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Abstract: In this paper, we compare the use of two
packets models in slotted optical ring networks, i.e., a
model where each message has to be routed in
consecutive slots, and a model where the slots making a
same message can be routed independently. We first
focus on the algorithmic complexity of the related
problems. Then, we give the results we obtain with a
OMNET simulator in terms of messages delay and jitter
and of communication resources really used at each step.

1. Introduction and description of the problem

In this paper, we compare the communication efficiencies
of a simple optical ring network under two packet models,
i.e., a fixed size and a variable size models. Consider a
ring network R connecting N nodes with only one slotted
wavelength (with K slots on each link). The ring is
assumed to be in the OPADM DAVID model [?]. At each
communication step, each node sees the slot of the ring
located on him. If the data contained by this slot is
intended for him, the node reads it and removes the data
from the slot (it becomes empty). If the slot is empty, the
node can use it to send a new message (or a part of the
message) to its destination.
The purpose of this study is to compare variable size
packet and fixed size packet from two points of view:

• What is the difficulty of determining an optimal
scheduling in these two models?

• What are the performances of each model in
terms of packet delay and jitter?

• 
As we want the difficulty to be linked only to the models
behaviours and not to the network control, to focus on
these two questions we assume a very simple optical
network, i.e., a slotted ring with only one wavelength.
Each node could have some messages to send to another
nodes. Each such message M is characterised by the
origin node: or(M), the destination node: dest(M), the size
in number of slots: sz(M), the time at which it becomes
available in or(M): dispo(M) and the distance (number of
slots=number of steps) from or(M) to dest(M): dist(M) = K
* ((dest(M) – or(M)) mod N). We also consider the time
First(M) (resp. Last(M)) at which its first slot (resp. last
slot) is sent on the ring. Different measures can be defined
and applied on each message M:

• The delay, defined by
Delay(M)=(dist(M)+Last(M)-dispo(M)),
represents the time between the arrival of the

message on the origin node and the end of its
transmission, i.e. the end of its reading on the
destination node.

• The jitter, defined by  Jitter(M)=(Last(M)-
First(M)), represents the time between the
beginning and the end of the emission of a
message.

• The tardiness, defined by  Tard(M)=Last(M)-
Dispo(M)-sz(M)+1, represents the difference
between the delay of M and its minimal possible
delay (equal to dist(M)+sz(M)-1). This measure,
inspired from some works on scheduling, is
interesting to compare the delays of packets of
different size.

• 
The variable size packet (VSP) model consists here in
saying that the Jitter is a constraint : for each message M,
we want Jitter(M)=sz(M)-1. This implies that all the slots
of a same message have to be sent contiguously on the
ring. Let us remark that, in this model, the tardiness of a
message M is equal to : Tard(M) = First(M)-Dispo(M).
The fixed size packet (FSP) model says that all the slots
of a same message can be sent independently the ones
from the others. Thus, the Jitter is in this case an
evaluation parameter of the behaviour of the network.
The paper is organised as follows. First, we present the
theoretical problems we focus on in a static centralised
model (i.e., where the (finite) set of messages to be sent is
known in advance). Then, we give some simulation results
under a (more realistic) distributed on line model.

2. Complexity

We focus on the following problems :

Problem MS-VSP-Scheduling
Given : A ring R, a set of messages in each node, an
integer S.
Question : Could all the messages reach their
destinations after at most S steps, with the constraint
Jitter(M)=1 for each message M?

Problem MD-VSP-Scheduling
Given : A ring R, a set of messages in each node, an
integer K.
Question :  Does exist a scheduling of S on R such that
the maximal tardiness Tard(M) over all messages M is less
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or equal to K, with the constraint Jitter(M)=1 for each
message M?

We call makespan the date when all message are reached
their destination. The problem MS-VSP-Scheduling  and
MD-VSP-Scheduling are NP-complete when the criterion
to be minimized is the makespan or the tardiness
(reduction from the k-partition problem [1]). So we will
describe an approximation algorithm.

We focus on the MS-VSP-Scheduling problem and begin
our analysis by the static centralised model. Let Cmax(S)

be the makespan of the schedule S and  Cmax(OPT) be

the makespan of the optimal schedule.  We will describe
the scheduling S: if a node has a message of length l to
send and there are at least l consecutive slots free, the
node puts his message on. Let Lmax be the maximal

length of all messages.  The quality of this scheduling S is:
Cmax(S) ≤ (Lmax + 1) Cmax(OPT)

It gives an indication of how well the heuristic is
guaranteed to perform in the worst case. Thus, if Lmax is

equal to 1, this schedule is a 2-approximation.

Now, we focus our analysis on the distributed model with
assuming that the maximal length of all messages is less
than a constant Lmax. Each node only knows its own set

of messages to be sent. We define a frame as L  (Lmax ≤

L) consecutives slots on the ring. Thus, ring R is cut into
(NK)/L frames (recall that N is the number of nodes and
that K is the number of slots on each link). Now, when a
frame crosses over on a node, if this node has a message
of length l to send and if the frame has at least l
consecutive slots free, the node puts his message on this
frame.  The quality of this scheduling S is:

Cmax(S) ≤ (2 L + 1) Cmax(OPT)

Moreover, if L is a multiple of Lmax , we have Cmax(S) ≤

(2 Lmax + 1) Cmax(OPT).

Let us summarize all theses results in this table (recall that
L is the size of a frame and Lmax is the maximal length of

all messages): we have Cmax(S) ≤ β × Cmax(OPT) and β

take the values:

Static centralised
Static

distributed
Lmax = 1

and
L = 1

L = Lmax L = α Lmax

β 2 Lmax + 1 2 Lmax

3. Algorithmic and Simulation studies
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4.1  Vision distribuée

4.2 Résultat de simulation .
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Equations: Equations must be numbered sequentially.
Equation number should be placed in the right-hand
margin as follows:

a = b + c [1]

Illustrations: Illustrations may be in colour provided that
they appear clearly when printing in grey shades.
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Figure 3 : Structure of an all-optical packet router

5. Conclusion

This paper has provided guidelines to submit final papers
to PS 2003 Photonics in Switching. Please make an effort.
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