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Abstract

This paper is devoted to multi-point communication problems under the all-port line model.
The line model assumes long distance calls between non neighboring processors. In this sense,
the line model is strongly related to circuit-switched networks, wormhole routing, optical net-
works supporting wavelength division multiplexing, ATM switching, and networks supporting
connected mode routing protocols. Since tree-networks are basic tools for the management of
multi-point applications in both parallel systems and computer networks, we propose polyno-
mial algorithms to derive optimal or near optimal broadcast, multicast and gossip protocols in
trees.

" Additional support by the DRET of the DGA.



1 Introduction

Assume that every node of a network has some piece of information. Broadcasting is the in-
formation dissemination problem that consists, for one node of a network, to send 1its piece of
information to all the other nodes of a communication network. Multicasting is the information
dissemination problem in which the source sends its piece of information to an arbitrary group
of destinations. In general, this group is different from the whole set of vertices. Gossiping
1s a simultaneous broadcast from every node of the network. Due to their complexity, theses
three communication primitives are often provided at the software level. Most of communica-
tion libraries available on parallel systems (as MPI [25]) provide access to such communication
procedures. More generally, theses three communication patterns are fundamental primitives
used in many algorithms for the programming, and for the control of parallel and distributed
systems. For example, they are used for barrier synchronization or cache coherence [30], for
parallel search algorithm [10], and for linear algebra algorithms [12]. Finally, they are basic
tools for the management of multi-point applications in computer networks [11].

In most of modern distributed memory parallel computers, and in many point-to-point
LAN [8] or WAN [29], nodes communicate together using various types of switching technics
such as wvirtual cut-through routing [19] (including direct-connect on several Intel’s machines),
ctreuit-switching, wormhole routing [24], wavelength division multiplexing [5], and ATM switch-
ing [18]. At a very abstract level, all theses switching modes perform as follows: when a node
z sends a message to a non neighboring node y, a path is created between = and y in order
to directly connect these two nodes. The message from « is then transmitted along this path.
Intermediate nodes do not receive the message that goes through them (apart for path-based
or other multicast technics [22, 23] that are not considered here).

In [13], Farley introduced the model called Line Model which satisfies the following: (i) a
call involves exactly two nodes (these two nodes can be at distance more than 1), (ii) any two
paths corresponding to simultaneous calls are edge-disjoint. Furthermore, Farley assumed that
nodes satisfy the 1—port hypothesis, that is: (iii) a node can take part in one call at a time.
However, since nodes of many modern parallel and distributed systems can in fact send and
receive through many ports simultaneously [22], and since the same holds for point-to-point
networks [8], in this paper, we will replaced the 1—port hypothesis by the all-port hypothesis,
that is: (iv) a node can take part in many calls at a time. When two nodes are involved in the
same call, they can exchange all the informations they are aware of (full-duplex mode).

In a point-to-point network, the probability of successful multicast delivery may decrease
as the distance between sender and group members increases [8]. Moreover, the probability of
damage, duplication, or misordering of multicast packets in a computer networks is very low, but
not necessarily zero [8]. So, minimizing the number of “rounds” of a multicast (or broadcast)
protocol allows the multicast scheme to increase the success of the delivery.

A round is the set of all calls carried out simultaneously. The complexity of our communi-
cation schemes will be measured by the number of communication rounds required to complete
these schemes. For a given graph G = (V| F), and for any arbitrary node u in G, we denote by
b(G,u) (resp. ¢(G)) the minimum number of rounds for broadcasting from the source node u
(resp. for gossiping) in the graph G. Similarly, for any subset X C V, we denote by m(G, X, u)
the minimum number of rounds to multicast from u in X.

Furthermore, the usual architecture used for multicasting in computer networks is a shortest
path directed tree between each sender and the group of destinations [8, 1]. The multicast packet
passes through the edges of the tree. Thus, it i1s worth to study the complexity of broadcast,
multicast, and gossip in tree-networks. This is the main purpose of this paper. In a more general
setting, we will first consider undirected tree, and then we will show how to apply our broadcast
and multicast protocols to directed trees. Of course, gossiping can be considered in undirected
trees only.

In [13], Farley has proved that, in the 1—port model, broadcast from any node in any n—node
network can be performed in [log, n] rounds. His proof makes use of routing along the edge



of a spanning tree of the network. Farley’s theorem has been recently extended by Cohen,
Fraigniaud, Konig and Raspaud [7] who showed that one can make the protocol as furtive as
possible at each round, although the problem turns to be NP-complete when considering the
whole protocol. Birchler, Esfahanian and Torng [4] derived independently similar results. In [3],
the same authors have also studied the multicast problem in directed tree networks under the
1-port model. Their protocols minimize the total number of used links. The gossip problem
is still open for arbitrary networks, although some results have been derived by Laforest [21]
for tree-networks. Actually, the complexity of gossiping in the 1—port line model in arbitrary
network is not known. (It lies between [log, n] and 2[log, n] — 1, and both bounds are tight.)
In the literature relative to broadcasting and gossiping, one can also find many works under
the all-port model. However, most of these works assume that the network has a specific topology
as hypercube [15, 16], or torus [9, 26]. Tt is shown in [6] that broadcast and gossip are both
NP-complete problems for arbitrary networks. This paper deals with arbitrary trees.

Our contribution

Theorem 1 There exists an O(n?)-time algorithm which returns, for any n—node tree, an
optimal broadcast protocol in the all-port line model.

Theorem 1 can be extended to directed tree (the edges are oriented from the source toward
the leaves) and to the multicast problem:

Corollary 1 There exists an O(n?)-time algorithm which returns, for any undirected n—node
tree, an optimal multicast protocol in the all-port line model for any source and any destination
set.

Corollary 2 There exists an O(n?)-time algorithm which returns, for any directed n—node tree
rooted in u, an optimal multicast protocol from u in the all-port line model for any destination
set.

Moreover, we have shown that:

Theorem 2 There erists an O(n®)-time algorithm which returns, for any n—node tree, a near
optimal gossip protocol in the all-port line model. (The algorithm is optimal up to an additive

factor of 1.)

Although we conjecture that the gossip problem can be polynomialy solved optimally for
undirected tree-networks, we were not able to prove this fact, and we let it as an open problem.

The next section deals with broadcasting and multicasting in tree, whereas Section 3 deals
with gossiping.

2 Broadcasting and multicasting in tree-networks

In this section, we describe a polynomial time algorithm to compute an optimal communication
scheme for broadcasting from any arbitrary source node u of a tree T. In Section 2, T is
considered as rooted in u. First, we will describe the algorithm, and then we will prove that the
communication scheme generated by this algorithm is optimal in terms of rounds.

As in [17], for every node v # u in T, we denote by T, and T, the two trees obtained by
deleting the edge e containing vertex v, and such that the source u and vertex v do not belong
to the same subtree. We assume that T, contains vertex v. Moreover, we associate node v to
the edge e by the function o : V\{u} — F, such that a(v) = e if v is incident to e in T, and if
the two trees obtained by deleting edge e are T, and T',. Actually, a(v) is the first edge starting
from v on the shortest path from v to w in 7". For any graph G, we denote by T'¢(v) the set of
neighboring vertices of v in G.



2.1 A broadcasting algorithm for undirected trees

2.1.1  Description of the algorithm

Our construction is recursive from the leaves to the root u of T'. The leaves are at level 0. The
level of a node 1s 1 plus the maximum of the levels of its children in 7.

For any node v, our algorithm constructs a broadcast scheme A, in T, from an arbitrary
node in T,. The communication scheme A, is trivial if v is a leaf of T. Given a communication
scheme A, where v is a leaf, all communication schemes A, are constructed for each node
w at level 1. And so on. In other words, assuming that, for all nodes y of level at most £,
the communication scheme A, is known, our algorithm constructs a communication scheme A,
where v is at level /41 in 7". The construction is based on all communication schemes A, where
y is a child of v in T,. There will be a merging of not yet specified calls as {x =7} (i.e., # calls
some not yet specified vertex), and {? — #} (i.e., z is called by some not yet specified vertex).

To simplify the notation, the rounds are counted from the end of the broadcast scheme:
round 1 is the last round, round 2 is the penultimate round, and so on. Let A,[i] be the set of
calls of the broadcast protocol A, at the round i. Three cases are considered below: v is a leaf,
v 1s an internal node, or v is the root u.

e v is a leaf. A single round is enough for v to receive the piece of information from a node
in 7,. Note then that the broadcast protocol generated by our algorithm imposes that
all leaves are informed at the last round of the protocol (i.e., round 1). Formally, A, is
composed of a single call {7 — v} at round 1. The sign 7" means that the sender of the
call is unknown at this moment of the construction. It will be specified later. One only
knows that node 7" is outside of T,,.

e v is vertex of level £ > 1. Let us assume that for every vertex w of level less than
£, the protocol A, is known. In particular, all protocols A,, where y is a child of v,
are known. We merge these protocols A, into a scheme A, such that, at any round ¢,
Al = UyEFTU () Ay [7]. For that purpose, every pair of calls of type {7 — «} and of type
{z =7} in A, is replaced by an unique call {z = z}. After that, there is either no more
call with unspecified end points, or there are either only calls of type {? — «}, or of type
{r =7}

Now, we have to check whether protocol A, respects the constraints of the all-port line
model. We also have to determine a possible round 7, when v could be informed. We
force that v 1s informed as soon as possible if at least one node in T3 can also call a node
outside of T}, at the same round. We force that v is informed as late as possible otherwise.
Let us formalize this strategy.

Let ¢ be the maximum number of rounds of the broadcast schemes A, where y is a child of
v. At the round 4, we compute an integer value p[7] as follows: p[i] is the difference between
the number of calls {? — #}, and the number of calls {x =7} in A,[i]. The value p[{]
indicates whether the broadcast communication scheme A, respects the communication
constraints. Indeed, there are five cases:

— If p[i] < —1, then there are at least two calls {# =7} in A,: it means that at least
two nodes call a node in T,,. Thus, one of theses calls can be used to inform node v
(7, = i), and the other call informs a node in T, (which will be specified later). After
this round, and until the end of the protocol, node v can give a call to each subtree
Ty, and to T,. A, satisfies the communication constraints.

— 1If p[i] = —1, then there is an unique call of type {z —?} from T, to T,. The sender
of this call can inform v or a node in T, (7, < 7).

— If p[i] = 0, then edge e is not used by the protocol A, at this round. Thus node v has
the possibility to receive the piece of information from a node in T, (7, < i).

— If p[i] = 1, then a single call passes through edge e in order to inform a node in T,,.
At this moment of the construction, the sender is not specified. At this round, the



communication constraints are respected. (The value 7, is not modified because at
this rounds, vertex v cannot be informed.)

— If p[i] > 1, then at least two calls are of type {7 — x}. It means that the senders of
these calls are in subtree T, and they must inform nodes in 7,. Thus, these calls pass
through the edge e (where a(v) = e). Therefore, if it was not possible to inform node
v before this round, then the communication constraint (iii) is not respected. We will
have to check later whether there exists a possibility to inform v before this round.
If 1t 1s not possible, one round must be added in order to inform v, and to satisfy the
communication constraints.

Now, we determine when v 1s informed.

— If the previous process does not find a round when v can be informed (p[f] > 1 for
every round ¢), then the broadcasting scheme A, in T, is performed in ¢ + 1 rounds
as follows. The first node informed in T, is v, that is A,[t + 1] = {? — v}. Then, at
every forthcoming round of A4, , node v can send the piece of information to a node in
T, , and to a node in each subtree Ty,. At the round 7, i <, a call {v =7} is inserted
into the scheme A, [i], and every call of type {? = x} is replaced by {v — z}.

— If there exists a round 7, during which node v can be informed, then we update the
protocol A, as previously.

e v is the source node (v = u). All the protocols A, where y is a child of u, are merged into
a scheme A,. Moreover, at any round, u can give a call to each subtree. We complete the
broadcasting scheme A as follows:

— Every call {7 — z} is replaced by a call {u — x};

— Every call {& —7} is removed because such calls indicate that, at this round, « can
take part as sender in a call outside of T', and that x already knows the piece of
information.

This construction is formally described in Algorithm 1.

Time complexity of Algorithm 1. TFor every node v in T, the cost of the construction
of the protocol A, depends on the cost of the union of the protocols (i.e., the number of calls).
Assuming that n is the number of vertices in 7', the number of calls is equal to n — 1. Therefore
the time complexity of the construction of the protocol A, is equal to O(n). And hence the
time complexity of our algorithm is O(n?).

2.1.2 Proof of optimality

This entire section is devoted to the proof of theorem 1, that is, we will prove the optimality
of Algorithm 1. Given a broadcast scheme X from u in T, we denote by X(®) the part of X
such that the scheme X'(*) contains only calls which have a node of T, as sender or receiver.
Moreover, if a node in T, takes part in a call of X'(*), then this node is represented by the sign
“ in X(). We express a broadcast protocol X¥) by a couple X(¥) = (t, L) where ¢ denotes
the number of rounds of X'(*), and L is a list which indicates when and how edge e = a(v) is
used:

e L[i{] = —1 means that, at the round i, a call whose sender is in T, passes through edge e.
e L[i] = 1, means that, at the round i, a call whose sender is in T;, passes through edge e.
e L[i] = 0 means that, at the round ¢, no call passes through edge e.

Moreover, we define an order < on the broadcast protocols. X'(*) < Y(*) where X*) = (t, L),
and V) = (¢/, I'), if and only if one of theses three properties is satisfied:

o ¢ <t



Algorithm 1 Broadcast from u in 7'

/* Initialization phase */

1 Let h be the height of tree T rooted in u.
2 For each leaf v of T' do
/+ The character ? means that the sender of this call is unknown at this step. */
3 Ay[1] :={? > v}
4 End For
5 For{:=1toh—14do
6 For each node v of level ¢ do
/* Construction of A, */
7 Let ¢ be the maximum number of rounds of A, where y € I'z, (v)
8 i:=tand r, == —1
9 not_end := true
10 While (not_end = true) and (i > 0) do
11 oli] = {{7 —a} st {?T >z} € AU[Z]H - H{y =%} st {72} E AU[Z]H
12 case
13 op[i] < —1: then 7, := i and not_end := false
/* There exist at least two calls {y —7?}, one can inform v, the other can call a node
14 op[i] = —1 or p[i] = 0: then 1, ;=
15 op[i] = 1: then noinstruction
16 op[i] > +1: then not_end := false
/* There exist at least two calls of type {7 — y}, that must cross the edge connecting
the two subtrees T, and T,. */
17 Endcase
18 1:=i-1;
19 EndWhile
/* Insertion of the call informing v */
20 if (, =—1) thenr, . =t+1
21 if (1, =t+1) or (p[r,] =0) then A,[r] = A, [n]U{? = v}
22 else replace a call {x =7} by a call {z — v}
23 For each round 7 := 7, — 1 down to 1 do
24 Ayl = AU {v =7}
25 every call {? — z} is replaced by a call {v — z}
26 End For
27 End For
28 End For

/x case v =u %/
29 For each round 7 := 7, — 1 down to 1 do
30 Aul] == UyeFT(u)Ay[i]
31 every call {7 — z} is replaced by a call {u — =}
32 End For




e ¢ =, and there exists an integer k (k <) such that L[k] < L'[k], and L[i] = L'[7] for all
1, k<i<t
o t =1 ,and L[i] = L'[{] for all i, 1 <i<{.

Given two broadcast protocols X' and X’ from node u in tree T, X’ and A’ are said to be
pseudo equivalent in T, if all calls of X’ in which a node of a subtree of T, is involved, are calls
of the broadcast protocol X', and conversely (i.e. for each child y of v in T}, we have the equality
X = x'W). Note that the fact that X and X’ are pseudo equivalent in T, do not imply that
X = ¥’ because v is not considered in the pseudo equivalence.

Lemma 1 Let v be a vertexr of T. Assume that v has d children v;, 1 <i<d, inT,. Let X,
and Y be two broadcast schemes from w in T such that ¥i € {1,. ..,d},X(”’) < YW There

erists a broadcast scheme X' which is pseudo equivalent to X in T, , and such that @ <y,

Proof. Recall that the rounds are counted from the end of the broadcast scheme: round 1 1s
the last round, round 2 is the penultimate round, and so on. Let ¢y (resp. ty) be the maximum
taken over all 7 of the number of rounds of schemes X (V) (resp. y(”’)) where v; 1s a child of v.
We construct a protocol X’ from X. Let W = (txr, Lys). Our construction is decomposed
into two cases: ty <ty, and ty =ty.

Case 1. First, assume that ty < ty. Moreover, we assume that the first call that informs a
node of T, in the protocol X is a call {w — 2} where w and « are in T, and T, respectively.
We transform the broadcast scheme X into a scheme X’ as follows:

e all calls of the round k of X which are not in X'(*) are inserted in the protocol X’ at the
round (k+ 1).

e The first node informed in T, is v in scheme X’| that is, during the round (tx + 1), node
w sends the piece of information to node v. It implies that Ly/[tx + 1] = 1.

e Finally, the scheme ') s defined as a copy of X(¥) where every call that has a vertex in
T, as sender, or as receiver, is modified in such a way that vertex v becomes the sender.
Moreover, at the round j, 1 < j < tx, node v call a node in Ty, that is a call {v =7} is
inserted. By definition, it implies that, for alli € {1,... tx}, La/[i] = —1.

So, we have W = (tx + 1, Lys). Thus, by definition, we have W <YW,

Case 2. Now, assume that {y = ty. For any node w in T, let us denote X®@) and Y by
(tw, Lw) and (t,,, L!,) respectively. Due to the hypotheses of the lemma and to the definition
of order =<, there exists an integer k such that, for all i, k < i < ty, px[i]] = py[i] where
ol = Syerr. (o) Lol and pyli] = Syer, o Lyl and p[K] < pylK]

We denote by ry the round at which node v is informed in J. We construct X such that,
(1) at the first round of the broadcasting, node u calls the father v' € T, of v in T, and (2)
(v)

X’ is a copy of X' apart few modifications. We modify A’""’ in a way depending on two cases:

k<ry <ty,and ry <k.

e Assume that node v is informed at the round ry in Y where ry < k. By definition, we
have py[k] < py[k] < 1. In the protocol X’, we require that v is informed at the round k.
This is done as follows. If px[k] < —1 (resp. px[k] = 0) , then a node of T, (resp. node

v’} informs v. In any case, it is easy to see that L,[k] < L/ [k]. Thus, @) <y,

e Assume that node v is informed at the round ry in protocol Y where k < ry < tx. By
definition, we have py[ry] < 0. As py[ry] = px[ry], we can modify A'(*)| such that during
the round 7y, node v can be informed in X’ by a node in T} (resp. the node v’ in T,,) if
v is informed in Y by a node in T, (vesp. in T,): we have L,[k] = L![k]. Afterwards, we
transform the scheme X into X’ in the same way we did in the case ty < ¢y, and we have

X/(U) < y(v).



In both cases, @) < V) and the proof is completed. m|
From this previous lemma, we can deduce Lemma 2, that 1s:

Lemma 2 The broadcast scheme generated by the algorithm 1 is optimal in term of rounds.

Proof. Recall that the rounds are counted from the end of the broadcast scheme. Let £(v) be
the level of node v in the tree T rooted in u. Let us denote by A the broadcast scheme generated
by Algorithm 1, and by A, all the intermediate schemes in nodes v # u. The proof is based on
the order <, and on the parameter £(v). We will show property stating that, for any node v in
the tree T, and for any broadcast scheme ¥ from the source node u in T', we have A, < X,
We prove this by induction on the level.

As the basis for our induction, let us consider the case where £(v) =0 (i.e, v is a leaf in T').
To broadcast from node u in the subtree 7;, we need one single call such that the vertex v is
the receiver. And, assuming the broadcast scheme A, is defined by the couple (t,, Ly), we get
ty, = 1, and L,[1] = 1. Thus, the property holds for £(v) = 0.

Assume now that the property is true for any node w such that £(w) < i. Assume that
£(v) = i. By induction, for any broadcast protocol X', we have A, < X where y is a child of v
in T,,. Thanks to Lemma 1, there exists a broadcast protocol A’ that is pseudo equivalent to A
in T,,, and such that A < X for any broadcast protocol X. Let us show that 4, < U
Let us assume, for a purpose of contradiction, that there exists a broadcast scheme A’ that is
pseudo equivalent to A in 7, and such that AW 4 A, . Moreover, let us denote the broadcast
schemes A, and A by (tv, Ly) and (¢, L]) respectively. Similarly, for any child y of v, A, is
denoted by (¢, Ly).

Let p[i] and ¢ be equal to 37 cp,) Ly[i] and maxyer,, (o) ty, respectively. We consider two
cases.

Case 1. First, we assume that the protocol A requires ¢+ 1 rounds to broadcast in T, from
a node of T,. In the worst case, the scheme A, requires ¢t + 1 rounds too. By construction of
scheme A,, the first node informed in 7T} is v, and then node v can send the piece of information
to a node of T, at every forthcoming round. Thus, L,[t + 1] = 1, and, for any i € {1,...,t},
L,[i] = —1. Therefore, we have A, < A’(U), and there is a contradiction. Thus, in order the

inequality A’(U)j A, to be satisfied, A’ must require exactly ¢ rounds to broadcast in tree T,
from a node of T,.

Case 2. Now, we assume that the protocol A requires ¢ rounds to broadcast in T, from
a node of T,. We focus on the round 7/, at which node v is informed in A’(*). Because of
communication constraints, during the round i, 7/, < i <, we have p[i] < 1 since, otherwise,
at least two calls would pass simultaneously through the edge e = a(v).

2.1 if there exists an integer ¢, 7/, < ¢ < t, such that p[f] < —1, then Algorithm 1 imposes
that v was informed at round 7 in A,. It implies that the scheme A, informs v at round
i, and therefore, for all j, 1 < j <4, we have L,[j] = —1. So, we have A, < A'@ and
there is a contradiction.

2.2 If there does not exist an integer 4, 7/, < i < ¢, such that p[i] < —1, then, in particular,
we have 0 > p[r/,] > —1. It means that Algorithm 1 detects the possibility that v can be
informed at the round 7/, in A,. If the scheme A, does not inform node v at round 7/,
then it informs node v at the round j where j < 7/,,. Tt implies that L,[r',] = p[r’,], and
L r,] = pl7's] + 1. For example, if p[r’,] = —1 then an internal call of T, informs wv.
Since Ly [m'y] < Li[1'y], we have A, < A and there is a contradiction. If the scheme

A informs node v at the round 7/, then 4, < A/ and there is again a contradiction.

All the cases investigated above give rise to a contradiction. So for any node v in the tree T,
and for any broadcast scheme X from the source node u in 7', we have A, < X (). Therefore,
the lemma holds. ad



2.2 Extension to multicast problems and to directed tree-networks

2.2.1 Broadcast in directed Tree.

We can notice that Algorithm 1 can be extended to the case where the tree T'is directed from
the source toward the leaves. The directed tree allows the source to call all nodes of the directed
tree, and it allows an internal node v to call all nodes in 7,. Algorithm 1 must be modified
because calls of type {v —7} cannot be inserted in protocol .4, since such calls are directed
from v to a node in Ty, and therefore go upward the tree. Therefore, let us just consider the
protocol A obtained using Algorithm 1 in which all calls of type {v —7} are removed.

We claim that A4 is optimal in term of rounds. The proof is very similar to the proof of
Theorem 1. Indeed, all broadcast schemes A, can be described by a pair (¢, L) as before.
However, the list L never contains a negative value because a negative value corresponds to a
call from T, to T,,. Furthermore, we can also define an order on the broadcast protocols as done
in Section 2.1.2. This order allows Lemma 1 to be extended to directed trees. In the proof of
Lemma 1 it is sufficient to not consider calls from T}, to T,,.

2.2.2 Multicast problems.

Algorithm 1, and its extension, construct a broadcast scheme from node u in an undirected or
directed tree. Both algorithms can be adapted in order to obtain a multicast scheme from a
node u to a group of nodes D. This is true assuming the use of nodes not in D, these nodes
will be only used to forward the piece of information. The adaptation to the multicast problem
consists to modify the phase of the algorithms in which it is decided when v is informed. This
phase is executed only if v is a node of D, or if there exists a round such that the difference
between the number of calls of type {? — v}, and the number of calls of type {v —7} is strictly
greater than 1, or strictly less than —1. It gives rise to Algorithm 2.

We do not prove that Algorithm 2 returns an optimal multicast protocol since the proof can
be easily obtained from the proof described in Section 2.1.2.

3  Gossiping in undirected tree-networks

In this section, we prove a lower bound of the number of rounds required to gossip in any
undirected tree. Afterwards, we describe an algorithm that returns a gossip protocol in 7". This
gossip protocol reaches the lower bound up to an additive constant factor of 1. First, let us give
some notations.

¢ bmin(T) = min yertex of 70(150).
® Buin(T) is the set of vertices v of the tree T" such that b(T,v) = bpin(T).

e if a vertex v has d neighbors in T', then, by deleting v, we get d disjoint trees. We add
vertex v to all theses trees, and we get d trees denoted by 7. Moreover, these subtrees
are ordered as follows: T} < T} if and only if (7}, v) > b(7},v). We denote by v; the
neighbor of vertex v such that it is in 7}".

Note that:
Remark 1 For any vertex u in T, b(T{, u) = b(T, u).
We get:

Lemma 3 In any tree T of at least three vertices, there exists a vertex x of degree 2 in Buin (T)
such that (T, x) > bpin(T) — 1.

Proof. Assume, for a purpose of contradiction, that all vertices z in Byn (T) satisfy (75, z) <
bmin(T) — 1. We will prove by induction on £ that there exists a path P of length £ such that



Algorithm 2 Multicast from u to a set D in a directed T'

/* Initialization phase */

1 Let h be the height of tree T of root u.
2 For each leaf v of T' do
/+ The character ? means that the sender of this call is unknown at this step. */
3 if ve D then A,[1]:= {7 = v} else A,[1]:=0
4 End For
5 Forl:=1toh—-14do
6 For each node v of level | do
/* Construction of A, */
7 Let ¢ be the maximum number of rounds of A, where y € I'z, (v)
8 i:=tand r, == —1
9 not_end := true
10 While (not_end = true) and (i > 0) do
11 p[z]:HP—)x} s.t. {7—)x}EAU[i]H
12 case
13 op[i] = 0: then 7, := i
14 op[i] > +1: then not_end := false
/* There exist at least two calls of type {7 — y}, that must cross the edge connecting
the two subtrees T, and T,. */
15 Endcase
16 1:=i-1;
17 EndWhile
/* Insertion of the call informing v */
18 if (v € D) or (not_end = false) then
19 if (, =—1) thenr, :=t+1
20 Ay[r] = Ay[r] U{? = v}
21 For each round 7 := 7, — 1 down to 1 do
22 every call {? — z} is replaced by a call {v — z}
23 End For
24 End For
25 End For

/x case v =u %/
26 For each round i :=7, — 1 down to 1 do
27 Aul] == UyeFT(u)Ay[i]
28 every call {7 — z} is replaced by a call {u — =}
29 End For




1. all the vertices of P are in Bpin (T);
2. if P = (p*,...,p"), then, for all i, i < £, p} = p'*! (p} is the neighbor of p in Tipl);
3. all the vertices of P are distinct.

Since Bpin(T) # 0, the property holds for £ = 0. Assume that there exists a path P of
length ¢ — 1 satisfying the induction hypotheses. Let P = (p!,... p*~1), and u = p*~!. By
definition, vertex u is in Bpmin(T). By Remark 1, we have b(T}{, u) = bpmin(T), and then we
focus on the vertex uy.

Assume that the vertex uy is a leaf. In this case, T}" is an edge (u, u1). Therefore by (T) = 1
from the relation (7}, u) = bmin(T). So, it is easy to see that tree T is an edge, and there is
a contradiction with the hypothesis of the lemma. Therefore, vertex u; is not a leaf. We will
prove that u; € Bpin(T). Since 4 € Bpin(T), there exist two broadcast protocols A; and Aj
where

e A, is a broadcast protocol from u in T} performed in at most by, (T') rounds;

e A, is a broadcast protocol from u in T\ T performed in at most by (T) — 2 rounds
(because all vertices @ in By (T') satisfy b(T5, 2) < bpmin(T) — 1).

Using .4; and A5, we construct a broadcast protocol A from w in T as follows. 4; and As
are used simultaneously although A; and A, start at round 1 and round 2 of A respectively.

Let {u — v} be the call in T} at the first round of A. As u; is a vertex in a path connecting
u with v in 7', we can transform the protocol A into A’ as follows. At the first round, the call
{u — v} is replaced by a call {u — w1}, and a call {u; — v} is inserted at the first round. Tt
is easy to see that the protocol A’ performs the broadcast from wuy in T in by, (T) rounds. So
uy is a vertex of By, (T). Therefore, the path P’ = (p',... u,uy) is a path of length ¢ which
contains only nodes belonging to B (7).

Now, to prove that all the vertices in P’ are distinct, we will show that u; is not p*~2. By
hypothesis of induction, we have u = pﬁ_z. We also have b(T", p*=2) < byin(T) — 1 where T" is
the subtree of T' obtained by deletion of the edge (p*~2,u), and containing vertex p*~2. Thus
b(T' U {p*=2 u}, u) < bpmin(T) — 1. Thanks to remark 1, we get that u; is not p*=2.

So, for any value of £, there exists a path P of length £ such that all vertices in P are distinct.
This is in contradiction with the fact that 7" has a bounded number of nodes. Thus there exists
a vertex  in By (T) such that (75, 2) > bpin(T) — 1. m|

From Lemma 3, we derive the following lower bound.

Lemma 4 Let T be a tree and x be a vertex of T such that b(T5,x) > bmin(T) — 1. Then
9(T) > bin(T) + H(T5 ) — 1.

Proof. Thanks to lemma 3, there exists a vertex @ of By, (T') such that b(T5, 2) > byin (T)—1
and b(TF, ) = bpmin (T). At round (75, 2) — 1, there exists a piece of information of some vertex
in 7§ which is not known outside of 75. The number of rounds to broadcast in 7' this piece
of information from a node in 75 is at least the number of rounds to broadcast in 77 from z.
Hence, gossiping in T needs at least b(7T5,z) — 1 4+ b(T7, ) rounds, and the lemma holds by
application of remark 1 and lemma 3. a

Now, we will present a polynomial algorithm generating a near optimal gossip protocol. This
algorithm is used to prove the upper bound stated in the following lemma.

Lemma 5 let T be an tree of at least three vertices. There exists a verter x in Bpmin (T) such

that buin(T) +6(T5,2) = 1 < g(T) < bmin (T) + (T35, x)

Proof. Lemmas 3 and 4 give the lower bound. For the upper bound, we present a gossip
protocol. First, one can select in polynomial time a vertex u in By (T) such that b(T5 u) >
bmin(T) — 1. The gossip protocol performs as follows: all pieces of information of T are accu-
mulated in u (Accumulation can be performed by just reversing a broadcast protocol). Then,
u broadcasts all pieces of information in 7". Let us count the number of rounds used by this
protocol.
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o If (T3, u) = bpmin(T), then this protocol performs the gossiping in 26, (T) rounds
(bmin (T) + b(T3, u) rounds).

o If b(T3, u) = bymin (T) — 1, then all pieces of information of 7" are collected in two vertices:
node u and a node in Tf. During the round b, (T), they exchange their pieces of
information. Indeed, this round corresponds to the last round of accumulation from 77 in
u, and to the first round of broadcasting of the information of 7'\ T} from w in T}{*. So,
this protocol performs the gossiping in 2b,;, (T) — 1 rounds (bpmin (T) + b(T5', u) rounds).

4 Further research

The broadcast and gossip problems are NP-complete in most of usual communication models
considered in the literature. This is the case of the 1-port telephone model [28], and all-port line
model [6]. Therefore, several approximation algorithms have been proposed (see for instance [2,
14, 20, 27]). The next step of this research is naturally to propose approximation algorithms
for all-port (edge-disjoint) line model. [log, n] is an upper bound for broadcasting [13], but one
can hope to do much faster, in particular for unbounded degree networks. Up to knowledge,
this problem has not yet be investigated in arbitrary networks. Our result shows that, given
a spanning tree of the networks, one can perform broadcast or gossip optimally on the tree.
However, this complexity can be far from the best result (consider as a counter example an
Hamiltonian graph with an Hamiltonian path as a spanning tree). A bread-first search spanning
tree should provide better results but no proof of this fact has yet been derived.
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