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Abstract. We study the optimal linear arrangement (OLA) problem on interval graphs. Several linear layout prob-
lems that are NP-hard on general graphs are solvable in polynomial timeon interval graphs. We prove that, quite sur-
prisingly, optimal linear arrangement of interval graphs is NP-hard. The same result holds for permutation graphs.
We present a lower bound and a simple and fast2-approximation algorithm based on any interval model of the input
graph.

1 Introduction

A linear layout(or simply layout) of a given graphG = (V,E) is a linear ordering of its vertices. Assuming that the
vertices ofG are numbered from1 to n, a layout is a permutationL(1), L(2), . . . , L(n). Theweightof a layoutL on
G isW(G,L) =

∑

(u,v)∈E |L(u)−L(v)|. An optimal linear arrangement(OLA) of G is a layout with the minimum
weight, i.e.,argminLW(G,L). We denoteW(G) = minL W(G,L) and call it theminimum weightonG.

Computing the optimal linear arrangement (the OLA problem)is NP-hard [11], and it remains NP-hard for bipartite
graphs [6]. The problem is solvable in polynomial time for trees [7, 3, 19], and for some other restricted graph classes
such as grids or hypercubes [4]. There is an approximation algorithm for general graphs with performance ratio
O(log n) [18].

A well-known vertex ordering problem related to OLA is the Bandwidth Minimization problem. The bandwidth of
a layoutL onG is b(G,L) = max(u,v)∈E |L(u)−L(v)|. Thebandwidthof G is the minimum bandwidth of any layout
of G, i.e.,bw(G) = minL b(G,L). The bandwidth minimization problem is also NP-hard on general graphs [10]. It
remains NP-hard even on the restricted class of trees [17]. Furthermore, for general graphs, bandwidth cannot be
approximated by a polynomial time algorithm within a constant factor [21], but it can be approximated in polynomial
time with a factor ofO(log9/2 n) [9].

It is well known that many NP hard-problems are solvable in polynomial time on interval graphs. In 1985, Johnson
wrote in his NP-completeness column: “Indeed, I know of no NP-completeness results for interval graphs, although
there are still some possibilities in Table 1, in addition tosuch naturals as BANDWIDTH and SUBGRAPH ISOMOR-
PHISM” [13]. Interestingly, a bit later, it appeared that the bandwidth minimization problem is solvable in polynomial
time for interval graphs. For an interval graph withn vertices given by an interval model, Kleitman and Vohra’s al-
gorithm solves the decision problem “Isbw(G) ≤ k?” in O(nk) time, and it can be used to produce a layout with
the minimum bandwidth inO(n2 log n) time [14]. Furthermore, Sprague has shown how to implement Kleitman and
Vohra’s algorithm to answer the decision problem inO(n log n) time, and thus produce a minimum bandwidth layout
in O(n log2 n) time [20]. We refer the reader to [4] for a survey of known results on the OLA, bandwidth and other
related layout problems.

To our knowledge, optimal linear arrangement of interval graphs has not been studied so far. In this paper, we show
that, in contrast to bandwidth minimization, the OLA problem is NP-hard on interval graphs. We also show that the
problem can be approximated within a constant factor of2 by a simple algorithm.

Besides its theoretical interest, the class of interval graphs is widely acknowledged as an important graph class,
due to a number of applications. Interval graphs are extensively used in bioinformatics, typically to model the genome
physical mapping problem, which is the problem of reconstructing the relative positions of DNA fragments, called
clones, out of information of their pairwise overlaps (see e.g. [22]). However, interval graphs appear also in other
situations in bioinformatics, such as for gene structure prediction for example [1]. In [8], interval graphs are used to



model temporal relations in protein-protein interactions. In that paper, an optimal linear arrangement of an interval
graph models an “optimal” molecular pathway, and the problem of efficiently computing this arrangement is explicitly
raised. This provides a direct motivation for the present study.

This paper is organized as follows. In Section 2, graph notations are introduced. We obtain a lower bound for the
minimum weight of a linear arrangement for general graphs interms of the degrees of the vertices. In Section 3, we
prove that the OLA problem is NP-complete for interval graphs. In Section 4, using the lower bound we show that both
the left endpoint ordering and the right endpoint ordering of an interval graph are2-approximations for the Optimal
Linear Arrangement problem. In Section 5, we first show that the NP-completeness result holds also for permutation
graphs, and then discuss approximation algorithms for OLA of the more general class of cocomparability graphs.

2 Preliminaries

We consider only finite, undirected and simple graphs. ForG = (V,E), we will denote|V | asn and|E| asm. We
sometimes refer to the vertex set ofG asV (G) and the edge set asE(G). We letN(v) denote the set of vertices
adjacent tov. Thedegreeof a vertexv in graphG, dG(v), is the number of vertices adjacent tov in G. ∆(G) denotes
the maximum degree of a vertex in graphG. The subgraph ofG = (V,E) induced byV ′ ⊆ V will be referred to as
G[V ′]. The complement of a graphG is denoted byG and has the same vertex set asG, and(x, y) ∈ E(G) if and
only if (x, y) /∈ E(G).

A layout L of a graphG = (V,E) can be seen as an ordering(v1, v2, . . . , vn) of V , meaning thatL(vj) = j, for
1 ≤ j ≤ n. We extend this notation to subsets of vertices. LetV1, . . . , Vi be a partition ofV . If a layoutL of G has
the form(V1, . . . Vi), then it implies that

– ∀j,∀ℓ, 1 ≤ j < ℓ ≤ i, ∀u ∈ Vj , ∀w ∈ Vℓ, L(u) < L(w)
– ∀ℓ, 1 ≤ ℓ ≤ i, the order ofL insideVℓ is an arbitrary order ofVℓ.

A graphG = (V,E) is aninterval graphif there is a one-to-one correspondence betweenV and a set of intervals
of the real line such that, for allu, v ∈ V , (u, v) ∈ E if and only if the intervals corresponding tou andv have a
nonempty intersection. Such a set of intervalsI is called aninterval modelfor G. We assume that an interval model is
given by a left endpoint and a right endpoint for each interval, namely,l(v) andr(v) for all v ∈ V . Furthermore, we
assume that we are also given a sorted list of the endpoints, and that the endpoints are distinct.

First, we study OLA of simple topologies, like stars and complete graphs. Astar, denoted bySα, is a tree such
that one vertex, called the center, is adjacent toα leaves. Acomplete graph, denoted byKn, is a graph onn vertices
such that all vertices are pairwise adjacent. The followinglemmas give the weight of the optimal linear arrangement
for these particular topologies.

Lemma 1. LetKn be the complete graph onn vertices. ThenW(Kn) = (n−1)n(n+1)
6 .

Proof. Straightforward, as all layouts yield the same weight. ⊓⊔

Lemma 2. LetSα be the star with a center vertexc andα leaves. Then every layoutL of Sα satisfies the following:

– α
2 (α

2 + 1) ≤ W(Sα, L) ≤ α
2 (α + 1) andW(Sα) = α

2 (α
2 + 1), if α is even,

– (⌊α
2 ⌋ + 1)2 ≤ W(Sα, L) ≤ (⌊α

2 ⌋ + 1)α andW(Sα) = (⌊α
2 ⌋ + 1)2, if α is odd,

and a permutationL is an optimal linear arrangement if and only ifL placesc at the middle position.

Proof. Assume thatL(c) = k. ThenW(Sα, L) =
∑k−1

i=1 i +
∑α+1−k

i=1 i = (k − 1)2 + α
2 (α + 3 − 2k). For the case

whereα is even,W(Sα, L) reaches its minimum fork = α
2 + 1 or for k = α

2 . In this case,W(Sα) = α
2 (α

2 + 1).
MoreoverW(Sα, L) reaches its maximum fork = 1 or for k = α + 1. The same arguments can be applied for the
case whereα is odd. ⊓⊔

These results will be needed to prove the NP-completeness ofthe OLA problem on interval graphs and to give a
2-approximation algorithm for it. The following lower bound for optimal linear arrangement of any graph is obvious,
and it will be useful when analyzing the performance ratio ofsome algorithms.
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Lemma 3. Let G = (V,E) be a graph,E = E1 ∪ E2 andE1 ∩ E2 = ∅. ThenW(G) ≥ W(G1) + W(G2), where
G1 = (V,E1) andG2 = (V,E2).

Corollary 1. LetG = (V,E), V = V1 ∪ · · · ∪ Vn, andE = E1 ∪ · · · ∪En, whereE1, · · · , En are pairwise disjoint.
ThenW(G) ≥ W(G1) + . . . + W(Gn), whereGi = (Vi, Ei), 1 ≤ i ≤ n.

All these results will be useful to compute the lower and upper bounds of the weightW(G,L) of a layoutL of
G. For example, consider a graphG composed of two disjoint complete graphsKα andKb and an additional vertexc
adjacent to all other vertices of the graph. The set of edges of this graph can be easily partitioned into three sets. From
Corollary 1, by construction we haveW(G) ≥ W(Kb) + W(Kα) + W(Sα+b). Moreover, the following layoutL
of G is considered:V (Kα), c, V (Kb). LayoutL has weightW(Kb) + W(Kα) + W(Sα+b). The previous inequality
implies thatL is an optimal linear arrangement.

3 The complexity of the OLA problem on interval graphs

The goal of this section is to prove the following theorem.

Theorem 1. The problem of deciding, for an interval graphG = (E, V ) and a constantK, whetherW(G) ≤ K is
NP-complete.

The proof will be by reduction from the 3-PARTITION problem [11]:

3-PARTITION

Instance:A finite setA of 3m integers{a1, . . . , a3m}, a boundB ∈ Z+ such that
∑3m

i=1 ai = mB.
Question:CanA be partitioned intom disjoint setsA1, A2, . . . , Am such that, for all1 ≤ i ≤ m,

∑

a∈Ai
a = B?

3-PARTITION is known to be NP-complete in the strong sense [11] (Even ifB is polynomially bounded by the size
of instance, the problem is still NP-complete). Note that wedo not require here that eachAi is composed of exactly
three elements.

The structure of our proof will be as follows. We first construct a graphH(B,m) depending on two natural
numbersB andm, and we describe the structure of its optimal linear arrangement. In the second part, we describe
a polynomial-time reduction from 3-PARTITION, i.e., we encode numbers{a1, . . . , a3m} by adding some additional
edges to graphH(B,m), and show that an optimal linear arrangement of this extended graph corresponds precisely to
a 3-partition of{a1, . . . , a3m}.

For simplicity of notation in our proofs, in this section we will let K(n) = W(Kn) andS(α) = W(Sα), where
Kn is the complete graph onn vertices, andSα is the star withα leaves.

3.1 Construction ofH(B, m) and its optimal linear arrangement

Let m andB be two integers. We assume thatm is even. The set of vertices ofH(B,m) will be the union of several
disjoint sets

V (H(B,m)) = R1 ∪ X ∪ V ∪ Y ∪ Z ∪ R2.

The number of vertices in each set is defined as follows.

– Each ofR1 andR2 has3m3(B + 1) vertices,
– X is the union of disjoint setsX1, . . . ,Xm/2, where eachXi has2(B + 1) vertices; similarly,Z is the union of

disjoint setsZ1, . . . , Zm/2, where eachZi has2(B + 1) vertices,
– V has(m + 1) vertices,
– Y hasmB vertices.

The set of edges ofH(B,m) is defined as follows.

– Vertices ofR1 ∪ X form a clique, i.e., they are all pairwise adjacent; vertices inR1 have no other neighbors,
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– vertices ofR2 ∪ Z form a clique; vertices inR2 have no other neighbors,
– verticesV = {v1, . . . , vm+1} form a clique,
– for each1 ≤ i ≤ m/2, vi is adjacent to all vertices ofXi ∪ . . . ∪ Xm/2,
– for each1 ≤ i ≤ m/2, vm+2−i is adjacent to all vertices ofZi ∪ . . . ∪ Zm/2,
– each vertex ofY is adjacent to all vertices ofV ,
– H(B,m) has no edges other than those defined above.

Y

1

v2

X2

__m
2

X

X1

m/2+1v

vm+1

R2{
Z2

__m
2

{
{
{Z

Z1

{
{
{

R1{

v

Fig. 1. Interval representation of graphH(B, m)

An interval representation of graphH(B,m) is given in Figure 1. From this figure, it is clear thatH(B,m) is an
interval graph. From Lemma 1, a lower bound onW(H(B,m)) can be now established as follows.

Lemma 4. W(H(B,m)) ≥ 2K(3m3(B + 1)+m(B+1))+2
∑m/2

i=1 S(2(m−i+1)(B+1)−m)+S(mB)+K(m+1).

Proof. Using Corollary 1, we can estimate the lower bound as follows:W(H(B,m)) ≥ K(|R1|+|X|)+
∑m/2

i=1 S(|Xi|+

. . .+|Xm/2|+|Y |)+
∑m/2

i=1 S(|Zi|+. . .+|Zm/2|+|Y |)+K(|V |)+S(|Y |)+K(|Z| + |R2|). Here termsK(|R1| + |X|)
andK(|Z| + |R2|) correspond to complete graphs formed respectively by vertex setsR1 ∪ X andZ ∪ R2. Each term
S(|Xi|+ . . . + |Xm/2|+ |Y |), 1 ≤ i ≤ m/2, corresponds to the star with centervi and leavesXi ∪ · · · ∪Xm/2 ∪ Y .
Similarly, termS(|Zi| + . . . + |Zm/2| + |Y |), 1 ≤ i ≤ m/2, corresponds to the star with centervm+2−i and leaves
Zi ∪ · · · ∪ Zm/2 ∪ Y . Finally termS(|Y |) corresponds to the star with centervm/2+1 and leavesY , andK(|V |)
corresponds to the cliqueV . By substituting the cardinalities of the sets, we obtain the bound of Lemma 4. ⊓⊔

We now show the following upper bound onW(H(B,m)).
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Lemma 5. W(H(B,m)) ≤ 2K(3m3(B + 1) + m(B + 1)) + 2
∑m/2

i=1 S(2(m − i + 1)(B + 1)) + S(m(B + 1)) −
(B + 1)K(m + 1).

Proof. Consider the following layout ofH(B,m):

R1,X1, · · · ,Xm/2, v1, Y1, v2, Y2, . . . , Ym, vm+1, Zm/2, · · · , Z1, R2, (1)

whereY1 ∪ · · · ∪ Ym = Y , and for each1 ≤ i ≤ m, |Yi| = B. Observe that the order of vertices insideR1, Xi, Yi,
Zi, 1 ≤ i ≤ m

2 , andR2 is irrelevant.
Since vertices inR1 ∪X andZ ∪R2 are consecutive in the layout, the contribution of cliquesR1 ∪X andZ ∪R2

is respectivelyK(|R1| + |X|) = K(3m3(B + 1) + m(B + 1)) andK(|Z| + |R2|) = K(3m3(B + 1) + m(B + 1)).
Now consider verticesv1, . . . , vm/2. Each vertexvi, 1 ≤ i ≤ m/2, has2(m − i + 1)(B + 1) neighbors in graph

H(B,m): 2(m/2− i + 1)(B + 1) neighbors belonging toXi, . . . ,Xm/2, m neighborsv1, . . . , vi−1, vi+1, . . . , vm+1,
andmB neighbors inY . Observe now that these2(m − i + 1)(B + 1) neighbors ofvi appear in (1) at consecutive
positions before and aftervi and moreover,vi appears exactly in the middle of those vertices. This implies that the
contribution of each star centered atvi 1 ≤ i ≤ m/2 is S(2(m − i + 1)(B + 1)) and the overall contribution is
∑m/2

i=1 S(2(m − i + 1)(B + 1)).

Symmetrically, the contribution of the stars centered atvm/2+1, . . . , vm+1 is also
∑m/2

i=1 S(2(m− i+1)(B +1)).
By the same argument, the star with centervm/2 + 1 and leaves{v1, . . . , vm/2, vm/2+2, . . . , vm+1} contributes with
S(m(B + 1)).

Observe that each edge with both endpoints in{v1, . . . , vm+1} has been counted twice. We therefore have to
subtract(B + 1)K(m + 1) to take this into account.

By summing up all the terms, we obtain the lemma. ⊓⊔

To proceed, we need to estimate from above the difference between the upper (Lemma 5) and lower (Lemma 4)
bounds. By straightforward arithmetics, one can establishthat for anyx andy ≤ x, we haveS(x) − S(x − y) ≤ xy.
Using this, the difference between the upper and lower bounds is

2

m/2
∑

i=1

[S(2(m − i + 1)(B + 1)) − S(2(m − i + 1)(B + 1) − m)] + [S(m(B + 1)) − S(mB)] −

(B + 2)K(m + 1) ≤ 2

m/2
∑

i=1

2(m − i + 1)(B + 1)m + m2(B + 1) − (B + 2)K(m + 1) ≤

4m(B + 1)

m/2
∑

i=1

(m − i + 1) + m2(B + 1) − (B + 2)m(m + 1)(m + 2)/6 < 3m3(B + 1) (2)

The next step is to prove that layout (1) of Lemma 5 is actuallyan optimal linear arrangement. LetL∗ by an optimal
linear arrangement ofH(B,m). We first show thatL∗ maps vertices ofR1 ∪ X to consecutive positions.

Lemma 6. Let L∗ be an optimal linear arrangement ofH(B,m). Then the set{L∗(w)|w ∈ R1 ∪ X} contains
|R1| + |X| consecutive integers.

Proof. Assume for contradiction that some vertex fromV ∪Y ∪R2 appears at a positionp which is between the smallest
and the largest positions of{L∗(w)|w ∈ R1 ∪ X}. Then the contribution of each edge of{(w1, w2)|w1, w2 ∈ R1 ∪
X,L∗(w1) < p,L∗(w2) > p} is increased by at least one. The total increase is then at least min1≤L≤|R1|+|X|−1(L ·
(|R1| + |X| − L)) = |R1| + |X| − 1 = 3m3(B + 1) + m(B + 1) − 1. Observe now that this quantity is larger than
the maximal possible difference (2) between the upper and the lower bound onW(H(B,m)), which gives the desired
contradiction. ⊓⊔

Lemma 7. Let L∗ be an optimal linear arrangement ofH(B,m). Then the set{L∗(w)|w ∈ Z ∪ R2} contains
|Z| + |R2| consecutive integers.
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Proof. By symmetry, the proof is similar to that of Lemma 6. ⊓⊔

Thus, Lemmas 6 and 7 imply that any optimal linear arrangement maps vertices ofR1 ∪X andZ ∪R2 into sets of
consecutive positions. By an argument similar to that of Lemma 6, we further deduce that vertices ofR1 ∪ X appear
in the beginning of an optimal layout, and vertices ofZ ∪ R2 appear in the end of this layout, while the other vertices
(V ∪Y ) appear between them. Indeed, if it is not the case, edges “crossing”R1∪X (or Z∪R2) would give an increase
in the weight that would be larger than the maximal possible difference (2) between the upper and the lower bound.

To further specify an optimal linear arrangement ofH(B,m), we have to clarify the layout ofV ∪Y . The following
lemma completes this part of the proof.

Lemma 8. Any optimal linear arrangement ofH(B,m) has the form

R1 ∪ X, v1, Y1, v2, Y2, . . . , Ym, vm+1, Z ∪ R2, (3)

whereY1 ∪ · · · ∪ Ym = Y and for each1 ≤ i ≤ m, |Yi| = B.

Proof. It is easy to see thatv1 appears immediately afterR1 ∪ X, as otherwise it can be moved down to that position
which only decreases the resulting weight. By symmetry,vm+1 appears immediately beforeZ ∪ R2. From similar
considerations, we can deduce that the ordering of verticesin V is the “natural” orderingv1, v2, . . . , vm+1 (otherwise
by permuting the vertices we would decrease the total weight).

It remains only to show that between eachvi andvi+1 there are exactlyB vertices ofY . If this is the case, then
observe (see the proof of Lemma 5) that each star centered atvi has exactly the same number of neighbors to the left
of L∗(vi) as to the right ofL∗(vi), and all these neighbors appear at consecutive positions. Thus, each star centered
atvi is optimally arranged and reaches the absolute lower bound of the contributed weight. Any other arrangement of
v1, . . . , vm+1 would break the parity at least for one of these stars, and therefore, by the remark after Lemma 2, would
necessarily increase the weight contributed by this star. This completes the proof. ⊓⊔

3.2 NP-completeness proof

Using the construction of graphH(B,m) from the previous section, we now prove Theorem 1 by reduction from the
3-PARTITION.

Consider an instance of 3-PARTITION, ({a1, . . . , a3m}, B), where
∑3m

i=1 ai = mB. We transform it into the graph
H(B,m) extended by additional edges over vertices inY . Consider a partitionY = Y1∪· · ·∪Y3m, whereYi∩Yj = ∅
for i 6= j, and|Yi| = ai for all i, 1 ≤ i ≤ 3m. We turn eachYi into a clique by adding a set of edgesEi over all pairs
of vertices ofYi. Consider an extended graphG = H(B,m)

⋃

∪3m
i=1(Yi, Ei). Again, from Figure 1, it is clear thatG

is an interval graph. LetK = W(H(B,m)) +
∑3m

i=1 K(ai). Since the time running of this transformation depends on
B, the whole transformation can be carried out in polynomial time.

Theorem 2. There exists a 3-partition of{a1, . . . , a3m} if and only ifcw(G) = K.

Proof. Only if part: Assume thatA = {a1, . . . , a3m} can be partitioned intom disjoint subsetsA1, · · · , Am, each
summing up toB. Let Ai = {ai

1, . . . , a
i
|Ai|

} ⊆ A. We construct a layoutL∗ defined by

R1 ∪ X, v1, Y
1
1 , . . . , Y 1

|Ai|
, v2, . . . , Y

m
1 , . . . , Y m

|Am|, vm+1, Z ∪ R2, (4)

whereY i
j ∈ {Y1, . . . , Y3m} is the subset corresponding toai

j (|Y i
j | = ai

j). Observe that in (4), there are exactlyB
vertices ofY between everyvi andvi+1 and that all edges between vertices ofY are edges of cliques with vertices
mapped byL∗ to consecutive positions. Therefore, using Lemma 8, the weight ofL∗ isW(G,L∗) = W(H(B,m))+
∑3m

i=1 K(ai) = K. By Corollary 1, this is the smallest possible weight, i.e.,W(G) = K.
If part: Let W(G) = K, i.e., there exists a layoutL∗ such thatW(G,L∗) = K. DecomposeG as the edge-

disjoint union of graphH(B,m) and cliques(Y1, E1), . . . , (Y3m, E3m). For any layoutL of G, W(H(B,m), L) ≥
W(H(B,m)) andW((Yi, Ei), L) ≥ K(ai) for all i, 1 ≤ i ≤ 3m. On the other hand, by Corollary 1,W(G) ≥

W(H(B,m))+
∑3m

i=1 K(ai). Therefore, if a layoutL∗ verifiesW(G,L∗) = K, this implies that(i) W(H(B,m), L∗) =
W(H(B,m)) and(ii) W((Yi, Ei), L

∗) = K(ai), for all i, 1 ≤ i ≤ 3m.
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Condition(i) implies that layoutL∗ verifies Lemma 8, and, in particular, splits vertices ofY by verticesv1, . . . , vm+1

into m groups, each of cardinalityB. Condition (ii) ensures that each subsetYi is mapped byL∗ into consecu-
tive positions and therefore falls inside one such group. This means that numbers{a1, . . . , a3m} (cardinalities of
{Y1, . . . , Y3m}) are split intom disjoint subsets each of which sums up toB. This completes the proof of Theorem 2.

⊓⊔

Since the optimal linear arrangement problem for interval graphs is NP-complete, the next section describes a
2-approximation algorithm for interval graphs.

4 A 2-approximation algorithm for OLA of interval graphs

Before describing an approximation algorithm, we study twolayouts of an interval graphG, defined by any fixed
interval model. LetI be an interval model ofG. The layout ofG consisting of vertices ordered by the left endpoints
of their corresponding intervals is called theleft endpoint ordering(leo) of G with respect to the interval modelI.
Similarly, the layout ofG consisting of vertices ordered by the right endpoints of their corresponding intervals is called
theright endpoint ordering(reo) of G with respect toI.

It has been shown in [15] that leo and reo are good approximations for the bandwidth of interval graphs:b(G, leo) ≤
2 · bw(G) andb(G, reo) ≤ 2 · bw(G). This is based on the fact that:

– in a left endpoint ordering,leo, for every pair of adjacent verticesleo(u) < leo(w), each vertex betweenu andw
is adjacent tou, and

– in a right endpoint orderingreo, for every pair of adjacent verticesreo(u) < reo(w) each vertex betweenu and
w is adjacent tow.

This can be used to show that left endpoint and right endpointorderings are2-approximations for the OLA problem
on interval graphs.

Theorem 3. LetG = (V,E) be an interval graph, and letI be an interval model ofG. Then,W(G, leo) ≤ 2W(G),
andW(G, reo) ≤ 2W(G).

Proof. We focus on the orderingreo. For any integeri, 1 ≤ i ≤ V (G), we define graphGi such that

– V (Gi) = {u | u ∈ V (G) ∧ reo(u) ≤ i}, and
– E(Gi) = {e = (u, v) ∈ E(G) | u ∈ V (Gi) ∧ v ∈ V (Gi)}.

We prove this theorem by induction on the number of vertices.The induction hypothesis is thatW(Gi, reo) ≤
2W(Gi) for any integeri , 1 ≤ i ≤ V (G).

The basis of the induction is the situation whereG1 contains only one vertex (i = 1). The induction hypothesis
holds here becauseW(G1, reo) = 0 andW(G1) = 0. ThenW(G1, reo) ≤ 2W(G1).

For the induction step, we assume that the induction hypothesis fori holds. Now, we will prove that the induction
hypothesis holds fori + 1. Let u be the vertex such thatreo(u) = i + 1.

First we give a lower bound forW(Gi+1). We can notice that setsE(Gi) and{e = (v, u) | v ∈ V (Gi) ∧ e ∈
E(Gi+1)} form a partition of setE(Gi+1). By Lemma 3,W(Gi+1) ≥ W(Gi) + W(SdGi+1

(u)),
Secondly, we give an upper bound forW(Gi+1, reo) by considering the partitionE(Gi) and{e = (v, u) | v ∈

V (Gi) ∧ e ∈ E(Gi+1)} of setE(Gi+1).
For the edge setE(Gi), we have

∑

e=(u,v)∈E(Gi)
|reo(u) − reo(v)| = W(Gi, reo).

For the edge set{e = (v, u) | v ∈ V (Gi) ∧ e ∈ E(Gi+1)}, since vertexu and its neighborhood inGi+1 are
consecutive in the layoutreo, the linear arrangementreo givesdGi+1

(u) + 1 consecutive numbers. We can compute
an upper bound of

∑

v∈NGi+1
(u) |reo(u) − reo(v)| because according to the linear arrangementreo, we are in the

situation of the worst case for the star. So, we have

∑

v∈NGi+1
(u)

|reo(u) − reo(v)| ≤ 2W(SdGi+1
(u))

7



This yields an upper bound forW(Gi+1, reo). We getW(Gi+1, reo) ≤ W(Gi, reo) + 2W(SdGi+1
(u)).

Since we haveW(Gi, reo) ≤ 2W(Gi) by induction hypothesis, we have

W(Gi+1, reo) ≤ 2W(Gi) + 2W(SdGi+1
(u)) ≤ 2W(Gi+1)

So, the Theorem holds. ⊓⊔

Theorem 3 shows that left endpoint and right endpoint orderings are 2-approximation algorithms for this problem.
This is the best possible bound for these orderings. In fact,a starSα with an even numberα of leaves has an interval
representation such thatW(Sα, reo) = α(α+1)

2 andW(Sα) = α
2 (α

2 + 1). So the ratioW(Sα,reo)
W(Sα) equals to2 − 1

α+2 .
In the next section, we focus on close relatives of interval graphs – permutation graphs – and on their generalization

– cocomparability graphs.

5 OLA of permutation and cocomparability graphs

Cocomparability, interval, and permutation graphs are well-known classes of perfect graphs. All of them have geo-
metric intersection models. Many references, including [2, 12], contain comprehensive overviews of the many known
structural and algorithmic properties of (co)comparability, interval, and permutation graphs.

Permutation graphs are intersection graphs of straight line segments between two parallel lines. Vertices of the
graph are associated to segments and two vertices are adjacent iff corresponding segments intersect.

Our first remark here is that graphH(B,m) considered in Section 3 is a permutation graph. Figure 2 shows a
permutation representation forH(B,m).

Y
R1__m

2
XX2X1

v1

R2

m/2+1vv2 vm+1

Z1
Z2 __m

2
Z

Fig. 2.Permutation representation of graphH(B, m)

This immediately implies

Lemma 9. The problem of deciding, for a permutation graphG = (E, V ) and a constantK, whetherW(G) ≤ K is
NP-complete.

Let us now turn to cocomparability graphs that are generalizations of both interval and permutation graphs. A
graphG is cocomparability if its complementG is a comparability graph, i.e., the comparability graph of aposet
P = (V,≺) is the graph with vertex setV for which verticesx andy are adjacent if and only if eitherx ≺ y or y ≺ x
in P .

The following property of cocomparability graphs is well known (see e.g. [2]), and it is crucial for our arguments.

Proposition 1. A graphG = (V,E) is a cocomparability graph if and only if it has acocomparability ordering,
i.e., an ordering(v1, v2, . . . , vn) of its vertices such that(vi, vk) ∈ E and i < j < k imply either(vi, vj) ∈ E or
(vj , vk) ∈ E.
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Since every interval graph is a cocomparability graph, the OLA problem remains NP-complete on cocomparability
graphs. Now, we focus on the approximation problem. First, the following lower bound for the weight of an optimal
linear arrangement of any graph will be useful when analyzing the performance ratio of some algorithms and orderings
respectively.

Lemma 10. For every graphG = (V,E),

W(G) ≥
m

2
+

1

8

∑

v∈V

d2(v).

Proof. Let v be a vertex ofG. Then to minimize the sum over all edges incident tov in a layout, half of the neighbors
of v must be placed immediately to the left ofv and half of the neighbors ofv must be placed immediately to the
right of v. Thus the sum over all edges incident tov is at least1 + 1 + 2 + 2 + · · · + d(v)

2 + d(v)
2 if d(v) is even, and

1 + 1 + 2 + 2 + · · · + d(v)−1
2 + d(v)−1

2 + d(v)+1
2 if d(v) is odd.

Thus we obtain

W(G) ≥
1

2

∑

v∈V

(

(d(v)

2
+ 1

)(d(v)

2

)

)

≥
∑

v∈V

(d2(v)

8
+

d(v)

4

)

≥
1

8

∑

v∈V

d2(v) +
m

2
.

⊓⊔

We use the lower bound of the previous section to show that every cocomparability ordering of a cocomparability
graph has weight at most8 · W(G).

Theorem 4. Let G = (V,E) be a cocomparability graph and letL be a cocomparability ordering ofG. Then,
W(G,L) ≤ 8 · W(G).

Proof. By the definition ofL, if u andw are adjacent inG then all vertices betweenu andw in L are either adjacent
to u or adjacent tow. Therefore

|L(u) − L(w)| ≤ |N(u) ∪ N(w)| ≤ d(u) + d(v),

and by Lemma 10,

W(G,L) =
∑

e=(u,v)

|L(u) − L(v)|

≤
∑

e=(u,v)

(d(u) + d(v))

≤
∑

v∈V

d2(v)

≤ 8 · W(G).

⊓⊔

Since a cocomparability ordering can be found in polynomialtimeO(n2.376) [16], Theorem 4 immediately implies
an 8-approximation polynomial-time algorithm for OLA on cocomparability graphs.

6 Conclusion and open problems

In this paper, we resolved the complexity of the OLA problem for interval, permutation and consequently for cocom-
parability, graphs. We have given simple approximation algorithms for those classes. There are several other linear
layout problems, like CUTWIDTH, whose complexity is not resolved for the class of interval graphs [4].
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