
definition of the worst Eulerian diameter, i.e., for which ¢p¢((u,v),w) is maximal as shown in
Figure 3. Let z be the vertex just before the arc (u,v) in C. Then x = w; otherwise tp¢((z,u), w) =
tpe((u,v),w) + 1, a contradiction with the hypothesis on (u,v,w). Consequently, we have

Sec — 1> diamWe.
This concludes the proof of this lemma. ]

Note that Lemma 1 gives a simple way to linearly compute the value of the Eulerian diameter.

Given a digraph G and an integer k, the problem we now deal with is to know if there ex-
ists an Eulerian circuit C of G such that S¢ < k. From different results of Fleischner about
graphs [9, Chapter IX], for any symmetric digraph G with n vertices and m arcs, |Eul(G)| >
om/2-n I (# — 1)! . Thus, it is not possible to solve problem VMS by computing the Eu-

veV(Q)
lerian diameter of all Eulerian circuits in G. Knowing whether this problem is NP-complete is still
an open question. However, in this paper, we give an answer for the following problem for which
we try to minimize the stretch only for a single vertex in the graph.

Problem Vertex_Min_Stretch (VMS)
Given : a digraph G, a vertex u and an integer k.
Question : Does there exist an Eulerian circuit C of G such that 7(C,u) < k?

Theorem 1 The problem Vertex_Min_stretch is NP-complete.

Proof:
The problem VM S belongs to NP because we can verify in polynomial time that a given Eulerian
circuit C satisfies the following property: 7(C,u) < k. We will transform problem 3-Partition to a



restricted version of problem V M S. The problem 3-Partition (that is NP-complete in strong sense)
is defined as follows:

Problem 3-Partition [10]

Given: a finite set S of 3m elements, a bound B € Z*, a weight w(a) € Z*, such
that each w(a) satisfies B/4 <w(a) < B/2 and such that ) _qw(a) =mB.

Question: Can S be partitioned into m disjoint sets Sy, S2,..., Sp such that, for
1<i<m, Y eq,wl@)=B 7

Let a finite set S, a bound B, and a function w denote an arbitrary instance I of problem
3-Partition. We transform an instance of problem VM S which is composed by a graph G = (V, A)
with a distinct vertex u, and by an integer k from instance I. Let A be a transformation from
instance I of problem 3-Partition to an instance of problem V M S which is defined by Figure 4 and
illustrated in Figure 5.

1 s:=|S| and 8 := max(s,mB) +4

2 Initialize graph G as follow : V=0 et A =10

3 Insert two distinct vertices v and v in V.

4 For each element g of S do

5 Insert an oriented symmetric path p, of 52 * w(a) vertices in G.
6 Denote v, and v), the extremities of path p,.

7 Connect v to v, with the arcs (v,v,) and (vq,v).
8§ Fori=1tomdo

9 Insert new vertex z; in G.

10 Insert arcs (zj,u), (z;,v), (u,z;) and (v,z;) in G.
11 k:=2Bp*+ 3 — 1.

12 Return G, u and k.

Figure 4: Construction 4 from an instance I : a finite set S, a bound B, a function w.

From this construction, graph G can be split into 2 subgraphs:

e The first subgraph, denoted P, is composed by the union of directed symmetric paths (see
Instruction 5: it contains all paths p, corresponding to all elements a of S).

e The second subgraph denoted R is graph G minus graph P. This means that, it contains
vertices u, v, x;, 1 <1 < m, and v,, for each element a of S.

To prove that construction A4 is polynomial, it is enough to count vertices of graph G.
e Graph P contains 32 x 3 . s w(a)(= B*mB) vertices and 26? x ¥ . s w(a) arcs.
e Graph R contains 2 + m + s vertices and 2(m + s) arcs.

Summing the vertices of the two subgraphs of G, we obtain that, graph G has Bm3? + 2 +m
vertices (vertices vy, a € S belong to both subgraphs). The number of vertices of G is less than
B « max(3m, mB) + 2max(3m,mB). Also, we can conclude that the instance of problem VM S
is constructed in polynomial time from an instance of problem 3-Partition by transformation A.
Finally, in order to prove that problem VM S is NP-complete we will show the following property:
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Figure 5: Example of construction A : an instance of problem VMS is build from the following
instance of problem 3-Partition: m = 2, S = {a,b,c} and w(a) = 2, w(b) = 5 and w(c) = 3; we
have here g = 10 and k£ = 1099.

Property 1 There exists a partition of S into m subsets Si, So,..., Sy such that S;, 1 <4
satisfies ) 5. w(a) = B, if and only if there exists an Eulerian circuit C of G such that 7(C,u)

First, assume that S can be split into m sets Si, Sa,...,Sp, such that > o w(a) = B,
1 <4 < m. From this partition, we will build an Eulerian circuit C such that 7(C,u) < k. Eulerian
circuit C is defined as the union of m circuits C;, 1 < i < m.

Any subset S;, 1 <14 < m, is represented by circuit C;. We assume that S; = {a1,...,ax}. The
circuit C; is defined as follows : {u,z;,v} US| {v,v4,Pa), v}, Par, va} U {v, z;,u} where:

e P, represents the direct path to v, from v’.
e p, represents the direct path to vl from v,

We can notice that the length of the circuit C; is equal to 26 Y, 5. w(a) + 2|S;j| + 4. Tts length
is equal to 2B3? + 2|S;| + 4.

As we have B > s+ 1 > |S;| + 1, and 8 > 4, we obtain 2 — 1 > 2|S;| + 4. We can deduce
that the length of the circuit C; is less or equal to k. We conclude that Eulerian circuit C already
defined is such that 7(C,u) < k.

Conversely, we assume that there exists an Eulerian circuit C of G such that 7(C,u) < k. We
will prove that there exists a partition of .S into m subsets S1, S9,..., Sy, such that S;, 1 <1 < m,
satisfies ) ¢ w(a) = B. We use the circuit C' to build a partition of S.

By definition of G, vertex u appears m times in circuit C. So, circuit C is split into m circuits
denoted C;, 1 < ¢ < m, such that u appears once in each of these circuits. Before building this
partition, we can notice that
Remark 1: If vertex v, belongs to C;, then every vertex of p, belongs to C;.

This remark is due to the fact that path p, is only connected to the rest of graph G by only two
arcs (vq,v) and (v, v,). Now, we build the partition of finite set S. S is split into m subsets Sj,
1 =1,...,m as follows: an element a of S belongs to S; if and only if vertex v, belongs to circuit
C;. It is easy to notice that all the sets S;, 1 < i < m, form a partition of S. Afterwards, we will
compute ), ¢ w(a) for each subset S;, 1 <4 < m. To do this, we focus on the length of each C;.
Each C; is composed of path p, , a € S; plus v arcs belonging to subgraph R. So the length of this



circuit is equal to 2432 > aes; w(a) + and is less than k. By definition of the parameter k, we can
deduce the following equations:

ko> 2687 wla) + (2)
a€S;

2B+ 42 —1 > 26°) wla)+v (3)
a€S;

As 7y can be less than the number of arc of R, we have 2(s +m) > . Moreover, as [ > 4, we
obtain 3% — 1 > 4 % 3 > . From Equation 3, we have

BE® > B2 w(a).
a€S;

B > Z w(a).

a€S;

So we can deduce that for each i =1,..., m, we have B > > s w(a). So, finite set S can be
split in m subsets S, S,..., Sy, such that for each ¢ = 1,...,m, we have ) o w(a) = B. We
have proven Property 1 and Theorem 1 holds.

O

3 Some bounds on the Eulerian diameter of a digraph

In this section, we prove the following theorem that gives simple bounds on the stretch of any
graph.

Theorem 2 Let G be a digraph with minimal degree 6, n vertices and m arcs. Then

%—1§5(G)§m—25—3. (4)

If G is a 0-regular digraph, with § > 3 and n vertices, then
n+1<E(G). (5)

Note that § can not be equal to 1 because we only consider the symmetric digraph (for any
vertex v, we have 07 (v) = 6 (v)). Tt is also easy to show that, if § = 2, then £(G) > n and that
this bound is tight. The upper bound given in this proposition is based on a trivial impossibility.
In fact, we conjecture that there is no digraph with degree ¢ > 2 such that £(G) =m — 2§ — 3.

To prove Equation 5, we use the technical result given in Lemma 2, based on the following
definition.

Definition 1 Let G and C be respectively a digraph and an Eulerian circuit of G. The min-stretch
of C, denoted by ac(QG), is the smallest distance between two occurrences of a same vertex of G in

C.

ac(@) = (u,vr)nelfll(G) tpe((u,v),u).



Let G be a digraph and C an Eulerian circuit of G. Consider V(G) = {0,1,...,n — 1}. By
Definition 1, C contains the following pattern (up to a permutation of the vertices’ labels):

01 2 ... (a(G)=1) 0

Lemma 2 Let G and C be respectively a digraph of order n and an Eulerian circuit of G with
min-stretch smaller than n — 1 (a¢(G) <n —1). Then we have:

Se >n+ 2.

Proof: Wlog, we can assume that the property of min-stretch is obtained for vertex 0. Then, C
contains the following pattern:

a; az ... a4 01 2 ... (Ozc(G)—l) 0 bl bQ b3

where k is the smallest integer such that the sequence & = a;...ay, contains at least one
occurrence of each vertex in {a¢(G),...,n — 1} (note that, since G is a simple digraph, k > 2).
Then, k > n —ac(G). Wlog, let a; =n — 1. So, tpc((n—1,a2),n —1) is minimal if b =n — 1 and
then, the stretch of (n — 1) is such that 7(C,n — 1) > k + ac(G) + 1. We consider now two cases.

o If k > n—ac(G)and by = n—1, then 7(C,n—1) > n—ac(G)+ac(G)+1,ie., 7(C,n—1) > n+2.

o If k =n— a¢(G) and by = n — 1, then all the a;, 1 < i < k, are different and greater than
ac(G). Wlog, let ap = n—2. So, by can not be vertex n — 2 because circuit C already contains
arc n — 1,n — 2. Thus, tpe((n — 2,a3),n — 2) is minimal if by =n — 1 and b3 = n — 2, i.e.,
T(C,n—2) >n+2.

Thus, in all cases, S¢ > n + 2. O
Remark 2: Let consider C an Eulerian circuit of a given digraph G. Assume that C has stretch
B. Then, by Lemma 2, C clearly satisfies the following constraints:

min-stretch constraint: the distance on C between two occurrences of the same vertex is at least
ac(G);

stretch constraint: the distance on C between two occurrences of the same vertex is less or equal

to 3.

Proof of Theorem 2. By Lemma 1, in all this proof we focus on the stretch S¢ of an Eulerian
circuit in a digraph G.

Proof of Equation 4. Let u be a vertex of degree 6 in G. Thus, S¢(u) > 7§, since the occurrences
of u in the Eulerian circuit divide this circuit into § parts. We have:

E(G) = . %li{%c:) diamW¢ by definition, and % < S¢ = diamW¢(G) + 1 by Lemma 1.
cebu

Let consider a special Eulerian circuit that places all the occurrences of vertex u (of minimal
degree §) as shown in Figure 6. In this case, S¢(u) = m —2(6 — 1). This corresponds to the largest
possible part since between two occurrences of the same vertex in the circuit there must have a
least one vertex.



Figure 6: Eulerian circuit having large S¢ with 6 = 3.

Proof of Equation 5. Assume now that § > 3 and that £(G) = n. Then, there exists an Eulerian
circuit C with stretch S¢ = n+ 1. Using Lemma 2 and Definition 1, we know that n —1 < a¢(G) <
n + 1.

Moreover, it is easy to see that a¢(G) < n + 1 since G is a simple digraph. If ac(G) = n,
then, w.lo.g, C =012 ... (n—1) 0 a; .... Due to the min-stretch constraint, ¢; must be
equal to 1, that leads to a contradiction since G is a simple digraph. Consequently, we must have
ac(G) =n —1 and then, C contains the following pattern:

b a 01 2 ... m—-2) 0 ¢

where a, b and ¢ are vertices in {0,...,n — 1}.
Since S¢ = n + 1, then a and ¢ are equal to n — 1 (a can not equal to n — 2 because G is a
simple graph). Thus, C contains the pattern:
(1’1—1) o1 2 ... (1’1—2) 0 (1’1—1) a; as as

Since S¢ = n + 1, we have to consider two possible cases for a; and as.
If a1 = 2 and a9 = 1 then it is easy to see that the first n + 1 elements and the last n + 1
elements follow the same pattern, up to a permutation of V(G):

mn—1) 0 1 2 ... m—2) 0 n—1) 2 1

If a1 =1, as = 3 and a3 = 2 then once again, the first n+ 1 elements and the last n+ 1 elements
follow the same pattern, up to a permutation of V(G):

mn—1) 0 1 2 3 ... n—-2) 0 (n—1) 1 3 2

Consider two consecutive arcs (u;_1,v) and (u;,v") in C, where u; 1 and u; are two occurrences
u; of a same u vertex of G. The interval of u; in C denoted IS(u;) is tpc((u,v),u) — 1, i.e., the

number j of vertices in C between u; 1 and u;. In C, the notation ul(J ) indicates that IS (u;) = 7.

We are interested in the possible sequences of intervals of consecutive vertices in the Eulerian
circuit. From the two possible patterns of C given before, the sequence of intervals in the Eulerian
circuit can be described from two elementary patterns:

Pi: (n—=1) (n+1)
Py : n (n—1) (n+1)
The two following claims study the sequence of consecutive intervals of a given vertex in C.

First note that such a sequence is composed with values n — 1, n, and n + 1. Since a vertex of G
occurs ¢ times in C, there exists the same number of intervals of size n — 1 as intervals of size n + 1.



Claim 1 Let G be a digraph of degree 6 > 3 and order n, and C an FEulerian circuit of G. The
sequence of intervals of the consecutive occurrences of a same vertex in C does not contain the
patterns (n —1,n+1) and (n+1,n —1).

e Let us simply show the property for pattern (n+1,n—1). The other one is obtained by reversing
the following arguments. In this case, C has the following form:

(n—1) 012 .. n-3 (n—-2) 0
(n — 1)(n+1) ay ag e ap—2
(n -1tV an

Using the min-stretch constraint, a, can only be equal to 0 or a;. However, any of these two
values can’t be used since they are the two previous neighbours of this occurrence of n — 1, a
contradiction with the definition of G as a digraph. This ends the proof of the claim. e

In the following claim, we give another interval impossibility.

Claim 2 Let G be a digraph of degree 6 > 3 and order n, and C an Fulerian circuit of G. Let k
be an integer. The sequence of intervals of consecutive occurrences of a same vertex in C does not
contain the pattern (n, (n — 1), n), where (n — 1) is the sequence made of k times (n — 1).

e Assume first that & > 0. Wlog, consider that the intervals patterns(n, (n — 1)¥,n) occurs for
vertex 0. Then, C is of form

0 a1 k42 02k42 -+ Op_2kt2 Opn_1k42
n (n—-1)  (n+1)
o) G1k+1 P2k41 - On—2k+1
-1 (n+1)  (bg)
o(n-1) ay ag g cee Qp_2k

o(n—1) ,+D)  (b2)

1,2 42,2 e On-22
-1 (n+1)  (b1)
O(n ) al,l a’2,1 <. QGp-21 Gn-1,1
n (n—1) _(n+1)
o) a0 as0

where all the a; ; are vertices of G' and the vertex following a,_1 ;42 in the Eulerian circuit is 0 (on
the next line). Remind that ) indicates that the previous occurrence of vertex a is j elements
before this occurrence.

The intervals are obtained from patterns P; and Pz. Wlog, consider a; ; = 1+7,0 <35 <k+1.
Then, using the interval of ag, this latter vertex is 2. We also have ao; = 1. Thus, the Eulerian
circuit has the form given in the left part of Figure 7.

Let consider the interval b;. Using patterns P; and Ps, by can only be equal to n or n — 1. If
by = n then vertex a; 2 would be 1 and the Eulerian circuit would use twice the arc (0,1). Thus,
by = n —1 and az2 = 1. Using a simple recurrence argument, all the b;’s are equal to n — 1 and
the form of the Eulerian circuit is given in the right part of Figure 7.

Using the interval of as k41, we can conclude that a; yyo = 1 and the arc (0, 1) is used twice in
the Eulerian circuit, that leads to a contradiction.

For k£ = 0, just remark that the same scheme is directly applicable and leads to the same
contradiction. This ends the proof of the claim. e

10



0 ajp2 k+2 ... apop2 k+1 0 ajp2 k+2 ... ap2k40 k+1
k+2 o) .k 0 k+2 1) .k
0 k+1 ayf ... k-1 0 k+1 107D . k-1
0o 3 ay? L anoap 0o 3 10D g,y
2 100 a4 a1 an1a 0 2 1D a0 ano1g
0o 1 2 0o 1 2

Figure 7: Two resolution steps of the construction of an Eulerian circuit of stretch n + 1. The
min-stretch indications are left only when necessary.

As a consequence of these two previous claims, let consider C an Eulerian circuit in G of stretch
n + 1. For symbol 0, let consider the sequence of intervals. This must have length § and must
contain the same number of n — 1 as n 4+ 1. Using Claim 1, n — 1 cannot follow, or be followed by,
n + 1. Thus, any sub-sequence of n — 1 must be delimited by two n. Using Claim 2, this latter
condition cannot be satisfied. Consequently, the sequence is only composed by n, that is impossible
again using Claim 2 with £ = 0. Then, we can conclude that C cannot exists.

Thus, S¢ > n + 2, and then by Lemma 1, £(G) > n+ 1.

4 Some digraphs having good Eulerian diameters

In this section, we give families of digraphs having good Eulerian diameter considering Theorem 2.
These digraphs will be induced from the construction of good Eulerian circuits for the complete
digraph K,". To do this, we first give the construction of a particular matrix we use in the following.

4.1 A useful matrix construction

Definition 2 Let n be even. We denote by B, the (n,n) matriz defined by

B,(0,5) =3j/2 if j is even,
=1 mod n if j is odd,

B,(i,j) =Bn(0,5)+7 modn 0<i<n,0<j<n.

Each line ¢ of the matrix is denoted by II; and we note B, = (Ily,...,II,_1). An example of such
a matrix is given in Figure 8.

This matrix has many similarities with the one shown by Tillson in [20]. Indeed, it is built by
the same way; Tillson’s one has a different constant for the definition of B, (0, j), for even j. Many
properties of B, can be directly shown from the ones given by Tillson.

11



M, = 0 5 1 4 2 3
M = 1025 3 4
I, = 2 130 45
My = 3 2 415 0
Iy = 435 20 1
M; = 5 40 3 1 2

Figure 8: Bg matrix.

4.1.1 Properties of B,

In the following, we give some basic properties of the B, matrix. The two first lemmas show that
By, is a row complete Latin square (see [20] for definition). Lemma 5 gives some symmetry property
of this matrix and Lemma 6 shows some basic properties between two consecutive lines.

Remark 3: First note that we have the following property on this matrix:

YO0 <i,j<n Bu((i+1) modn,j) =1+ By(i,j).

Lemma 3 FEach row and column of By, is a permutation of 0,...,n — 1.

Proof: It is clear that any column is a permutation. Let us show that the first row is also a
permutation.

Let j and j' two distinct integers (0 < j < n) such that B, (0, 7) and B,(0, j') are equal. Assume
first that they are both even. Then, we have the following equalities:

Bn(0,4) = Bu(0,5') =

DO | .

jl
2
= j =4 (mod 2n) Impossible

If they are both odd, we obtain the same contradiction. If 7 is even and 7' odd, we have:

) 1
% -] ;L mod n
j+3 =—1 (mod 2n).

Bn(O,j) = Bn(O,j’) _—
—
Since, 0 < 4,5 < n, we have

a contradiction.
All the symbols in the first row are different, and thus by Remark 3 each row represents a
permutation of 0,...,n — 1. O

Lemma 4 For all ordered pair (u,v) of distinct integers, there exist unique integers i and j, 0 <
1<n,0< 5 <n—1, such that:

u = By(i,j) and v = By, (4,5 + 1).

12



The easy proof of this lemma is left to the reader.
Lemma 5 For any integers n, i and j, we have
By (i,j) = Bp(n/2 + j mod n,n — 1 — j).

Proof: By using Remark 3, we need only to prove this lemma for ¢« = 0. Let n = 2p and assume
first that j is even (i.e., j = 2j').

Bu(p,2p —1-2j') = p+Bn(0,2p—1-2j") = p— B2 50— g (0,2j").

Next, consider j = 25’ +1

Bulp2p—1-2j'=1) = p+ 22 = 2p—j'—1 = —(j' +1).
B,(0,25' +1) = —w = —(j'+1).
Thus, for any case, we have shown the desired property. 0

Lemma 6 For i, j and k such that By(i,5) = Bp(i + 1 mod n, k). We have:
k—j<2.

Proof: By using Remark 3, we need only to prove this lemma for 7 = 0. This proof is divided
into four simple cases. We only develop the first one and leave the exact calculus to the interested
reader.

Let j =2p+1 < n—2 be odd. Then, we have the following equalities (all the sums are done
modulo n):

B(Lj+2) = 1+B(0,j+2) = 14 (U2 — 18 _ it _ p(,j).

For j =n — 1, a similar calculus shows that B,(0,n — 1) = B,(1,n — 2).

When 0 < j = 2p < n, we have B,(0,j) = B,(1,j —2).

Finally, B, (0,0) = By,(1,1).

Thus, we have shown that when we have a symbol in a given row, in the next one it is at most
two columns after. O

4.2 Case of symmetric digraphs

Many networks are based on full-duplex communication links [17]. In general, these networks are
modeled by symmetric digraphs. In this section, we exhibit some symmetric digraphs, of any degree
and any size, with small Eulerian diameters (note that the degree of a symmetric digraph is always
even). All this section consists in proving the following main result.

Theorem 3 Let n, d and p be integers such that 0 < d < p, and p = L”T_IJ There exists a
symmetric digraph G of degree 2d such that

5(G)§n+2[§]_1.

13



Remember that by Theorem 2, Equation 5, if G is regular then £(G) > n + 1.

To prove this theorem, we first examine the case of a odd number of vertices. The underlying
technique in the odd case is to define a good Kulerian circuit in the complete digraph from a
Hamiltonian decomposition of K;'_I. This is done by using the B, matrix. To obtain graph
with degree less than n — 1, we remove Hamiltonian circuits from K;ﬁl, two by two in order to
preserve the symmetry property of the digraph and we define an Fulerian circuit from the remaining
Hamiltonian circuits. The main problem is to evenly remove the Hamiltonian circuits.

When the size of the digraph is even, the main problem is to define a good Eulerian circuit in
the complete digraph. Then, similar techniques can be used for smaller degree as in the odd case.

4.2.1 Proof of Theorem 3: digraphs with odd number of vertices

Let us consider n = 2p+1. Before proving Theorem 3 for n odd, we give a technical result involving

Lemma 7 Let n > 5 be an odd integer. The Eulerian diameter € of K, is n+ 1. The Eulerian
diameter of K;r s 3.

Proof: First of all, the only Eulerian circuit in Kg“ is
012021

whose Eulerian diameter is clearly 3.

For the general case, let consider By,, and the associated permutations Ilg, ...IIy,_1. Let
define the Hamiltonian circuits C;, 0 < i < 2p, as (2p,11;,2p). Let consider C,, the circuit as the
succession of the C;’s. An example is given in Figure 9. As shown in [20], the Hamiltonian cycles,
Co, ...,C9p_1, is a Hamiltonian decomposition of K. Thus, C, is an Eulerian circuit.

In order to compute the Eulerian diameter of C,,, we consider the stretch of C,.

Since C,, is composed by the succession of Hamiltonian cycles, the stretch of symbol 2p is exactly
2p +1 = n. From Lemma 6, given an occurrence of symbol 7, 0 < ¢ < 2p, in row j, this symbol
appears at most two columns after in the next row ((j + 1) mod 2p) in By,. Thus the maximal
distance between two occurrences of symbol ¢ in C,, is exactly n +2. Lemma 1 gives the value n+1
for the Eulerian diameter of C,.

Theorem 2 shows that n + 1 is the best value that can be obtained in that case. O

Note that the construction of the Eulerian circuit can be seen as inserting a column into By,
in the last position with the element 2p as shown in Figure 9.

Proof of Theorem 3 : case where n is odd.
Let us start with two simple remarks.

If d = p, then the theorem follows from Lemma 7. Thus, let consider C,, as the Eulerian circuit
in K& given in the previous proof, composed by Hamiltonian cycles called C;, 0 <4 < 2p.

As a second remark, let consider C, in which we have removed two circuits, namely Cy and
Cp. By Lemma 5, these two Hamiltonian circuits are opposite, i.e., the second one uses the reverse
arcs of the first one. Thus, their removal does not affect the symmetry property of the resulting
digraph. In terms of Eulerian diameter, we need to apply once more Lemma 6, the stretch of this
Eulerian circuit is increased by 2 (compared with the Eulerian circuit of the complete graph), so

14



(Co) 09 1 82 7 3 6 4 5 10
(C;) 1 029 38 475 6 10
(C) 21 3049586 7 10
(C) 32415069 7 8 10
(C) 4 352617089 10
(C) 546 37 2819 0 10
(C) 6 57 48 39 201 10
(C;) 76 859 403 1 2 10
(Cs) 8 796 05 1 4 2 3 10
(Co) 9807 1 6 25 3 4 10

Figure 9: Eulerian circuit for K7; composed by the succession of the Hamiltonian circuits Cj,
.. Cy.

the Eulerian diameter. Thus, we have built a digraph of degree 2d = n — 3 = 2(p — 1), having
Eulerian diameter less than n + 3. And the theorem follows in this case also.

In order to obtain the general case, we perform the same way. However, if we remove simply from
the previous digraph (and also from the Eulerian circuit) the two following Hamiltonian circuits:
Cy and Cj11, then the Eulerian diameter would be increased again by 2, and lead to an Eulerian
diameter too important. The idea is to balance the removal of the Hamiltonian circuits and choose
to remove Cy and C), C/3 and O3, /5. Considering a ring of size p, we need to solve the following
subproblem. Mark k elements in the ring such that the distance between two unmarked elements
is minimum.

Claim 3 We can mark k vertices of the ring of size p such that the mazimal distance between two

consecutive unmarked elements is L)%J.

Figure 10: Two marking for p = 10, first for £ = 3 marked with e, and the second one for k =7,
marked with triangles.

Assume first that k < p/2. Let Ly = L%J and Lo = {%] Then, we use the following process to
mark the elements in the ring. First, mark one element every L;, p mod k times and afterwards

one element every Ly (k — p mod k) times.

15



Using this process, we have the following simple property. Two marked elements are separated
by at most § elements, and two unmarked elements are separated by at most 2 elements. This is
simply due to:

p=Ly-(k—pmod k) + La(p mod k).

Then, if £ < p/2, then the maximal distance between two consecutive unmarked elements is 2,

e, |52 ]
When, k£ > p/2, we simply reverse the previous marking obtained for ¥’ = p — k. Then the

maximal distance between two unmarked elements in the final marking is exactly [ 5], i.e., p%k .

An example of this marking process is given in Figure 10. This ends the proof of this claim. e

In order to built a digraph of degree 2d, we remove from the Eulerian circuit 2(n — d) = 2k
Hamiltonian cycles. In order to preserve the symmetry property of the resulting digraph, we need
to remove associated pairs of cycles, i.e., C; and C(p ) mod (2p)- Liet consider the marked elements
by the previous claim. We remove the cycles C; and C);, if ¢ is a marked element in the ring.

For this digraph of degree 2d, the distance between two consecutive settings of the same symbol
is at most n plus twice the number of consecutive Hamiltonian cycles that have been deleted from
Cp, using Lemma 6 as shown in Figure 11. Thus, we directly obtain an Eulerian circuit for which

the Eulerian diameter is n + 2 [1’%’“1 —1,ie,n+2[5] -1 O

2*(1+deleted)

Preserved

Deleted  ------ O--O-®--0--0-0--0--0--Q_

Figure 11: Maximal distance between two consecutive settings of the same symbol in the Eulerian
circuit.

Figure 12 shows a digraph obtained by the process described in the previous proof.

4.2.2 Proof of Theorem 3: digraphs with even number of vertices

When the number of vertices is even, the previous strategy cannot be applied as is. The idea
developed afterwards is to take an Eulerian circuit for the odd case and add correctly the missing
edges in it.

As in the previous section, before proving Theorem 3 for n even, we give a technical result
involving K.

Lemma 8 If n is even, the Eulerian diameter of K, is less than n + 4.

Proof: Let n be 2p + 2. Consider the By, matrix construction as before. We build an Eulerian
circuit C,, as the concatenation of 2p arc-disjoint circuits in K", in two phases. First we insert two
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Co) 0918273645 10
(Ch) deleted
(Ca) deleted
(C3) 3241506978 10
(Cy) deleted
(Cs) 5463728190 10
(Cs) deleted
(C7) deleted
(Cs) 87960051 423 10
(Cy) deleted

Figure 12: Graph with 11 vertices and degree 4, and an Eulerian circuit resulting from the decom-
position of Kj; given in Figure 9. In bold, Cy (and C5) is shown.

columns into Bg, between the two first columns: one is a complete column of symbol 2p + 1, and
the second one is the duplication of Column 1. The second step consists in inserting at the end of
the first row the pair 2p + 1, 2p. This process is shown in Figure 13.

7 7 6

QaQqaQq
LSETEINEISST
Tk W N = O
NN NN

U WO
= W N = O Ot
O Uk W N -
W N = O O
—_— O Otk W N
N = O Ot W
S S O OO D

Figure 13: Extension of the Bg matrix leading to an Eulerian circuit of Kg.

The first point is that C,, is an Eulerian circuit. This is due to the fact that it is built from an
Eulerian circuit in K;L"_l in which we have added circuits of length 2. Thus, the primary circuit in
K" | is also a circuit in K" and uses all the arcs of the form (i,5), 0 <4,5 < 2p, i # j. Since any
column of By, is a permutation (see Lemma 3), the addition of the first columns covers all the arcs
of the form (7,2p + 1) or (2p + 1,7), 0 < i < 2p. The extension of the first circuit using vertices 2p
and 2p + 1 completes the description of the Eulerian circuit.

The stretch of any symbol can be computed as before. However, we have to take into account
that the length of C{ is n 4+ 3 (instead of n in the odd case). Lemma 6 still applies, leading to a
further 2 additive constant to the stretch of any element. Thus, the maximal stretch of an element
in this Eulerian circuit is n + 5. Using Lemma 1 leads to the desired result. O

Even if this result is near from the optimal, it is still open to know the exact value of the
Eulerian diameter of K'.

Proof of Theorem 3 for n even.

The same process as shown for the proof of Theorem 3 for n odd can be used here. The starting
point is not the Eulerian circuit C,, used for the completed digraph, but a circuit C,, obtained from
Cpn, by removing the small cycle of length 2: (2p,2p + 1,2p) (i.e., we use the circuit obtained after

17



0 (Ch) deleted
) 111029384756 10

(CY) deleted

10 (C3) deleted
C) 411 4352617089 10

0 (CY) deleted
(C¢) 6 11 6 5 7 4 8 3 9 2 0 1 10

. (C?) deleted

(CY) deleted
(cy) 9 11 9 8 0 7 1 6 2 5 3 4 10

Figure 14: Graph with 12 vertices and minimum degree 4, and an Eulerian circuit resulting from
the decomposition of Ki5 given in Figure 9. In bold, Cy (and Cj) is shown.

the first step of the construction of C,, in the previous proof).

However, we have to notice that the obtained digraph is not regular. Then, the stretch of any
element is exactly equal to the length of one circuit (i.e., n + 1) plus 2(1 + k), where 2k is the
number of deleted circuits. The other points of the proof have been given previously. We don’t
precise them here. O

4.2.3 A conjecture for K,

In Lemma 7 and Lemma 8, we have shown that £(K,7) =n+1 whennisodd and n+1 < £(K,;}) <
n+4 when n is even. In fact, we conjecture that for any n > 4, £(K,") = n+1. With the following
computational experiments, we have shown that this conjecture is true for n = 4,6, 8:

e £(K;) = 5: this is obtained for the following Eulerian circuit: 0123021031 3 2.
e £(Kg) =T: this is obtained for: 012345031425104352130241.532054

e £(Kg) = 9: obtained for:

01 23 4567

0 2146 3
05726 413 25
047 3615 4 2
03 716 5 2 4

0 75 31

06 27435 1T7F6
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o £(K{;) < 12: several Eulerian circuits have been found with Eulerian stretch of 12, i.e.:

01 23 4567389
0 2135 46879
1 03 2 47 5869
20414362570
8 29516 48 30
729596 312849
76 095 2819 37
4 06 2715 3 820
9426 17 39 85

4.3 Case of general regular digraphs

Theorem 4 For any integers n and §, with n > 1 and 2 < § < n — 1, there exists a d-reqular
digraph G with n vertices, with Eulerian diameter verifying

E(G)=n+1 ifr<gq
n+1<E(G)<n+3 else,

where g =n div § and r = n mod 9.

Proof: By Theorem 2, the Eulerian diameter of any regular digraph is greater or equal to n + 1.
In the following, for any n and J, we construct a d-regular digraph G with n vertices containing an
Eulerian circuit C with stretch S¢ = n 42 or S¢ = n + 4 (in fact, G is deduced from C as in the
previous proofs). Then, Lemma 1 concludes.
Let V = {0,...,n—1} be the vertex set of G. We decompose V into k = [%] ordered sequences
V; defined by
Vi=d0-14,0-1 +1,...,0-1 +(6—1) with 0<i<k-—1.

In other words, V;[j] = 6 -4 + 7, where 0 < j < § — 1 and Vj_; is made of at most ¢ ver-
tices. Let m be a permutation of S;5. For any V;, we denote by m(V;) the sequence of vertices
Vil (O)], Vilr(D)]. .., Vile(6 — 1))

Let us define ¢ =n div ¢ and r = n(mod ¢). We consider three cases.

Case 1l: r=0.

Consider the matrix By given in Definition 2. From Lemma 3, each line of By = (Ily,...,II5_1) is a
permutation of S5. We construct a cyclic sequence of vertices C of V' as follows (see Figure 15 (a)).
This sequence is made of consecutive subsequences

C = C(),U, 00’1, . ,C()’qfl, 01’0, ey Cl,qfl, 02’0, ey 05_1,(1_1,

such that for any ¢, 7, where 0 <7 <d—-1and 0 <j <q—1, C;; =1L(Vj).

This cyclic sequence C defines a unique multi-digraph G from which it is a arc-covering circuit.
By Lemmas 3 and 4, and by construction of C, it is clear that no pair of vertices of V' can appear
more than one times as two consecutive vertices in C. Thus, G is a simple digraph and C is an
Eulerian circuit in G.

Consider v € Vj a vertex of V. Then in C, there is exactly one occurrence of v in each subset
Cij for 0 <4 < — 1, and only in them. Then, G is a d-regular digraph, and by construction
of C, the distance in C between two consecutive occurrences of v is (60 — 1)¢ + 2 = n + 2. Thus,
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0 3 1 2 4 7 5 6 § 11 9 10 0 3 1 212|14 7 5 6138 11 9 10
10 2 3 5 4 6 7 9 8 10 11 10 2 3(12/5 4 6 7|13,9 8 10 11
2130 6 5 7 4 10 9 11 8 21 3 0)12(6 5 7 4|13(10 9 11 8
3 2 01 7 6 4 5 11 10 8 9 3 2 0 1127 6 4 51311 10 8 9

By By+4 By +8 By By +4 By +8

(a) (b)

Figure 15: (a) Circuit C for n = 12 and § =4 and (b) circuit ' for n = 12 and ¢ = 15.

Sc =n+ 2.

Case 2:1<r<gq.
In this case, k =g+ 1and V,_; =06(k —1),6(k — 1)+ 1,6(k — 1)+ a, withd(k—1)+a=n—1.

Consider the circuit C constructed as in Case 1 from sequences Vp, ..., Vi_o. We construct a
new circuit C’' from C and vertices of V;_; as follows (see Figure 15 (b)). For each t, 0 < j < a, an
occurrence of vertex Vj,_[j] is inserted in C after each last vertex of the subsequence C; j, for any
,0<i<d—1.

Since by Lemma 3 each column of By is a permutation, and by construction of C and C’, this
circuit C’ still defines a simple digraph G in which it is an Eulerian circuit. Moreover, by the con-
struction of C, the maximal distance between two consecutive occurrences of a vertex in V —V,_; in
C' is still less or equal to n+2. By construction of C’ the maximal distance between two consecutive
occurrences of a vertex of V;_1 in C' is exactly n.

Case3:qg+1<r<dé—1.
In this case, k = ¢+ 1 and Vj_1 = V,V, with V, = §(k —1),0(k—1)+1,...,6(k—1)4+a, a=q—1,
Vo=6k—1)+a+1,...,0(k—1)+band 6(k—1)+b=n—1. Note that b—a <§—1
Consider the circuit C' constructed as in Case 2 from sequences Vj, ... Vi_o,V,. We construct
a new circuit C” from C' and vertices of V}, as follows. For each £, 0 < j < b—a — 1, an occurrence
of vertex Vi[j] = 6(k — 1) + a + 1 + 7 is inserted in C’ after the (j + 1) vertex of each subse-
quence C; j, for any 4, 0 <7 < § —1. As in the previous case, C" is an Eulerian circuit in a d-regular
digraph G and by construction of C"” and by Lemma 6, we show that Sc» is less or equal to n+4. [0

Note that the o-regular digraphs we obtain to prove Theorem 4 are almost symmetric.

5 Conclusion

To conclude, we give some open problems. We conjecture that the problem of knowing if £(G) < k
is NP-complete. Another open problem is to give a tight upper bound of £(G), better than the
one of Proposition 2. In Table 5, we summarize the results we have obtained and we give some
conjectures and open questions.
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Family to which E(G) for obtained digraphs | Conjectured best

our digraphs lead to Eulerian diameter
n =n+1 ifnisodd _

Ky {§n+4 else =n+l
Symmetric, L”Tflj =p » 2
§=2d,p<d n+2[4] -1 ?

Symmetric, any degree § # 2d - ?
d-regular, not symmetric, =n+1 ifr <gq,

. =n-+1

q=mndiv d, r =n mod o <n+3 else

Table 1: Summary of the results of Section 4
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