Optimal Linear Arrangement of Interval Graphs
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Abstract. We study the optimal linear arrangement (OLA) problem on intervaltggaBeveral linear layout prob-
lems that are NP-hard on general graphs are solvable in polynomiabtiinéerval graphs. We prove that, quite sur-
prisingly, optimal linear arrangement of interval graphs is NP-hahe Jame result holds for permutation graphs.
We present a lower bound and a simple andZaspproximation algorithm based on any interval model of the input
graph.

1 Introduction

A linear layout(or simply layouf) of a given graphiG = (V, E) is a linear ordering of its vertices. Assuming that the
vertices ofG are numbered frorh to n, a layout is a permutatioh(1), L(2), ..., L(n). Theweightof a layoutL on
GisW(G, L) = >, er [L(w) — L(v)|. An optimal linear arrangementOLA) of G is a layout with the minimum
weight, i.e.argmin; W(G, L). We denotéV(G) = ming, W(G, L) and call it theminimum weighon G.

Computing the optimal linear arrangement (the OLA probles®P-hard [11], and it remains NP-hard for bipartite
graphs [6]. The problem is solvable in polynomial time faes [7, 3, 19], and for some other restricted graph classes
such as grids or hypercubes [4]. There is an approximatigarighm for general graphs with performance ratio
O(logn) [18].

A well-known vertex ordering problem related to OLA is therBlavidth Minimization problem. The bandwidth of
alayoutL onG'isb(G, L) = max(, e g | L(u) — L(v)|. Thebandwidthof G is the minimum bandwidth of any layout
of G, i.e.,bw(G) = ming, b(G, L). The bandwidth minimization problem is also NP-hard on gaihgraphs [10]. It
remains NP-hard even on the restricted class of trees [Lliffh&more, for general graphs, bandwidth cannot be
approximated by a polynomial time algorithm within a constiactor [21], but it can be approximated in polynomial
time with a factor of0 (log®/? n) [9].

Itis well known that many NP hard-problems are solvable ilypomial time on interval graphs. In 1985, Johnson
wrote in his NP-completeness column: “Indeed, | know of naddfhpleteness results for interval graphs, although
there are still some possibilities in Table 1, in additiorstach naturals as ANDWIDTH and SUBGRAPH ISOMOR
PHISM" [13]. Interestingly, a bit later, it appeared that the baidth minimization problem is solvable in polynomial
time for interval graphs. For an interval graph withsertices given by an interval model, Kleitman and Vohra's al
gorithm solves the decision problem ‘3s(G) < k?” in O(nk) time, and it can be used to produce a layout with
the minimum bandwidth i) (n? log n) time [14]. Furthermore, Sprague has shown how to implemégitidan and
Vohra’s algorithm to answer the decision problentifv log n) time, and thus produce a minimum bandwidth layout
in O(nlog® n) time [20]. We refer the reader to [4] for a survey of known teson the OLA, bandwidth and other
related layout problems.

To our knowledge, optimal linear arrangement of intervaldps has not been studied so far. In this paper, we show
that, in contrast to bandwidth minimization, the OLA prahlés NP-hard on interval graphs. We also show that the
problem can be approximated within a constant factc oy a simple algorithm.

Besides its theoretical interest, the class of intervaplysas widely acknowledged as an important graph class,
due to a number of applications. Interval graphs are extelysiised in bioinformatics, typically to model the genome
physical mapping problem, which is the problem of recortding the relative positions of DNA fragments, called
clones out of information of their pairwise overlaps (see e.g.][2Blowever, interval graphs appear also in other
situations in bioinformatics, such as for gene structusgjgtion for example [1]. In [8], interval graphs are used to



model temporal relations in protein-protein interactioimsthat paper, an optimal linear arrangement of an interval
graph models an “optimal” molecular pathway, and the proldé efficiently computing this arrangement is explicitly
raised. This provides a direct motivation for the preseum st

This paper is organized as follows. In Section 2, graph featare introduced. We obtain a lower bound for the
minimum weight of a linear arrangement for general graphgiims of the degrees of the vertices. In Section 3, we
prove that the OLA problem is NP-complete for interval gradh Section 4, using the lower bound we show that both
the left endpoint ordering and the right endpoint orderifhgminterval graph aré-approximations for the Optimal
Linear Arrangement problem. In Section 5, we first show thatNlP-completeness result holds also for permutation
graphs, and then discuss approximation algorithms for OL.th@more general class of cocomparability graphs.

2 Preliminaries

We consider only finite, undirected and simple graphs.&ct (V, E), we will denote|V| asn and|E| asm. We
sometimes refer to the vertex set@fas V' (G) and the edge set d@(G). We let N(v) denote the set of vertices
adjacent taw. Thedegreeof a vertexv in graphG, d¢(v), is the number of vertices adjacentutin G. A(G) denotes
the maximum degree of a vertex in graph The subgraph off = (V, E)) induced by’ C V will be referred to as
G[V']. The complement of a graphi is denoted byG and has the same vertex set(asand(z,y) € E(G) if and
only if (z,y) ¢ E(G).

Alayout L of a graphG = (V, E)) can be seen as an orderifig, vo, . .., v,) of V, meaning thal.(v;) = j, for
1 < j < n. We extend this notation to subsets of vertices. Vet .., V; be a partition ofV. If a layout L of G has
the form(V4, ... V;), then it implies that

- Vi V1 <j<t<iYueV;,VweV, L(u) < L(w)
- V¢, 1 </ <i,the order ofL insideV; is an arbitrary order of.

A graphG = (V, E) is aninterval graphif there is a one-to-one correspondence betwiéeand a set of intervals
of the real line such that, for all,v € V, (u,v) € E if and only if the intervals corresponding toandv have a
nonempty intersection. Such a set of intervais called arinterval modefor G. We assume that an interval model is
given by a left endpoint and a right endpoint for each intemamely,/(v) andr(v) for all v € V. Furthermore, we
assume that we are also given a sorted list of the endpoitdghat the endpoints are distinct.

First, we study OLA of simple topologies, like stars and cteteographs. Astar, denoted byS,,, is a tree such
that one vertex, called the center, is adjacent teaves. Acomplete graphdenoted byk,,, is a graph om vertices
such that all vertices are pairwise adjacent. The followargmas give the weight of the optimal linear arrangement
for these particular topologies.

Lemma 1. Let K, be the complete graph onvertices. ThemV(K,,) = (”_1)%%

Proof. Straightforward, as all layouts yield the same weight. O
Lemma 2. Let S, be the star with a center vertexand« leaves. Then every layoiitof S, satisfies the following:

- 2(541) <W(Sa, L) < §(a+1)andW(S,) = §(5 + 1), if ais even,
- ([5) +1)?2 <W(Sq, L) < (|%) + D andW(Sa) = (5] + 1)% if aris odd,

and a permutatiorL is an optimal linear arrangement if and only/if placesc at the middle position.

Proof. Assume that.(c) = k. ThenW(S,,, L) = Zf;ll i+ ijll_ki = (k—1)* + %(a + 3 — 2k). For the case
wherea is even,W(S,,, L) reaches its minimum fok = $ + 1 or for k = 5. In this case)V(S.) = 5(5 + 1).
MoreoverW(S,,, L) reaches its maximum fdr = 1 or for k = « + 1. The same arguments can be applied for the

case wherev is odd. a

These results will be needed to prove the NP-completenetse @LA problem on interval graphs and to give a
2-approximation algorithm for it. The following lower bodifior optimal linear arrangement of any graph is obvious,
and it will be useful when analyzing the performance ratisamhe algorithms.



Lemma3. LetG = (V, E) be agraph,E = E; U E; and E; N Bz = (. ThenW(G) > W(G1) + W(G2), where
G = (‘/Y,El) andG2 = (‘/,Eg)

Corollary 1. LetG = (V,E),V=V,U---UV,,andE = E; U---UE,, whereE, --- , E,, are pairwise disjoint.
ThenW(G) > W(G1) + ...+ W(G,,), whereG,; = (V;, E;), 1 <i <n.

All these results will be useful to compute the lower and ugpminds of the weightV(G, L) of a layoutL of
G. For example, consider a graphcomposed of two disjoint complete graph’s and K, and an additional vertex
adjacent to all other vertices of the graph. The set of edfjgssograph can be easily partitioned into three sets. From
Corollary 1, by construction we haw®’(G) > W(K}) + W(K) + W(Sa+s). Moreover, the following layoul
of G is consideredV (K,,), ¢, V(K;). LayoutL has weightV(K,) + W(K,) + W(Sa+s). The previous inequality
implies thatL is an optimal linear arrangement.

3 The complexity of the OLA problem on interval graphs

The goal of this section is to prove the following theorem.

Theorem 1. The problem of deciding, for an interval gragh= (E, V') and a constanf(, whethelV(G) < K is
NP-complete.

The proof will be by reduction from the 3ARTITION problem [11]:

3-PARTITION
Instance: A finite setA of 3m integers{a, ..., asn, }, a boundB € Z+ such thatzf’f1 a; = mB.
Question: Can A be partitioned inton disjoint setsA;, A,, ..., A,, such that, for all < i < m, ZaeA,, a= B?

3-PARTITION is known to be NP-complete in the strong sense [11] (Evéhif polynomially bounded by the size
of instance, the problem is still NP-complete). Note thatdeenot require here that eaeh is composed of exactly
three elements.

The structure of our proof will be as follows. We first constra graph? (B, m) depending on two natural
numbersB andm, and we describe the structure of its optimal linear arrexage. In the second part, we describe

a polynomial-time reduction from 3ARTITION, i.e., we encode numbefs, ..., a3 } by adding some additional
edges to graph (B, m), and show that an optimal linear arrangement of this exigdeph corresponds precisely to
a 3-partition of{ay, ..., agm }-

For simplicity of notation in our proofs, in this section wélMet K(n) = W(K,,) andS(a) = W(S,), where
K, is the complete graph omvertices, ands,, is the star withw leaves.

3.1 Construction of H(B, m) and its optimal linear arrangement

Letm and B be two integers. We assume thatis even. The set of vertices &f(B, m) will be the union of several
disjoint sets
V(H(B,m)) =RiUXUVUYUZUR,.

The number of vertices in each set is defined as follows.

— Each of R; and R, has3m?3(B + 1) vertices,

— X is the union of disjoint setXy, .. ., X,, 2, where eachX; has2(B + 1) vertices; similarly,Z is the union of
disjoint setsZy, ..., Z,,, 2, Where eacl; has2(B + 1) vertices,

— V has(m + 1) vertices,

— Y hasmB vertices.

The set of edges df (B, m) is defined as follows.

— Vertices of R; U X form a clique, i.e., they are all pairwise adjacent; vegiteR; have no other neighbors,



— vertices ofR, U Z form a clique; vertices iRy have no other neighbors,
— verticesV = {v1,...,vn,41} form a clique,

— foreachl <i <m/2,v; is adjacent to all vertices of; U ... U X2y

- foreachl <i <m/2,v,,12; is adjacent to all vertices ¢f; U ... U Z,, /o,
— each vertex ot is adjacent to all vertices df,

— H(B,m) has no edges other than those defined above.

Vimiz+1

m+1

1

Fig. 1. Interval representation of gragi(B, m)

An interval representation of grapi( B, m) is given in Figure 1. From this figure, it is clear tidt{ B, m) is an
interval graph. From Lemma 1, a lower bound)di{(B, m)) can be now established as follows.

Lemma 4. W(H(B,m)) > 2K(3m3(B + 1)+m(B+1))4+2 .72 8(2(m—i+1)(B+1)—m)+S(mB)+K(m+1).

Proof. Using Corollary 1, we can estimate the lower bound as foldW§H (B, m)) > K(|Ry \+|X\)+EZ/12 S X |+
X o Y DT SUZil | Zu ol Y (VD) +S(Y )+K(1Z] + | Ral). Here termsC(| Ry | + X )
andXC(|Z] + | Rz|) correspond to complete graphs formed respectively byxegtsR, U X andZ U R,. Each term
S(|Xs| 4. ..+ [ X 2| +[Y]), 1 < i < m/2, corresponds to the star with centerand leavesY; U---U X, o U Y.
Similarly, termS(|Z;| + ... + | Zp 2| + [Y]), 1 < i < m/2, corresponds to the star with centef,»_; and leaves
Z;U---UZy UY. Finally termS(|Y'|) corresponds to the star with centsy, ,,; and leaves”, and C(|V])
corresponds to the cligué. By substituting the cardinalities of the sets, we obtasmlibund of Lemma 4. O

We now show the following upper bound aWi(H (B, m)).



Lemma 5. W(H(B,m)) < 2K(3m3(B+1) + m(B+1)) + 272 S2(m — i+ 1)(B+1)) + S(m(B + 1)) —
(B+ 1K (m +1).

Proof. Consider the following layout of{(B, m):
R17—X17 T 7X'm,/27vlu Y17v27y27 v ,Ym7’l)m+17 Zm/27 Tty Zl7 R27 (1)

whereY; U---UY,, =Y, and for each <1i < m, |Y;| = B. Observe that the order of vertices insifle, X;, Y;,
Z;, 1 <i < 3, andRy is irrelevant.

Since vertices iR, U X andZ U R, are consecutive in the layout, the contribution of cligies) X andZ U Ry
is respectivelyC(|Ry| + | X|) = K(3m?*(B + 1) + m(B + 1)) andK(|Z| + |Ra|) = K(3m3*(B + 1) + m(B + 1)).

Now consider vertices,, . .., v,, /2. Each vertex;, 1 <i <m/2, has2(m — i+ 1)(B + 1) neighbors in graph
H(B,m): 2(m/2 —i+1)(B + 1) neighbors belonging t&;, ..., X,,, /2, m neighbors, ..., v;_1,vi11,. .., Umy1,
andm B neighbors inY". Observe now that thes¥m — i + 1)(B + 1) neighbors ofv; appear in (1) at consecutive
positions before and after;, and moreovery; appears exactly in the middle of those vertices. This inspiat the
contribution of each star centeredwtl < i < m/2is S(2(m — i + 1)(B + 1)) and the overall contribution is
SIM2S(2(m —i+1)(B+1)).

Symmetrically, the contribution of the stars centered gty 1, ..., V11 1S aIsoZ;';/f S2(m—i+1)(B+1)).
By the same argument, the star with centgr, + 1 and leavequvy, ..., vy /2, U242, - - -, Um1} CONtributes with
S(m(B +1)).

Observe that each edge with both endpointgn, . .., v,,+1} has been counted twice. We therefore have to
subtract( B + 1)K (m + 1) to take this into account.

By summing up all the terms, we obtain the lemma. O

To proceed, we need to estimate from above the differencecleet the upper (Lemma 5) and lower (Lemma 4)
bounds. By straightforward arithmetics, one can estaltfiahfor anyx andy < x, we haveS(z) — S(z — y) < ay.
Using this, the difference between the upper and lower bgisd

m/2

2 Z[S(z(m —i4+1)(B4+1)=8S2(m—i+1)(B+1)—m)]+ [S(m(B+ 1)) — S(mB)] —

m/2
(B+2)K(m+1)<2) 2(m—i+1)(B+1m+m*(B+1) - (B+2)K(m+1) <
=1

m/2
A4m(B+1)Y (m—i+1)+m*(B+1) — (B+2)m(m+1)(m +2)/6 < 3m*(B + 1) 2)
i=1

The next step is to prove that layout (1) of Lemma 5 is actusdlpptimal linear arrangement. LEt by an optimal
linear arrangement d&f (B, m). We first show thal.* maps vertices oR; U X to consecutive positions.

Lemma 6. Let L* be an optimal linear arrangement 6{(B,m). Then the se{L*(w)|lw € R; U X} contains
|R1| + | X| consecutive integers.

Proof. Assume for contradiction that some vertex fréfY U R, appears at a positignwhich is between the smallest
and the largest positions ¢L*(w)|w € R; U X }. Then the contribution of each edge {dfv;, w2) w1, ws € Ry U

X, L*(w1) < p, L*(wz) > p} is increased by at least one. The total increase is thensitiga, < ;< |z, |+ x|—1(L -
(|R1| + |X| = L)) = |R1| + |X| — 1 =3m3(B + 1) + m(B + 1) — 1. Observe now that this quantity is larger than
the maximal possible difference (2) between the upper amtbther bound onV(H (B, m)), which gives the desired
contradiction. O

Lemma 7. Let L* be an optimal linear arrangement G{(B,m). Then the se{L*(w)lw € Z U Ry} contains
|Z] + | R2| consecutive integers.



Proof. By symmetry, the proof is similar to that of Lemma 6. O

Thus, Lemmas 6 and 7 imply that any optimal linear arrangémeips vertices oR?; U X andZ U R into sets of
consecutive positions. By an argument similar to that of ren®, we further deduce that verticesif U X appear
in the beginning of an optimal layout, and verticeso) R, appear in the end of this layout, while the other vertices
(VUY) appear between them. Indeed, if it is not the case, edgessitig”R; U X (or ZU R») would give an increase
in the weight that would be larger than the maximal possilifergnce (2) between the upper and the lower bound.
To further specify an optimal linear arrangement{fB, m), we have to clarify the layout af UY. The following
lemma completes this part of the proof.

Lemma 8. Any optimal linear arrangement ¢{(B, m) has the form
R1 UX,Ul,Yl,’l}Q,Y27...,Ym,’Um+17ZUR2, (3)
whereY; U---UY,, =Y and for eachl < i <m, |Y;| = B.

Proof. It is easy to see that; appears immediately aftét; U X, as otherwise it can be moved down to that position
which only decreases the resulting weight. By symmaetry, ; appears immediately befoté U R,. From similar
considerations, we can deduce that the ordering of veriticEsis the “natural” ordering;, va, . . . , V41 (Otherwise
by permuting the vertices we would decrease the total weight

It remains only to show that between eaghandv; ., there are exactly3 vertices ofY'. If this is the case, then
observe (see the proof of Lemma 5) that each star centergchas exactly the same number of neighbors to the left
of L*(v;) as to the right ofL*(v;), and all these neighbors appear at consecutive positidns, Bach star centered
atv; is optimally arranged and reaches the absolute lower bofitie @ontributed weight. Any other arrangement of
v, .. -, Um+1 Would break the parity at least for one of these stars, anéfie, by the remark after Lemma 2, would
necessarily increase the weight contributed by this stds dompletes the proof. O

3.2 NP-completeness proof

Using the construction of gragh (B, m) from the previous section, we now prove Theorem 1 by redodtiom the
3-PARTITION. ,

Consider an instance of 3aRTITION, ({a1,...,asm}, B), wherer;”1 a; = mB. We transform it into the graph
H(B, m) extended by additional edges over vertice¥irConsider a partitiod” = Y, U- - -UY3,,, whereY;NY; = 0
fori # j, and|Y;| = a; forall i, 1 <14 < 3m. We turn eacly; into a clique by adding a set of edgEs over all pairs
of vertices ofY;. Consider an extended graph= H(B,m)|JU3™ (Y;, E;). Again, from Figure 1, it is clear that
is an interval graph. Lek’ = W(H (B, m)) + fol K(a;). Since the time running of this transformation depends on
B, the whole transformation can be carried out in polynonimaét

Theorem 2. There exists a 3-partition dfay, . . ., a3, } if and only ifcw(G) = K.

Proof. Only if part: Assume thatd = {a4,...,as,} can be partitioned inte disjoint subsetsA;, - -- , A,,, each
summing up taB. Let A; = {al, ... ’aliAi|} C A. We construct a layout* defined by

Ry UX7U17Y117"' 7}/‘}41.‘7027'”7)/17”7" '7Y—|7Xm‘71)m+17ZUR27 (4)

whereY} € {Y1,...,Ys,} is the subset corresponding d§ (|Y;| = a}). Observe that in (4), there are exacBy
vertices ofY between every; andv;,; and that all edges between verticesYofire edges of cliques with vertices
mapped byL* to consecutive positions. Therefore, using Lemma 8, thghtaif L* is W(G, L*) = W(H(B,m)) +
Zf;”l K(a;) = K. By Corollary 1, this is the smallest possible weight, W(G) = K.

If part: Let W(G) = K, i.e., there exists a layoui* such thatV(G, L*) = K. Decomposé&> as the edge-
disjoint union of graph (B, m) and cliquesY1, E1), . .., (Yam, Esn). For any layoutl of G, W(H(B,m),L) >
W(H(B,m)) andW((Y;, E;),L) > K(a;) forall 4, 1 < i < 3m. On the other hand, by Corollary W(G) >
W(H(B, m))+2ff1 K(a;). Therefore, if a layouL* verifiesW(G, L*) = K, this implies thafi) W(H(B, m), L*) =
W(H(B,m)) and(ii) W((Y;, E;), L*) = K(a;), foralli, 1 <i < 3m.



Condition(i) implies that layouf.* verifies Lemma 8, and, in particular, splits vertice¥dby verticesy, . .., Va1
into m groups, each of cardinalitys. Condition (i) ensures that each subsétis mapped byL* into consecu-

tive positions and therefore falls inside one such groups Tieans that numbers:y, . .., a3, } (cardinalities of
{Y1,...,Ys,}) are splitintom disjoint subsets each of which sums up2oThis completes the proof of Theorem 2.
O

Since the optimal linear arrangement problem for intervapbs is NP-complete, the next section describes a
2-approximation algorithm for interval graphs.

4 A 2-approximation algorithm for OLA of interval graphs

Before describing an approximation algorithm, we study teyouts of an interval graplr, defined by any fixed
interval model. LefZ be an interval model ofs. The layout ofGG consisting of vertices ordered by the left endpoints
of their corresponding intervals is called thedt endpoint orderingleo) of G with respect to the interval modél.
Similarly, the layout of7 consisting of vertices ordered by the right endpoints aof tb@responding intervals is called
theright endpoint orderingreo) of G with respect ta.

It has been shown in [15] that leo and reo are good approxamsfor the bandwidth of interval graphigG, leo) <
2 - bw(G) andb(G, reo) < 2 - bw(G). This is based on the fact that:

— in a left endpoint orderindeo, for every pair of adjacent verticéso(u) < leo(w), each vertex betweenandw
is adjacent ta:, and

— in aright endpoint orderingeo, for every pair of adjacent verticeso(u) < reo(w) each vertex betweem and
w is adjacent tav.

This can be used to show that left endpoint and right endpodt@rings ar@-approximations for the OLA problem
on interval graphs.

Theorem 3. LetG = (V, E)) be an interval graph, and lef be an interval model off. Then W(G, leo) < 2W(G),
andW(G, reo) < 2W(G).

Proof. We focus on the orderingeo. For any integet, 1 < i < V(G), we define grapld; such that

- V(G;) ={u|uweV(G) Areo(u) <i}, and
- E(G;) ={e=(u,v) € E(G) |u e V(G;) ANveV(G;)}.

We prove this theorem by induction on the number of vertidés induction hypothesis is th(G;, reo) <
2W(G;) for any integeri , 1 < i < V(G).

The basis of the induction is the situation whéfe contains only one vertex (= 1). The induction hypothesis
holds here becausé/ (G, reo) = 0 andW(G1) = 0. ThenW(G1,reo) < 2W(G1).

For the induction step, we assume that the induction hygattier: holds. Now, we will prove that the induction
hypothesis holds for+ 1. Letu be the vertex such thato(u) = i + 1.

First we give a lower bound forV(G;+1). We can notice that sefS(G;) and{e = (v,u) | v € V(G;) ANe €
E(Giy1)} form a partition of sef(Gi41). By Lemma 3W(Giy1) = W(Gi) + W(Sag, | (w)»

Secondly, we give an upper bound #0/(G;1, reo) by considering the partitio®’'(G;) and{e = (v,u) | v €
V(Gz) Ne e E(Gz_;,_l)} of SetE(GH_l).

For the edge seft(G;), we have) . _, ,)cr(q,) [Teo(u) — reo(v)| = W(G;, reo).

For the edge sefe = (v,u) | v € V(G;) A e € E(Gi+1)}, since vertex, and its neighborhood 7, are
consecutive in the layouteo, the linear arrangemento givesdc, ., (u) + 1 consecutive numbers. We can compute
an upper bound OEveNGM(u) |reo(u) — reo(v)| because according to the linear arrangement we are in the

situation of the worst case for the star. So, we have

Z |reo(u) — reo(v)| < QW(SdG1+1(u))

vENg, , (u)



This yields an upper bound fo# (G 1, reo). We getW(Gi41,re0) < W(G;, reo) + 2W(Sag,,, (w)-
Since we haveV(G;, reo) < 2W(G;) by induction hypothesis, we have

W(Gprl, 7"60) < QW(Gl) + 2W(Sdci+l(")) < 2W(Gl+1)
So, the Theorem holds. O

Theorem 3 shows that left endpoint and right endpoint ongsrare 2-approximation algorithms for this problem.
This is the best possible bound for these orderings. In #astarS,, with an even number of leaves has an interval

representation such the(S,,, reo) = % andW(S,) = (2 + 1). So the ratio% equals t — 1.

In the next section, we focus on close relatives of intervaphs — permutation graphs — and on their generalization
— cocomparability graphs.

5 OLA of permutation and cocomparability graphs

Cocomparability, interval, and permutation graphs ard-kmbdwn classes of perfect graphs. All of them have geo-
metric intersection models. Many references, includind 2, contain comprehensive overviews of the many known
structural and algorithmic properties of (co)comparapilnterval, and permutation graphs.

Permutation graphs are intersection graphs of straigatdegments between two parallel lines. Vertices of the
graph are associated to segments and two vertices are ridficerresponding segments intersect.

Our first remark here is that gragti(B, m) considered in Section 3 is a permutation graph. Figure 2 steow
permutation representation fof(B, m).

i % Viiz+1 Vel
LK pel
V4 N\
AT IS
X X Xoo Ry T — R, Z; Z, Zn
Y

Fig. 2. Permutation representation of grap{ B, m)

This immediately implies

Lemma 9. The problem of deciding, for a permutation gragh= (E, V') and a constanf’, whethenV(G) < K is
NP-complete.

Let us now turn to cocomparability graphs that are genextiins of both interval and permutation graphs. A
graphG is cocomparability if its complemen® is a comparability graph, i.e., the comparability graph qfoset
P = (V, <) is the graph with vertex séf for which verticest andy are adjacent if and only if either < y ory < =
in P.

The following property of cocomparability graphs is welldan (see e.g. [2]), and it is crucial for our arguments.
Proposition 1. A graphG = (V, E) is a cocomparability graph if and only if it has @comparability ordering

i.e., an ordering(vy,ve, ..., vy) Of its vertices such thaw;,v,) € E andi < j < k imply either(v;,v;) € E or
(vj,v,) € E.



Since every interval graph is a cocomparability graph, thé& @roblem remains NP-complete on cocomparability
graphs. Now, we focus on the approximation problem. Fih& following lower bound for the weight of an optimal
linear arrangement of any graph will be useful when anatyiie performance ratio of some algorithms and orderings
respectively.

Lemma 10. For every graphG = (V, E),

m 1

Proof. Letv be a vertex of7. Then to minimize the sum over all edges incident io a layout, half of the neighbors
of v must be placed immediately to the left ofand half of the neighbors af must be placed immediately to the
right of v. Thus the sum over all edges incidentites atleastl +14+2+2+--- + @ + @ if d(v) is even, and
L1242+ 4 Q=g A=l AL g0) is odd.

Thus we obtain

W(G) Z%Z ((d(;) +1)(d(20))> > Z (dév) n d(4v))

veV veV

1 2 m
§Zd(v) +E'

veV

Y

O

We use the lower bound of the previous section to show thay e@asomparability ordering of a cocomparability
graph has weight at mo8t W(G).

Theorem 4. Let G = (V, E) be a cocomparability graph and legt be a cocomparability ordering ofi. Then,
W(G,L) <8 -W(G).

Proof. By the definition ofL, if v andw are adjacent iid7 then all vertices betweemandw in L are either adjacent
to u or adjacent tav. Therefore

|L(u) = L(w)| < [N(u) UN(w)| < d(u) + d(v),
and by Lemma 10,
WG, L) = > |L(u) - L(v)|

e=(u,v)

< Y (dw) +dw))

e=(u,v)

<Y d*(v)

veV
<8 -W(G).

O

Since a cocomparability ordering can be found in polynotimag O (n?-37%) [16], Theorem 4 immediately implies
an 8-approximation polynomial-time algorithm for OLA onammnparability graphs.

6 Conclusion and open problems

In this paper, we resolved the complexity of the OLA problemifiterval, permutation and consequently for cocom-
parability, graphs. We have given simple approximatioroatgms for those classes. There are several other linear
layout problems, like OTWIDTH, whose complexity is not resolved for the class of intervaps [4].



References

11.

12.
13.
14.
15.

16.
17.

18.
19.
20.
21.

22.

. T.BIEDL, B. BREJOVA, E. DEMAINE, A. HAMEL, A. LOPEZORTIZ, T. VINAR, Finding Hidden Independent Sets in Interval
Graphs,Theoretical Computer Scien8&0 (1-3), Jan 2004, 287-307.

. A. BRANDSTADT, V.B. LE, J. S?INRAD Graph Classes: A Surve$/AM Monographs on Discrete Math. Appl., V&, SIAM,
Philadelphia (1999)

. F.R.K. CHUNG, Labelings of graphsSelected Topics in graph theerd51-168, Academic Press, San Diego, 1988.

. J. DAz, J. FETIT, M.J. SERNA, A survey of graph layout problem&CM Computing Surveysol.34, No.3, Sept 2002,
313-356.

. G. BVEN, S. NAOR, B.SCHIEBER, S. Ra0. G. EVEN, Divide-and-conquer approximation algorithms via spreading metrics,
Journal of the ACMA47(4):585-616, 2000.

. S. BVEN, Y. SHILOACH, NP-Completeness of Several Arrangement Probl@ethnical Report #43Computer Science Dept.,
The Technion, Haifa, Israel, 1975.

. M.A. GOLDBERG, |I.A. KLIPKER, Minimal placing of trees on a linélechnical report, Physico-Technical Institute of Low
Temperatures, Academy of Sciences of Ukranian SSR,,US3&

. M. FARACH-COLTON, Y. HUANG, J.L.L. WOOLFORD, Discovering temporal relations in molecular pathways using protein-
protein interactionsProceedings of the 8th Annual International Conference on Computdtidolecular Biology (RE-
COMB), 2004, San Diego, California, USA, March 27-31, 2004, ACM Pr#56;-156.

. U. FEIGE, Approximating the bandwidth via volume respecting embeddidig€omput. System Sd@0 (2000) 510-539.

. M. R. ®AREY, R. L. GRAHAM, D. S. DHNSON, AND D. E. KNUTH, Complexity results for bandwidth minimizatio8/AM

J. Appl. Math, 34 (1978), 477—-495.

M.R. GAREY, D.S. bHNSON Computers and Intractability - A Guide to the Theory and Practice of Nidgleteness, W.H.

Freeman, San Francisco, 1979

M.C. GoLumMBIc, Algorithmic Graph Theory and Perfect GrapAgiademic Press, New Yofd980)

D. LHNSON The NP-completeness column: an ongoing guilé\/gorithms6 (1985), 434—451.

D.J. KLEITMAN, R.V. VOHRA, Computing the bandwidth of interval grapt&AM J. Discrete Math3 (1990) 373-375.

D. KRATSCH, L.K. STEWART, Approximating bandwidth by mixing layouts of interval grapl$8AM Journal on Discrete

Mathematicd5 (2002) 435-449.

R. McCONNELL, J. SPINRAD, Modular decomposition and transitive orientati®iscrete Math201(1999), 189—-241.

B. MoNIEN, The bandwidth minimization problem for caterpillars with hair lengtls NP-complete SIAM J. Algebraic

Discrete Method3 (1986), 505-512.

S. RO, A. RicHA, New approximation techniques for some ordering probléPnsceedings of the Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA'98)1-218, ACM, New York, 1998.

Y. HILOACH, A minimum linear arrangement algorithm for undirected tre&daM Journal on Computing (1979) 15-32.

A.P. $RAGUE An O(nlogn) algorithm for bandwidth of interval graphSJAM J. Discrete Math7 (1994) 213-220

W. UNGER, The complexity of the approximation of the bandwidth problémceedings of the Thirty-ninth Annual IEEE

Symposium on Foundations of Computer SciefRa&o Alto, CA, 1998).

M. WATERMAN, Introduction to computational biology: Maps, sequences and gen@hepman & Hall, 1995.

10



