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Abstract

Population protocols have been introduced by Angluin et al. as a model of
networks consisting of very limited mobile agents that interact in pairs but
with no control over their own movement: A collection of anonymous agents,
modeled by finite automata, interact pairwise according to some rules that
update their states.

The model has been considered as a computational model in several pa-
pers. Input values are initialy distributed among the agents, and the agents
must eventually converge to the the correct output. Predicates on the initial
configurations that can be computed by such protocols have been character-
ized under several hypotheses. The model has initialy been motivated by
sensor-networks, but can be seen more generally as a model of networks of
anonymous agents interacting pairewise, including sensor networks, adhoc
networks, or models from chemistry.

In an orthogonal way, several distributed systems have been termed in
literature as beeing realizations of games in the sense of game theory. In
this paper, we investigate under which conditions population protocols, or
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more generally pairwise interaction rules, can be considered as the result of
symmetric game. We prove that not all rules can be considered as symmetric
games. We prove that some basic protocols can be realized using symmetric
games. We conjecture that not all protocols, and hence not all population
protocol computable (semi-linear) predicate can be computed by a symmetric
game.

As a side effect of our study, we prove that any population protocol can
be simulated by a symmetric one (but not necessarily a game).

Key words: Population Protocols, Computation Theory, Distributed
Computing, Algorithmic Game Theory

1. Introduction

The computational power of networks of anonymous resource-limited mo-
bile agents has been investigated in several recent papers.

In particular, Angluin et al. proposed in [2] a new model of distributed
computations. In this model, called population protocols, finitely many finite-
state agents interact in pairs chosen by an adversary. Each interaction has the
effect of updating the state of the two agents according to a joint transition
function.

A protocol is said to (stably) compute a predicate on the initial states of
the agents if, in any fair execution, after finitely many interactions, all agents
reach a common output that corresponds to the value of the predicate.

The model was originally proposed to model computations realized by
sensor networks in which passive agents are carried along by other entities.
The canonical example of [2] corresponds to sensors attached to a flock of
birds and that must be programmed to check some global properties, like
determining whether more than 5% of the population has elevated temper-
ature. Motivating scenarios also include models of the propagation of trust
[10].

Much of the work so far on population protocols has concentrated on
characterizing which predicates on the initial states can be computed in dif-
ferent variants of the model and under various assumptions. In particular,
the predicates computable by the unrestricted population protocols from [2]
have been characterized as being precisely the semi-linear predicates, that
is to say those predicates on counts of input agents definable in first-order
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Presburger arithmetic [22]. Semilinearity was shown to be sufficient in [2]
and necessary in [3].

Variants considered so far include restriction to one-way communications,
restriction to particular interaction graphs, to random interactions, with pos-
sibly various kind of failures of agents. Solutions to classical problems of
distributed algorithmics have also been considered in this model. Refer to
survey [4] for a survey and complete discussion.

The population protocol model shares many features with other mod-
els already considered in the literature. In particular, models of pairwise
interactions have been used to study the propagation of diseases [15], or
rumors [9]. In chemistry the chemical master equation has been justified
using (stochastic) pairwise interactions between the finitely many molecules
present [19, 14]. In that sense, the model of population protocols may be
considered as fundamental in several fields of study, as appearing as soon as
anonymous agents interact pairwise.

In an orthogonal way, pairwise interactions between finite-state agents are
sometimes motivated by the study of the dynamics of particular two-player
games from game theory. For example, paper [11] considers the dynamics of
the so-called PAV LOV behaviour in the iterated prisoner lemma. Several
results about the time of convergence of this particular dynamics towards the
stable state can be found in [11], and [12], for rings, and complete graphs.

The purpose of this article is to better understand whether and when
pairwise interactions, and hence population protocols, can be considered as
the result of a game. We want to understand if restricting to rules that come
from a symmetric game is a limitation, and in particular whether restricting
to rules that can be termed PAV LOV in the spirit of [11] is a limitation. We
do so by giving solutions to several basic problems using rules of interactions
associated to a symmetric game. We conjecture that not all protocols, and
hence not all population protocol computable (semi-linear) predicate can be
computed by a Pavlovian population protocol.

As such protocols must also be symmetric, we are also discussing whether
restricting to symmetric rules in population protocols is a limitation. We
prove that any population protocol can be simulated by a symmetric one
(but not necessarily a game).

In Section 2, we briefly recall population protocols. In Section 3, we recall
some basics from game theory. In Section 4, we discuss how a game can be
turned into a dynamics, and introduce the notion of Pavlovian population
protocol. In Section 5 we prove that any symmetric deterministic 2-states
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population protocol is Pavlovian, and that the problem of computing the OR,
AND, as well as the leader election and majority problem admit Pavlovian
solutions. We then discuss our results in Section 6.

Related work. Population protocols have been introduced in [2], and proved
to compute all semi-linear predicates. They have been proved not to be able
to compute more in [3]. Various restrictions on the initial model have been
considered up to now. An (almost) up to date survey can be found in [4].

Variants include discussions about the influence of removing the assump-
tion of two-way interaction: One-way interaction models include variants
where agents communicate by anonymous message-passing, with immediate
delivery or delayed delivery, or where agents can record it has sent a message,
or queue incoming messages [1]. However, as far as we know, the constraint
of restricting to symmetric rules has not been yet explicitely considered, nor
restricting to rules that correspond to games in the population protocol lit-
erature.

More generally, population protocols arise as soon as populations of anony-
mous agents interact in pairs. Our original motivation was to consider rules
corresponding to two-players games, and population protocols arose quite
incidentally. The main advantage of the [2] settings is that it provides a clear
understanding of what is called a computation by the model. They are plenty
of distributed systems that have been described as the result of games, but
as far as we know there has not been attempts to characterize what can be
computed by games in the spirit of this computational model.

In this paper, we turn two players games into dynamics over agents,
by considering PAV LOV behaviour. This is inspired by [11, 12, 17] that
consider the dynamics of a particular set of rules termed the PAV LOV be-
haviour in the iterated prisoner lemma. The PAV LOV behaviour is some-
times also termed WIN-STAY, LOSE-SHIFT [20, 5]. Notice, that we ex-
tended it from two-strategies two-players games to n-strategies two-players
games, whereas above references only talk about two-strategies two-players
games, and mostly of the iterated prisonner lemma.

This is clearly not the only way to associate a dynamics to a game. They
are several famous classical approaches: The first consists in repeating games:
see for example [21, 7]. The second in using models from evolutionary game
theory: refer to [16, 23] for a presentation of this latter approach. The ap-
proach considered here falls in method that consider dynamics obtained by
selecting at each step some players and let them play a fixed game. Alter-
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natives to PAV LOV behaviour could include MY OPIC dynamics (at each
step each player chooses the best response to previously played strategy by
its adversary), or the well-known and studied FICTIOUS − PLAY ER dy-
namics (at each step each player chooses the best response to the statistics
of the past history of strategies played by its adversary). We refer to [13, 7]
for a presentation of results known about the properties of the obtained dy-
namics according to the properties of the underlying game. This is clearly
non-exhaustive, and we refer to [5] for an incredible zoology of possible be-
haviours for the particular iterated prisonner lemma game, with discussions
of their compared merits in experimental tournaments.

Notice that a preliminary version of this article has been presented in
Complexity of Simple Programs CSP’08. Compared to this preliminary ver-
sion, we simplified some constructions, we added a few protocols, and we
extended deeply related work discussions.

2. Population Protocols

A protocol [2, 4] is given by (Q, Σ, ι, ω, δ) with the following components.
Q is a finite set of states. Σ is a finite set of input symbols. ι : Σ → Q
is the initial state mapping, and ω : Q → {0, 1} is the individual output
function. δ ⊆ Q4 is a joint transition relation that describes how pairs of
agents can interact. Relation δ is sometimes described by listing all possi-
ble interactions using the notation (q1, q2) → (q′1, q

′
2), or even the notation

q1q2 → q′1q
′
2, for (q1, q2, q

′
1, q

′
2) ∈ δ (with the convention that (q1, q2) → (q1, q2)

when no rule is specified with (q1, q2) in the left-hand side). The protocol
is termed deterministic if for all pairs (q1, q2) there is only one pair (q′1, q

′
2)

with (q1, q2) → (q′1, q
′
2). In that case, we write δ1(q1, q2) for the unique q′1 and

δ2(q1, q2) for the unique q′2.
Notice that, in general, rules can be non-symmetric: if (q1, q2) → (q′1, q

′
2),

it does not necessarily follow that (q2, q1) → (q′2, q
′
1).

Computations of a protocol proceed in the following way. The computa-
tion takes place among n agents, where n ≥ 2. A configuration of the system
can be described by a vector of all the agents’ states. The state of each
agent is an element of Q. Because agents with the same states are indistin-
guishable, each configuration can be summarized as an unordered multiset
of states, and hence of elements of Q.

Each agent is given initially some input value from Σ: Each agent’s initial
state is determined by applying ι to its input value. This determines the
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initial configuration of the population.
An execution of a protocol proceeds from the initial configuration by

interactions between pairs of agents. Suppose that two agents in state q1

and q2 meet and have an interaction. They can change into state q′1 and q′2 if
(q1, q2, q

′
1, q

′
2) is in the transition relation δ. If C and C ′ are two configurations,

we write C → C ′ if C ′ can be obtained from C by a single interaction of two
agents: this means that C contains two states q1 and q2 and C ′ is obtained by
replacing q1 and q2 by q′1 and q′2 in C, where (q1, q2, q

′
1, q

′
2) ∈ δ. An execution

of the protocol is an infinite sequence of configurations C0, C1, C2, · · · , where
C0 is an initial configuration and Ci → Ci+1 for all i ≥ 0. An execution is
fair if for all configurations C that appear infinitely often in the execution,
if C → C ′ for some configuration C ′, then C ′ appears infinitely often in the
execution.

At any point during an execution, each agent’s state determines its out-
put at that time. If the agent is in state q, its output value is ω(q). The
configuration output is 0 (respectively 1) if all the individual outputs are
0 (respectively 1). If the individual outputs are mixed 0s and 1s then the
output of the configuration is undefined.

Let p be a predicate over multisets of elements of Σ. Predicate p can
be considered as a function whose range is {0, 1} and whose domain is the
collection of these multisets. The predicate is said to be computed by the
protocol if, for every multiset I, and every fair execution that starts from
the initial configuration corresponding to I, the output value of every agent
eventually stabilizes to p(I).

Multisets of elements of Σ are in clear bijection with elements of N|Σ|: a
multiset over Σ can be identified by a vector of |Σ| components, where each
component respresents the multiplicity of the corresponding element of Σ in
this multiset. It follows that predicates can also be considered as a function
whose range is {0, 1} and whose domain is N|Σ|.

The following was then proved in [2, 3].

Theorem 1 ([2, 3]). A predicate is computable in the population protocol
model if and only if it is semilinear.

Recall that semilinear sets are known to correspond to predicates on
counts of input agents definable in first-order Presburger arithmetic [22].
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3. Game Theory

We now recall the simplest concepts from Game Theory. We focus on
non-cooperative games, with complete information, in extensive form.

The simplest game is made up of two players, called I and II, with a
finite set of options, called pure strategies, Strat(I) and Strat(II). Denote
by Ai,j (respectively: Bi,j) the score for player I (resp. II) when I uses
strategy i ∈ Strat(I) and II uses strategy j ∈ Strat(II).

The scores are given by n×m matrices A and B, where n and m are the
cardinality of Strat(I) and Strat(II). The game is termed symmetric if A
is the transpose of B: this implies that n = m, and we can assume without
loss of generality that Strat(I) = Strat(II).

In this paper, we will restrict to symmetric games.

Example 1 (Prisoner’s dilemma). The case where A and B are the following
matrices

A =

(
R S
T P

)
, B =

(
R T
S P

)
with T > R > P > S and 2R > T + S, is called the prisoner’s dilemma. We
denote by C (for cooperation) the first pure strategy, and by D (for defection)
the second pure strategy of each player.

As the game is symmetric, matrix A and B can also be denoted by:

Opponent
C D

Player
C R S
D T P

A strategy x ∈ Strat(I) is said to be a best response to strategy y ∈
Strat(II), denoted by x ∈ BR(y) if

Az,y ≤ Ax,y (1)

for all strategies z ∈ Strat(I).
A pair (x, y) is a (pure) Nash equilibrium if x ∈ BR(y) and y ∈ BR(x).

A pure Nash equilibrium does not always exist.
In other words, two strategies (x, y) form a Nash equilibrium if in that

state neither of the players has a unilateral interest to deviate from it.
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Example 2. On the example of the prisoner’s dilemma, BR(y) = D for all
y, and BR(x) = D for all x. So (D, D) is the unique Nash equilibrium, and
it is pure. In it, each player has score P . The well-known paradox is that
if they had played (C, C) (cooperation) they would have had score R, that is
more. The social optimum (C, C), is different from the equilibrium that is
reached by rational players (D, D), since in any other state, each player fears
that the adversary plays C.

We will also introduce the following definition: Given some strategy x′ ∈
Strat(I), a strategy x ∈ Strat(I) is said to be a best response to strategy
y ∈ Strat(II) among those different from x′, denoted by x ∈ BR 6=x′(y) if

Az,y ≤ Ax,y (2)

for all strategy z ∈ Strat(I), z 6= x′.
Of course, the role of II and I can be inverted in the previous definition.
There are two main approaches to discuss dynamics of games. The first

consists in repeating games [21, 7]. The second in using models from evo-
lutionary game theory. Refer to [16, 23] for a presentation of this latter
approach.

Repeating Games.. Repeating k times a game, is equivalent to extending the
space of choices into Strat(I)k and Strat(II)k: player I (respectively II)
chooses his or her action x(t) ∈ Strat(I), (resp. y(t) ∈ Strat(II)) at time
t for t = 1, 2, · · · , k. Hence, this is equivalent to a two-player game with
respectively nk and mk choices for players.

To avoid confusion, we will call actions the choices x(t), y(t) of each player
at a given time, and strategies the sequences X = x(1), · · · , x(k) and Y =
y(1), · · · , y(k), that is to say the strategies for the global game.

If the game is repeated an infinite number of times, a strategy becomes a
function from integers to the set of actions, and the game is still equivalent
to a two-player game1.

Behaviours.. In practice, player I (respectively II) has to solve the following
problem at each time t: given the history of the game up to now, that is to
say

Xt−1 = x(1), · · · , x(t− 1)

1but whose matrices are infinite.
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and
Yt−1 = y(1), · · · , y(t− 1)

what should I play at time t? In other words, how to choose x(t) ∈ Strat(I)?
(resp. y(t) ∈ Strat(II)?)

Is is natural to suppose that this is given by some behaviour rules:

x(t) = f(Xt−1, Yt−1),

y(t) = g(Xt−1, Yt−1)

for some particular functions f and g.

The Specific Case of the Prisoner’s Lemma.. The question of the best be-
haviour rule to use for the prisoner lemma gave birth to an important lit-
erature. In particular, after the book [5], that describes the results of tour-
naments of behaviour rules for the iterated prisoner lemma, and that argues
that there exists a best behaviour rule called TIT − FOR − TAT . This
consists in cooperating at the first step, and then do the same thing as the
adversary at subsequent times.

A lot of other behaviours, most of them with very picturesque names have
been proposed and studied: see for example [5], [6], [18].

Among possible behaviours is PAV LOV : in the iterated prisoner lemma,
a player cooperates if and only if both players opted for the same alternative
in the previous move. This name [17, 20, 5] stems from the fact that this
strategy embodies an almost reflex-like response to the payoff: it repeats its
former move if it was rewarded by R or T points, but switches behaviour if
it was punished by receiving only P or S points. Refer to [20] for some study
of this strategy in the spirit of Axelrod’s tournaments.

The PAV LOV behaviour can also be termed WIN-STAY, LOSE-SHIFT
as if the play on the previous round resulted in a success, then the agent
plays the same strategy on the next round. Alternatively, if the play resulted
in a failure the agent switches to another action [20, 5].

Going From 2 Players to N Players.. PAV LOV behaviour is Markovian:
a behaviour f is Markovian, if f(Xt−1, Yt−1) depends only on x(t − 1) and
y(t− 1).

From such a behaviour, it is easy to obtain a distributed dynamic. For
example, let’s follow [11], for the prisoner’s dilemma.

9



Suppose that we have a connected graph G = (V, E), with N vertices.
The vertices correspond to players. An instantaneous configuration of the
system is given by an element of {C, D}N , that is to say by the state C or
D of each vertex. Hence, there are 2N configurations.

At each time t, one chooses randomly and uniformly one edge (i, j) of the
graph. At this moment, players i and j play the prisoner dilemma with the
PAV LOV behaviour. It is easy to see that this corresponds to executing the
following rules: 

CC → CC
CD → DD
DC → DD
DD → CC.

(3)

What is the final state reached by the system? The underlying model
is a very large Markov chain with 2N states. The state E∗ = {C}N is
absorbing. If the graph G does not have any isolated vertex, this is the
unique absorbing state, and there exists a sequence of transformations that
transforms any state E into this state E∗. As a consequence, from well-known
classical results in Markov chain theory, whatever the initial configuration is,
with probability 1, the system will eventually be in state E∗ [8]. The system
is self-stabilizing.

Several results about the time of convergence towards this stable state
can be found in [11], and [12], for rings, and complete graphs.

What is interesting in this example is that it shows how to go from a game,
and a behaviour to a distributed dynamics on a graph, and in particular to
a population protocol when the graph is the complete graph.

4. From Games To Population Protocols

In the spirit of the previous discussion, to any symmetric game, we can
associate a population protocol as follows.

Definition 1 (Associating a Protocol to a Game). Assume a symmetric
two-player game is given. Let ∆ be some threshold.

The protocol associated to the game is a population protocol whose set of
states is Q, where Q = Strat(I) = Strat(II) is the set of strategies of the
game, and whose transition rules δ are given as follows:

(q1, q2, q
′
1, q

′
2) ∈ δ
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where

• q′1 = q1 when Mq1,q2 ≥ ∆

• q′1 ∈ BR 6=q1(q2) when Mq1,q2 < ∆

and

• q′2 = q2 when Mq2,q1 ≥ ∆

• q′2 ∈ BR 6=q2(q1) when Mq2,q1 < ∆,

where M is the matrix of the game.

Remark 1. By substracting ∆ to each entry of the matrix M , we can assume
without loss of generality that ∆ = 0. We will do so from now on.

Definition 2 (Pavlovian Population Protocol). A population protocol is Pavlo-
vian if it can be obtained from a game as above.

Remark 2. Clearly a Pavlovian population protocol must be symmetric: in-
deed, whenever (q1, q2, q

′
1, q

′
2) ∈ δ, one has (q2, q1, q

′
2, q

′
1) ∈ δ.

5. Some Specific Pavlovian Protocols

We now discuss whether assuming protocols Pavlovian is a restriction.
We start by an easy consideration.

Theorem 2. Any symmetric deterministic 2-states population protocol is
Pavlovian.

Proof. Consider a deterministic symmetric 2-states population protocol. Note
Q = {+,−} its set of states. Its transition function can be written as follows:

++ → α++α++

+− → α+−α−+

−+ → α−+α+−
−− → α−−α−−

(4)

for some α++, α+−, α−+, α−−.
This corresponds to the symmetric game given by the following pay-off

matrix M
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Opponent

+ -

Player
+ β++ β+−

- β−+ β−−

where for all q1, q2 ∈ {+,−},

• βq1q2 = 1 if αq1q2 = q1,

• βq1q2 = −1 otherwise.

Unfortunately, not all rules correspond to a game.

Proposition 1. Some symmetric population protocols are not Pavlovian.

Proof. Consider for example a deterministic 3-states population protocol
with set of states Q = {q0, q1, q2} and a joint transition function δ such
that δ1(q0, q0) = q1, δ1(q1, q0) = q2 , δ1(q2, q0) = q0.

Assume by contradiction that there exists a 2-player game corresponding
to this 3-states population protocol. Consider its payoff matrix M . Let
M(q0, q0) = β0, M(q1, q0) = β1 , M(q2, q0) = β2. We must have β0 ≥ ∆ =
0, β1 ≥ ∆ = 0 since all agents that interact with an agent in state q0 must
change their state. Now, since q0 changes to q1, q1 must be a strictly better
response to q0 than q2: hence, we must have β1 > β2. In a similar way, since
q1 changes to q2, we must have β2 > β0 , and since q2 changes to q0, we must
have β0 > β1. From β1 > β2 > β0 we reach a contradiction.

This indeed motivates the following study, where we discuss which prob-
lems admit a Pavlovian solution.

5.1. Basic Protocols

Proposition 2. There is a Pavlovian protocol that computes the logical OR
(resp. AND) of input bits.

Proof. Consider the following protocol to compute OR,
01 → 11
10 → 11
00 → 00
11 → 11

(5)
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and the following protocol to compute AND,
01 → 00
10 → 00
00 → 00
11 → 11

(6)

Since they are both deterministic 2-states population protocols, they are
Pavlovian.

Remark 3. Notice that OR (respectively AND) protocol corresponds to the
predicates on counts of input agents n0 ≥ 1 (resp. n1 = 0) where n0, n1 are
the number of input agents in state 0 and 1 respectively.

Remark 4. All previous protocols are “naturally broadcasting” i.e., eventu-
ally all agents agree on some (the correct) value. With previous definitions
(which are the classical ones for population protocols), the following protocol
does not compute the XOR or input bits, or equivalently does not compute
predicate n1 ≡ 1 (mod 2). 

01 → 01
10 → 10
00 → 00
11 → 00

(7)

Indeed, the answer is not eventually known by all the agents. It computes
the XOR in a weaker form i.e., eventually, all agents will be in state 0, if
the XOR of input bits is 0, or eventually only one agent will be in state 1,
if the XOR of input bits is 1.

Proposition 3. There is a Pavlovian protocol that computes n1 ≥ 2, where
n is the number of input agents in state 1.

Proof. The following protocol is a solution taking

• Σ = {0, 1}, Q = {0, 1, 2},

• ω(0) = ω(1) = 0,

• ω(2) = 1.
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

00 → 00
01 → 01
10 → 10
02 → 22
20 → 22
11 → 22
12 → 22
21 → 22
22 → 22

(8)

Indeed, if there is at least two 1s, then by fairness and by the rule number
6, they will ultimately be changed into two 2s. Then 2s will turn all other
agents into 2s. Now, this is the only way to create a 2.

This is a Pavlovian protocol as it corresponds to the following payoff
matrix.

Opponent

0 1 2

Player
0 0 0 −1

1 0 −1 −1

2 1 1 1

Proposition 4. There is a Pavlovian protocol that computes n1 ≥ 3, where
n is the number of input agents in state 1.

Proof. bla bla
This is a Pavlovian protocol as it corresponds to the following payoff

matrix.
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Opponent

0 1 2 3 4

Player

0 0 0 0 0 −1

1 0 −1 −1 −1 −1

2 0 1 −1 −1 −1

3 0 0 1 −1 −1

4 0 0 0 1 0

5.2. Leader Election

The classical solution [2] to the leader election problem (starting from a
configuration with ≥ 1 leaders, eventually exactly one leader survives) is the
following: 

LL → LN
LN → LN
NL → NL
NN → NN

(9)

Notice that we use the terminology “leader election” as in [2] for this
protocol, but that it may be considered more as a“mutual exlusion”protocol.

Unfortunately, this protocol is non-symmetric, and hence non-Pavlovian.

Remark 5. Actually, the problem is with the first rule, since one wants two
leaders to become only one. If the two leaders are identical, this is clearly
problematic with symmetric rules.

However, the leader election problem can actually be solved by a Pavlo-
vian protocol, at the price of a less trivial protocol.

Proposition 5. The following Pavlovian protocol solves the leader election
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problem, as soon as the population is of size ≥ 3.

L1L2 → L1N
L1N → NL2

L2N → NL1

NN → NN
L2L1 → NL1

NL1 → L2N
NL2 → L1N
L1L1 → L2L2

L2L2 → L1L1

(10)

Proof. Indeed, starting from a configuration containing not only Ns, eventu-
ally after some time configurations will have exactly one leader, that is one
agent in state L1 or L2.

Indeed, the first rule and the fifth rule decrease strictly the number of
leaders whenever there are more than two leaders. Now the other rules, pre-
serve the number of leaders, and are made such that an L1 can always be
transformed into an L2 and vice-versa, and hence are made such that a con-
figuration where first or fifth rule applies can always be reached whenever
there are more than two leaders. The fact that it solves the leader elec-
tion problem then follows from the hypothesis of fairness in the definition of
computations.

This is a Pavlovian protocol, since it corresponds to the following payoff
matrix.

Opponent

L1 L2 N

Player
L1 −3 0 −3

L2 −1 −3 −3

N −2 −3 0

5.3. Majority

Proposition 6. The majority problem (given some population of 0s and 1s,
determine whether there are more 0s than 1s) can be solved by a Pavlovian
population protocol.
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Remark 6. If one prefers, the predicate n0 ≥ n1 on counts of input agents
can be computed by a Pavlovian population protocol.

Proof. We claim that the following protocol outputs 1 if there are more 0s
than 1s in the initial configuration and 0 otherwise,

NY → Y Y
Y N → Y Y
N0 → Y 0
0N → 0Y
Y 1 → N1
1Y → 1N
01 → NY
10 → Y N

(11)

taking

• Σ = {0, 1}, Q = {0, 1, Y, N},

• ω(0) = ω(Y ) = 1,

• ω(1) = ω(N) = 0.

In this protocol, the states Y and N are “neutral” elements for our pred-
icate but they should be understood as Yes and No. They are the “answers”
to the question: are there more 0s than 1s.

This protocol is made such that the number of 0s and 1s is preserved
except when a 0 meets a 1. In that latter case, the two agents are deleted
and transformed into a Y and a N .

If there are initially strictly more 0s than 1s, from the fairness condition,
each 1 will be paired with a 0 and at some point no 1 will left. By fairness
and since there is still at least a 0, a configuration containing only 0 and
Y s will be reached. Since in such a configuration, no rule can modify the
state of any agent, and since the output is defined and equals to 1 in such a
configuration, the protocol is correct in this case

By symmetry, one can show that the protocol outputs 0 if there are
initially strictly more 1s than 0s.

Suppose now that initially, there are exactly the same number of 0s and
1s. By fairness, there exists a step when no more agents in the state 0 or
1 left. Note that at the moment where the last 0 is matched with the last
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1, a Y is created. Since this Y can be “broadcast” over the Ns, in the final
configuration all agents are in the state Y and thus the output is correct.

This protocol is Pavlovian, since it corresponds to the following payoff
matrix.

Opponent
N Y 0 1

N 1 −1 −1 1
Player Y 0 1 1 −1

0 0 0 0 −1
1 0 0 −1 0

6. Discussions

We proved that predicates on counts of input agents n = 0, n ≥ 1, n ≥ 2,
n ≥ 3, n ≥ m, where n, m are some counts of input agents, can be computed
by some Pavlovian population protocols.

It is clear that the subset of the predicates computable by Pavlovian
population protocols is closed by negation: just switch the value of the indi-
vidual output function of a protocol computing a predicate to get a protocol
computing its negation.

However, some work remains to be done to fully characterize which pred-
icates can be computed by a Pavlovian population protocol. The first steps
would be to understand the following questions.

Question 1. Is mod 2, or equivalently the predicate n ≡ 1 (mod 2), com-
putable by a Pavlovian population protocol?

Question 2. Is ≥ k, or equivalently the predicate n ≥ k, for fixed k, com-
putable by a Pavlovian population protocol?

Notice that, unlike what happens for general population protocols, com-
posing Pavlovian population protocols into a Pavlovian population protocol
is not easy. It is not clear whether Pavlovian computable predicates are closed
by conjunctions: classical constructions for general population protocols can
not be used directly.
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7. On The Power of Symmetric Population Protocols

As we said, Pavlovian Population protocols are symmetric. We however
know that assuming population protocols symmetric is not a restriction.

Proposition 7. Any population protocol can be simulated by a symmetric
population protocol, as soon as the population is of size ≥ 3.

Before proving this proposition, we state the (immediate) main conse-
quence.

Corollary 1. A predicate is computable by a symmetric population protocol
if and only if it is semilinear.

of proposition. To a population protocol (Q, Σ, ι, ω, δ), with Q = {q1, · · · , qn}
associate population protocol (Q ∪ Q′, Σ, ι, ω, δ′) with Q′ = {q′1, · · · , q′n},
ω(q′) = ω(q) for all q ∈ Q, and for all rules

qq → αβ

in δ, the following rules in δ′:

qq′ → αβ
q′q → βα
qq → q′q′

q′q′ → qq
qγ → q′γ
q′γ → qγ
γq → γq′

γq′ → γq

for all γ ∈ Q ∪Q′, γ 6= q, γ 6= q′, and for all pairs of rules{
qr → αβ
rq → δε

with q, r ∈ Q, the following rules in δ′:
qr′ → αβ
r′q → βα
rq′ → δε
q′r → εδ.
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The obtained population protocol is clearly symmetric. Now the first set
of rules guarantees that a state in Q can always be converted to its primed
version in Q′ and vice-versa. By fairness, whenever a rule qq → αβ (re-
spectively qr → αβ) can be applied, then the corresponding two first rules
of the first set of rules (resp. of the second set of rules) can eventually be
fired after possibly some conversions of states into their primed version or
vice-versa.
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