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Bât.490-91405 ORSAY Cedex, France.

Abstract

This paper deals with b-colorings of a graph G, that is, proper colorings in which
for each color c, there exists at least one vertex colored by c such that its neighbors
are colored by each other color. The b-chromatic number b(G) of a graph G is the
maximum of colors for which G has a b-coloring. It is easy to see that every G has
a b-coloring using χ(G) colors.

We say that G is b-continuous iff for each k, χ(G) ≤ k ≤ b(G), there exists a
b-coloring with k colors. It is well known that not all graphs are b-continuous. We
call b-spectrum Sb(G) of G the set of integers k for which there is a b-coloring of G
by k colors. We show that for any finite integer set I, there exists a graph whose
b-spectrum is I and we investigate the complexity of the problem to decide whether
a graph G is b-continuous, even if b-colorings using χ(G) and b(G) colors are given.
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1 Introduction

Throughout this paper, we follow the notation and terminology in [2]. A b-
coloring of a graph G is a proper coloring π of the vertices of G such that for
each color c, there exists a vertex v with π(v) = c such that for any color c′ 6= c,
there exists v′ ∈ ΓG(v) such that π(v′) = c′ (where ΓG(v) is the neighborhood
of v). Such a vertex v is called a b-chromatic vertex for color c. We denote by
|π| = |π(V (G))| the number of colors used in the coloring π. If |π| = k, then
π is called a (k)b-coloring. The b-chromatic number b(G) of a graph G is the
maximum k for which G has a (k)b-coloring. Obviously, a coloring of G with
χ(G) colors where χ(G) is the chromatic number of G is a b-coloring.

The b-chromatic number was introduced in [7]. As said in [12], the motivation,
similarly as for the previously studied achromatic number (cf. e.g., [3,6,8,9]),
comes from algorithmic graph theory. Suppose one colors a given graph prop-
erly, but in an arbitrary way. After all vertices are colored, one would wish
to reduce the number of colors. The simplest operation at hand is recoloring
all vertices of the same color with another color. In an achromatic coloring
there is an edge between any two color classes, and hence such recoloring is
impossible. The achromatic number of a graph is thus the worst case number
of colors that may be needed to color the graph under the above described
heuristics.

A slightly more involved operation would take one color class and recolor
its vertices, but not necessarily each with the same color. Obviously, such
recoloring is impossible if each color class contains a b-chromatic vertex. Hence
the b-chromatic number of the graph serves as the tight upper bound for the
number of colors used by this more sophisticated coloring heuristics.

Given a graph G and an integer k, the problem to decide whether b(G) ≥ k
is NP-complete [7], even if G is bipartite [14]. In [12] they strengthened these
results by proving that this problem is NP-complete even if G is bipartite and
k = ∆(G) + 1.

Considering b-colorings we observe further interesting properties. There are
some graphs for which there exist b-colorings by k1 colors and k2 color but
no b-colorings by k colors where k1 < k < k2. A similar behavior has been
noted for the strict colorings of mixed hypergraphs [10]. Thus, we define the b-
spectrum Sb(G) of a graph G as the set of integers k for which that there exists
a (k)b-coloring of G. We call a graph G b-continuous if Sb(G) is an interval
that is there are (k)b-colorings of G for all k, with χ(G) ≤ k ≤ b(G). This
characteristic has been first studied in [12] where the authors give an infinite
class of graphs that are not b-continuous. In [1] it is proved that interval
graphs are b-continuous, this result was generalized in [4,11] by showing that
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Graphs G and H Graph ζ(G, H)

Fig. 1. Example of the join ζ(G, H).

even all chordal graphs are b-continuous.

We focus here on the b-continuity of graphs. In this paper we mainly answer
two questions:

Question 1. For any finite set of integers I, does there exist a graph G
with Sb(G) = I?

Question 2. Is the problem of deciding if a given graph G is b-continuous
NP-complete?

In Section 3, we we deal with Question 1, this question was posed in [12].
Given any finite set of integers I ⊂ IN \ {0, 1}, we use a graph composition to
define a graph G such that I = Sb(G). In Section 4, we deal with Question 2.
Given a graph G and an integer k, it is known that the problem of deciding
whether k ∈ Sb(G) is NP-complete [7,12]; however this result alone does not
answer Question 2. We show that the problem of deciding if a given graph G is
b-continuous is NP-complete. One could ask if the difficulty of this problem is
inherent in the fact that it is hard to determine χ(G) and b(G). However, this
problem also remains NP-complete even if a (χ(G))b-coloring and a (b(G))b-
coloring are given.

2 Preliminary Results

We define the join of two graphs as follows:

Definition 1 Let G and H be two graphs. The join ζ(G, H) of G and H is
the graph defined by :

• V (ζ(G, H)) = V (G) ∪ V (H)
• E(ζ(G, H)) = E(G) ∪ E(H) ∪ {[g, h], g ∈ V (G) ∧ h ∈ V (H)}.

The following Proposition gives the b-spectrum of the join of two graphs.

Proposition 1 Let G and H be two graphs. The b-spectrum of ζ(G, H) is the
set
{k + k′ : k ∈ Sb(G), k′ ∈ Sb(H)}.

Proof. Let π be a (k)b-coloring of the graph G. Let π′ be a (k′)b-coloring
of the graph H.
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We construct a coloring π′′ of the graph ζ(G, H), defined by ∀x ∈ V (G), π′′(x) =
π(x) and ∀x ∈ V (H), π′′(x) = π′(x) + k. It is clear to see that π′′ is a proper
coloring and also a (k + k′)b-coloring.

Conversely, let π′′ be a (k′′)b-coloring of the graph ζ(G, H). It is clear that
the sets of colors C1 = π′′(V (G)) and C2 = π′′(V (H)) are disjoint. Thus given
any b-chromatic vertex for a color c ∈ C1 (resp. c ∈ C2), all of its neighbors
whose color belongs C1 (resp. C2) are in V (G) (resp V (H)). Consequently the
restriction π′′ : V (G) → C1 (resp. π′′ : V (H) → C2) is a b-coloring of G (resp.
of H), and we have |C1| ∈ Sb(G), |C2| ∈ Sb(H) with k′′ = |C1|+ |C2|. 2

In particular, taking the join of a graph G with the complete graph Kn has
the effect of ”shifting” the b-spectrum of G to the right by n units, adding n
to each element of Sb(G).

We denote by K ′
n,n the graph obtained from the complete bipartite graph Kn,n

by removing a perfect matching.

Proposition 2 [12] The b-spectrum of K ′
n,n is the set {2, n}.

3 Graphs with a given b-spectrum

In this section we prove that for any set of integers I, there exists a graph G
such that Sb(G) = I.

Theorem 1 For any finite nonempty set I ⊂ (IN\{0, 1}) there exists a graph
G such that Sb(G) = I.

Proof. It suffices to consider sets I with min(I) = 2. Indeed, for min(I) =
α > 2, if there exists a graph G with b-spectrum Sb(G) = {2, n1 − (α −
2), . . . , np−(α−2)} then by Proposition 1 we have Sb(ζ(G, Kα−2)) = {α, n1, . . . , np}.

Thus we only consider three cases with respect to the cardinality of I.

Case 1: For I = {2}, it suffices to consider G = K2.

Case 2: For I = {2, n1}, by Proposition 2, I is the b-spectrum of K ′
n1,n1

.

Case 3: I = {2, n1, . . . , np}, with 2 < n1 < . . . < np and p ≥ 2. We construct
a graph with p + 1 independent vertex sets. This graph G = (∪p

i=0Vi,∪p
i=1Ei)

is defined as follows (see Fig 2) :

(1) V0 = {v1
0, . . . , v

np

0 }, Vp = {v1
p, . . . , v

np
p },

(2) ∀i ∈ {1, . . . , p− 1}, Vi = {v1
i , . . . , v

ni−1
i },
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(3) ∀`, j, with (1 ≤ j ≤ np) and (1 ≤ ` ≤ np), [v
`
0, v

j
p] ∈ Ep ⇔ (` 6= j)

(4) ∀i ∈ {1, . . . , p−1}, ∀`, j, with (2 ≤ j ≤ ni−1) and (1 ≤ ` ≤ np), [v
`
0, v

j
i ] ∈

Ei ⇔ (` 6= j)
(5) ∀i ∈ {1, . . . , p− 1}, ∀` ∈ {2, . . . , ni − 1}, [v`

0, v
1
i ] ∈ Ei.

We can check that the graph G satisfies the following properties:

a. Any edge has exactly one endpoint in V0 (see 3,4 and 5).
b. The graph induced by V0 ∪ Vp is a K ′

np,np
(see 3).

c. ∀i ∈ {1, . . . , p−1}, the graph induced by Vi∪{v1
0, . . . , v

ni−1
0 } is a K ′

ni−1,ni−1

(see 4 and 5).
d. ∀i ∈ {1, . . . , p− 1}, the graph induced by {vni

0 , . . . , v
np

0 } ∪ (Vi \ {v1
i }) is the

complete bipartite graph Knp−(ni−1),ni−2 (see 4).
e. ∀i ∈ {1, . . . , p−1}, there is no edge connecting a vertex in the set {v1

0, v
ni
0 , . . . , v

np

0 }
with v1

i (see 4 and 5).

In the remaining of this section we show that the b-spectrum of G is I.

By Property (a.), G is bipartite. Hence χ(G) = 2 and thus any 2-coloring of
G is a (2)b-coloring. Since G contains only np vertices of degree ≥ np, there
is no b-coloring of G with more than np colors. First, ∀i0 ∈ {1, . . . , p− 1}, we
define a b-coloring πi0 of G using ni0 colors.

• ∀j ∈ {1, . . . , ni0 − 1}, πi0(v
j
0) = πi0(v

j
i0) = j

• ∀j ∈ {ni0 , . . . , np}, πi0(v
j
0) = 1

• ∀i ∈ {1, . . . , p}, with i 6= i0, ∀v ∈ Vi, πi0(v) = ni0

Obviously ∀i ∈ {1, . . . , p−1}, πi is a b-coloring of G. The b-chromatic vertices

can be taken as v1
0, . . . , v

ni0
−1

0 , v1
p.

Finally, let πp be the following coloring of G.

• ∀j ∈ {1, . . . , np}, πp(v
j
0) = πp(v

j
p) = j

• ∀i, 1 ≤ i < p, ∀j ∈ {1, . . . , ni − 1}, πp(v
j
i ) = j

Obviously πp is a (np)b-coloring of G.

So, we have shown that I ⊆ Sb(G). It remains to prove the equality between
these sets. It suffices to show that for any (k)b-coloring π of G, k < n1 implies
that k = 2 and nr ≤ k < nr+1, with 1 ≤ r ≤ p− 1, implies k = nr.

Claim 1 If there exists a (k)b-coloring of G such that k < np, then exactly
one color is not in π(V0) and all the other colors have all their b-chromatic
vertices in V0.

Proof. Since k < np and since the graph induced by V0 ∪ Vp is K ′
np,np

, at
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Fig. 2. A graph with b-spectrum {2, 4, 6}.

least one color is not in π(V0). Otherwise there exists at least one vertex in Vp

with all the k colors in its neighborhood. Hence there is no available color for
this vertex.

Since every edge has exactly one endpoint in V0, if two or more colors have
b-chromatic vertices in ∪p

i=1Vi then all the k colors are in π(V0) which is not
possible as described above. So the b-chromatic vertices of exactly k−1 colors
are in V0. This concludes the proof of the Claim. 2

Suppose firstly that k < n1. By Claim 1, |π(V0)| = k − 1. Without loss of
generality we may suppose k /∈ π(V0). As k− 1 < n1 − 1, at least two vertices
of the set {v1

0, . . . , v
n1−1
0 } have the same color, say for instance color k− 1. By

construction, no vertex of V (G) \ V0 can be of color k − 1, and by Claim 1
all the b-chromatic vertices of colors 1 to k − 1 are in V0. Therefore, if k > 2,
there is no b-chromatic vertex of color k − 2 at all. Thus if π is a b-coloring,
then k must be equal to 2.

Suppose now that nr ≤ k < nr+1, with 1 ≤ r ≤ p− 1. By Claim 1, |π(V0)| =
k−1. Without loss of generality we may suppose k /∈ π(V0). As k−1 < nr+1−1,
at least two vertices of {v1

0, . . . , v
nr+1−1
0 } have the same color, assume that this

color is 1. By construction, no vertex of Vj with j ≥ r + 1, can have color
1, and the only vertex of Vj with j ≤ r which may accept this color is the
vertex v1

j . Therefore the b-chromatic vertices of colors 2 to k−1 are in the set

{v2
0, . . . , v

nr−1
0 }, hence k − 2 ≤ nr − 2, so k = nr.

Hence Sb(G) = I is established. 2

4 NP-completeness results

In this section we deal with the complexity of deciding whether a given graph
is b-continuous. Given a graph G, One may ask how knowing b-colorings using
χ(G) and b(G) would help to decide the b-continuity of G. The main result of
this section is the NP-completeness of the problem to decide whether a given
graph G is b-continuous even if b-colorings using χ(G) and b(G) colors are
given.

We consider the following decision problems:

b-chromatic number
Instance: a graph G and an integer k
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Question: Does there exist a b-coloring using at least k colors?

Exact Cover by 3-Sets (X3C)
Instance: A set S = {s1, s2, · · · , sn} and a collection T = {T1, T2, · · · , Tm}
where ∀i, |Ti| = 3
Question: Does T contain an exact cover for S, i.e., is there a set T ′ (T ′ ⊂ T )
of pairwise disjoint sets whose union is S?

b-cernable
Instance: a graph G, (χ(G))b-coloring, and (b(G))b-coloring.
Question: Is G b-continuous?

Irving and Manlove [7] proved that b-chromatic number is NP-complete.
To prove the NP-completeness of b-chromatic number , the authors pro-
vided a polynomial transformation R. R transforms any instance of X3C de-
fined by (S, T ) into an instance of b-chromatic number defined by (G, k).
the proof of our result makes appeal to this transformation R.

Let I = (S, T ) be an arbitrary instance of the X3C problem with S =
{s1, s2, · · · , sn}, and T = {T1, T2, · · · , Tm}. We describe the polynomial trans-
formation R presented and proved in [7] such that R(S, T ) = (G, k).

Let G = (V, E). Let V = {u1, . . . , un, v, w1, . . . , wm, x1, . . . , xn, y1, . . . , ym} and
consider the set E containing the elements

[ui, v] for 1 ≤ i ≤ n,

[v, wi] for 1 ≤ i ≤ m,

[wi, wj] for 1 ≤ i < j ≤ m,

[wi, xj] for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

[xi, xj] for 1 ≤ i < j ≤ n,

[xi, yj] for 1 ≤ i ≤ n, 1 ≤ j ≤ m ⇔ si ∈ Tj,

[yi, yj] for 1 ≤ i < j ≤ m ⇔ Tj ∩ Ti 6= ∅.

More precisely, in [7], the authors prove

• Fact 0: m + n + 1 vertices of the graph obtained by R have degree at least
m + n and all the other vertices have degree less than m + n.

• Fact 1: T contains an exact cover for S if and only if there exist two b-
colorings of graph G of cardinality m + n + 1 and m + n.

• Fact 2: T does not contain an exact cover for S if and only if there exists
one b-coloring of G of cardinality m + n, but no b-coloring of cardinality
m + n + 1.

• Fact 3: The minimum number of colors having no b-chromatic vertices for
any coloring of graph G of size m + n + 1 is equal to the minimum number
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of elements of S not covered.

Before giving the main result of this section, we prove the following technical
lemma.

Lemma 1 Let K ′
n,n = (U ∪ V, E) be the complete bipartite graph minus a

perfect matching. In every proper coloring π of K ′
n,n by k colors, with 2 < k <

n, each bipartition class contains b-chromatic vertices for at most one color.

Proof. We prove this lemma by contradiction. Assume without loss of gener-
ality that U contains b-chromatic vertices for at least two colors. This implies
that |π(V )| = k. Since k < n, at least one vertex of U would have all the k
colors in its neighborhood. This contradicts the fact that π is a proper coloring.

Theorem 2 The problem b-cernable is NP-complete.

Proof. Problem b-cernable is in NP: given a graph G, for each integer k
between χ(G) and b(G), a non-deterministic polynomial time algorithm can
determine if there exists a (k)b-coloring of G.

The proof involves a transformation W from the NP-complete problem X3C.
We provide the transformation W from the X3C problem using the trans-
formation R presented in [7] given above. We firstly describe the polynomial
transformation W , where W(S, T ) = (G, χ(G), b(G)). We describe later a
(χ(G))b-coloring and (b(G))b-coloring of G.

Transformation W :

• Input: An instance of X3C, i.e., S = {s1, s2, · · · , sn}, and a collection
T = {T1, T2, · · · , Tm} where ∀i, |Ti| = 3, Ti ⊆ S.

• Output: A graph G, χ(G), and b(G).

(1) S ′ = {s′1, s′2, · · · , s′3n}, T ′ = {T ′
1, T

′
2, · · · , T ′

3m} where
for 1 ≤ i ≤ m, T ′

i = {s′j, s′k, s′`}, T ′
i+m = {s′j+n, s

′
k+n, s

′
`+n}, and T ′

i+2m =
{s′j+2n, s

′
k+2n, s

′
`+2n} where Ti = {sj, sk, s`}

(2) R(S ′, T ′)(G′, k′), where k′ = 3n + 3m + 1.
(3) F = ζ(G′, ({u}, ∅)), where (u, ∅) is the graph with a single vertex u.
(4) B = ζ(({u}, ∅), K ′

3(m+n)+2,3(m+n)+2).
(5) G = F ∪B (with a common vertex u).
(6) return (G, 3m + 3n + 1, 3m + 3n + 3).

(The obtained graph G is shown in Fig. 3. In Fig. 3 graph G′ is the resulting
graph from transformation R and a = 3m + 3n + 2.)

Fig. 3. The resulting graph G from the transformation W
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First we prove that χ(G) = 3m + 3n + 1 and that b(G) = 3m + 3n + 3; we
also describe a (χ(G))b-coloring and a (b(G))b-coloring of G.

By the definition of W , the graph G′ obtained via R contains a clique of
size 3m + 3n. Thus ζ(G′, ({u}, ∅)) contains a clique of size 3m + 3n + 1, and
χ(G) ≥ 3m + 3n + 1.

From Facts 1 and 2, G′ has a (3m + 3n)b-coloring and from Proposition 1,
ζ(G′, ({u}, ∅)) has a (3m + 3n + 1)b-coloring r. Moreover, from Proposition 1
and Proposition 2, ζ(({u}, ∅), K ′

3(m+n)+2,3(m+n)+2) has only two b-colorings c′

and c′′ using respectively 3 and 3m + 3n + 3 colors. Assume without loss of
generality that c′(u) = c′′(u) = r(u). Graph G has (3m + 3n + 1)b-coloring h,
defined as follows:

• h(v) = c′(v) if v ∈ V (ζ(({u}, ∅), K ′
3(m+n)+2,3(m+n)+2)).

• h(v) = r(v) otherwise.

It is clear that h is a (3m+3n+1)-coloring of G. So χ(G) = 3m+3n+1 and
h is a (3m + 3n + 1)b-coloring of G. Moreover G has (3m + 3n + 3)b-coloring
h′ defined by :

• h′(v) = c′′(v) if v ∈ V (ζ(({u}, ∅), K ′
3(m+n)+2,3(m+n)+2)).

• h′(v) = r(v) otherwise.

It is easy to see that coloring h′ is a (3m + 3n + 3)b-coloring. From Fact 0,
G′ contains 3m + 3n + 1 vertices of degree at least 3m + 3n and the degree of
all other vertices is less than 3m+3n. Also V (ζ(({u}, ∅), K ′

3(m+n)+2,3(m+n)+2))
contains 2(3m + 3n + 2) + 1 vertices; 2(3m + 3n + 2) vertices have degree
3m+3n+2, whilst u is of degree 2(3m+3n+2). There are at most 3m+3n+2
vertices of degree at least 3m + 3n + 3, hence b(G) cannot be lager than
3m + 3n + 3 (otherwise there would be at least 3m + 3n + 4 vertices of degree
at least 3m + 3n + 3). Recall that the instance of our problem is graph G, a
χ(G)b-coloring and b(G)b-coloring of G.

Since transformationR is polynomial(see [7]), transformationW is polynomial
too. Now, we show that T contains an exact cover for S if and only if the graph
G is b-continuous.

• Assume that T contains an exact cover for S. It is easy to see that T ′ contains
an exact cover for S ′. So, from Fact 1, there exists a (3m+3n+1)b-coloring
` of G′. Then ζ(G′, ({u}, ∅)) has a (3m+3n+2) b-coloring `′. Without loss
of generality we assume that `′(u) = 3m+3n+2 and that c′(v) ∈ {1, 3} for
v ∈ K ′

3(m+n)+2,3(m+n)+2. A (3m+3n+2)b-coloring c of G can be defined by:
- c(v) = c′(v) if v ∈ V (ζ(({u}, ∅), K ′

3(m+n)+2,3(m+n)+2)).
- c(v) = `′(v) otherwise.
Thus G is b-continuous.
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• Assume that graph G is b-continuous. We prove by contradiction that T
contains an exact cover for S. Assume that T does not contain an exact cover
for S. So T ′ does not contain an exact cover for S ′. Let c be a (3m+3n+2)b-
coloring of G. Vertex u is adjacent to all the other vertices in G. Thus no
vertex can have the same color as u. Without loss of generality, assume
that c(u) = 0. So, u is a b-chromatic vertex for the color 0 and there are
3m + 3n + 1 colors for all other vertices in G.

Since T does not contain an exact cover for S, T ′ does not contain an
exact cover for S ′ and by construction, any cover of S ′ has at least 3 elements
of S ′ not covered. From Fact 3, any coloring of graph G′ of size 3m+3n+1
has at least 3 colors having no b-chromatic vertex in G′. These 3 colors
must have their b-chromatic vertices in K ′

3(m+n)+2,3(m+n)+2. By Lemma 1,
every (3m + 3n + 1)-coloring of K ′

3(m+n)+2,3(m+n)+2 has at most two colors
that have b-chromatic vertices. We reach a contradiction. And therefore T
contains an exact cover for S.

5 Conclusion
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[12] J. Kratochv́ıl, Zs. Tuza and M. Voigt, On the b-chromatic number of a graphs,
WG 2002, LNCS 2573, (2002) 310-320.
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