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Abstract. In all this paper we use the graph theory definitions and
notations form [1]. This paper deals with b-colorings of a graph G, i.e.,
proper colorings in which for each color, there exists at least one vertex
it is assigned to such that each other color is assigned to at least one of
its neighboor. The maximal cardinality of such a b-coloring is denoted
by b(G), and each proper coloring with cardinal x(G) is a b-coloring.
We say that G is b-continuous iff for each k, x(G) < k < b(G), there
exists a b-coloring with cardinal k. It is well known that no all graphs
are b-continuous. Calling b-spectrum of G the set of cardinals of all the
b-colorings of G, we first show that for any integer set I, there exists
a graph which b-spectrum is I. Then, we show that, even if b-colorings
of cardinal x(G) and b(G) are given, the problem of knowing if G is
b-continuous is NP-complete. At end, we show that interval graphs are
b-continuous.

1 Introduction

A b-coloring of a graph G is a proper coloring 7 of the vertices of G [1] such
that for each color ¢, there exists a vertex v with w(v) = ¢ such that for any
color ¢’ # ¢, there exists v' € I'g(v) with w(v') = ¢’ (where I'¢(v)is the neigh-
borhood of v). Such a vertex v is called a b-chromatic vertex for c. We define
|7| = {c: v € V(G), n(v) = c}| the cardinality of the coloring. If |7| = k, then
7 is called a (k)b-coloring.

The b-coloring of graphs has been defined in [2] from the a-coloring of graphs
[5] (i-e., a proper coloring 7 in G in which for each pair of colors ¢ and ¢/, there
exists an edge [u,v] in G such that 7(u) = ¢ and 7(v) = ¢’). Irving and Manlove
also give an algebraic definition of a b-coloring [2].

Given a graph G, the b-chromatic number b(G) is the greater integer k such
that there exists a (k)b-coloring. Given an integer k, knowing if b(G) > k is a
NP-complete problem [2], even if G is bipartite [3]. This problem has been shown



to be in P for trees, and some lower bounds of the b-chromatic number has been
given for the cartesian product of two graphs [2,4].

It is easy to see that any proper coloring with x(G) colors (the chromatic
number) is a b-coloring. One peculiar carateristic of b-colorings is that for some
graphs G, there exists some integers k, x(G) < k < b(@), for which there is no
(k)b-coloring in G (see for example the hypercube H(3) with k£ = 3 [2]). As far
as we know, this is the first coloring definition with such a characteristic. Thus,
we say that a graph G is b-continuous iff for any k, x(G) < k < b(Q@), there
exists a (k)b-coloring in G. This carateristic has been first studied in the paper
of [3] in which they give an infinite class of graphs being not b-continuous.

We focus here on the b-continuity of graphs. We thus define the b-spectrum
Sp(G) of a graph G as the set of integers k such that there exists a (k)b-coloring
of G. In this paper we mainly answer two questions :

1. For any subset of integers I, does there exist a graph G with S,(G) = I7
2. Is the problem of knowing if a given graph G is b-chromatic be NP-
complete?

The first question is asked in [3]. We define a composition of graphs with
which, from elementary bipartite and complete graphs, for any integer set I we
give a graph G with Sy(G) = I.

About the second question, given a graph G and an integer k, knowing if
k € Sy(G@) is NP-complete [3].Note that this does not answer question 2. We
show that the problem of knowing if a given graph G is b-continuous is NP-
complete. This problem also remains NP-complete if a (x(G))b-coloring and a
(b(@))b-coloring are given. We then study some classes of graphs in which de-
termining the chromatic number and/or the b-chromatic number is easy. In this
sense using a similar idea in [8], we show that interval graphs are b-continuous.
Note that we know the the a-chromatic number problem is NP-complete for in-
terval graphs [6] but that the question is still open for the b-chromatic number
problem.

In Section 3 we deal with the Question 1, by showing that for any set of
integers I C IN \ {0,1} there exist a graph with b-spectrum I, In Section 4
we deal with the Question 2 to show that the problem is NP-complete even if
b-colorings of cardinal x(G) and b(G) are given. We conclude by showing in
Section 5 that interval graphs and a special family of graphs are b-continuous.

2 Preliminary Result

Definition 1. Let G and H be two graphs. We note by ((G,H) the graph
defined by :

- V(G H) = V(G) U (
- E(((G, H)) = E(G) UE(
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)U{lg,hl,Vg € V(G),Vh e V(H)}
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Fig. 1. Example of function (.

Proposition 1. Let G and H be two graphs. The b-spectrum of ((G, H) is the
set {k+ k' : k€ Sp(G), k' € Sp(H)}

Proof. Let w be a (k)b-coloring of the graph G. Let @’ be a (k')b-coloring of the
graph H.

We construct a coloring ©”’ of a the graph ((G, H), defined by
Ve € V(G), 7" (z) = n(z) and Vo € V(H), 7" (z) = 7'(z) + k.

It is clear to see that 7'’ is a proper coloring and also a (k + k')b-coloring.

Let " be a (k'")b-coloring of the graph ((G, H). It is clear that the sets of
colors C; = 7"(V(G)) and Cy = n''(V(H)) are disjoint. Thus any b-chromatic
vertex for a color ¢ € Cy (resp. ¢ € Cs) and all its neighbors of color belonging
to Cy (resp. Cs) are in V(G) (resp V(H)). Consequently the restriction 7"
V(G) — Cy (resp. #" : V(H) — C> is a b-coloring of G (resp. of H), and we
have [C4| € Sp(G), |Ca2] € Sp(H) with k" = |Cy| + |C2]. a

We denote by K, ,, the graph obtained from the complete bipartite graph K, »
by removing a perfect matching.

Proposition 2. [3] The b-spectrum of K, ,, is the set {2,n}.

n

3 Graphs with a given b-spectrum

Theorem 1. For any finite nonempty set I C IN\ {0, 1} there exists a graph G
such that Syp(G) =1

Proof. To prove the theorem it suffices to consider sets I with min(I) = 2.
Indeed, for min(I) = a > 2, if there exists a graph G such that S,(G) =
{2,n1—(a—-2),...,np—(a— 2)} then by Proposition 1 we have Sp(¢(G, Kq—2)) =
{a,n1,...,np}.

Thus we only consider three cases function of the cardinality of I.
Case 1: For I = {2}, it suffices to consider G = K.
Case 2: For [ = {2,n}, by Proposition 2 the b-spectrum of K, ,, is {2,n}.
Case 3: [ = {2,n1,...,np}, with 2 < ny < ... < n, and p > 2. We Consider
a graph G being a bipartite graph with n, indepandent vertex set. this graph
G = (U_,V;,Ul_ | E;) is defined as follows (see Fig 2) :



Vo={vd,.. ., 00"V, :{vll,,...,vgp ,

Vie{l,...,p—1}, V; = {vl,.. . ot

. VL, j, with (1< j <n,)and (1<€<ny), vivi € E, & (L # )

SVie{l,...,p—1}, V4 j, with (2 < j <n; —1) and (1 < € < ny), vhv! €
E; & (L #7)

5. Vie{l,...,p—1}, ¥/, vfv} € B; & (2<€<n; — 1)

= N =

We can check that the graph G satisfying the following properties :

a. Any edge has one and only one endpoint in V, (see 3,4,5).

b. The graph induced by Vo UV, isa Kj,_,, (see 3).

c. Vi€ {1,...,p—1}, the graph induced by V;U{v},..., o5 '} is a Ky 1 nie1
(see 4).

d. Vi€ {1,...,p— 1}, the graph induced by {vg?,...,v5? } U (V; \ {v}}) is the
complete bipartite graph K, _(n,_1)n;—2 (see 4 and 5).

e. Vi € {1,...,p—1}, thereis no edge lacking a vertex in the set {v$, vy, ..., v5" }
with v} (see 4).

In the remaining of this section we show that the b-spectrum of G is I.

By (a.), G is bipartite. Hence x(G) = 2 and thus any 2-coloring of G is a
b-coloring. Since A(G) + 1 = n,, there is no b-coloring of G with more than n,
colors.

First, Vi € {1,...,p — 1}, we define a b-coloring 7; of G using n; colors.

Let ip € {1,...,p — 1}. Consider m;, the following coloring :

-Vje {17 ceey Mg — 1}7 71-iol(v(]).) = Ty ('Uzj"o) =7
— Vi€ {nig,-.. np}, i, (V) =1
- Vie{l,...,p}, with i #ig, Yo € V;, 7, (v) = 0y,

Obviously Vi € {1,...,p—1}, m; is a b-coloring of G. The b-chromatic vertices
are vy, Vj € {1,...,n;, — 1} and v € V; with i > ij.
Let 7, be the following coloring of G.

—Vje{l...n,}, mp(v)) =mp(vl) =] '
-Vi,1<i<p, Vje{l,....n; — 1}, mp(v]) =j

Obviously , is a (np)b-coloring of G.

So, we have shown that I C S,(G). It remains to prove the equality between
these sets. It suffices to show that for any (k)b-coloring 7 of G, k < n; implies
that £ =2 and n, <k < npy1, with » > 1 implies k£ = n,..

Claim. If there exists a (k)b-coloring of G such that k < n,, then exactly one
color is not in w(Vp) and all the other colors have all their b-chromatic vertices
in V().

!

Indeed, since k < ny and the graph induced by Vo UV, is K, , thus at least
one color is not in w(Vp). Otherwise there exists at least one vertex in V,, with all
the k colors in its neighbohood. Hence there is no available color for this vertex.



Since every edge has one and only one endpoint in Vg, then if at least two
colors have b-chromatic vertices in U?_, V; then all the k colors are in m(Vp)
which is not possible as described above. So the b-chromatic vertices of exactly
k — 1 colors are in V4.

Suppose first that k& < ni. Since the graph induced by Vo UV}, is K:lp,np, and
k < ni < np, then at least one color is not in 7(Vp). Without loss of generality
we may suppose k ¢ w(Vp). Therefore all the b-chromatic vertices of colors 1 to
k—1arein Vp. As k—1 < n; —1, at least two vertices of the set {vg,... ,vgl_l}
have the same color, say for instance color k — 1. By construction, no vertex of
V(G) \ Vo can be of color k — 1, therefore there is no b-chromatic vertex of color
k — 2 at all, and k& must be equal to 2 in order that = be a b-coloring.

Suppose now that n, < k < ny41, with » > 1. By the claim given above, at
least one color lacks in Vp, say k ¢ w(V5). The b-chromatic vertices of colors 1
to k — 1 are all in Vj. As above, at least two vertices of {u{,...,v0" ' ™'} have
the same color, say color 1. By construction, no vertex of V; with j > +1, can
have color 1, and the only vertex of V; with j < which may accept this color
is the vertex vjl-. Therefore the b-chromatic vertices of colors 2 to k — 1 are in
the set {v3,...,v5" '}, hence k — 2 < n, — 2, 50 k = n,.

Hence the equality S;(G) = I is established. a

Figure 2 gives a graph with b-spectrum {2,4,6}.
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Fig. 2. A graph with b-spectrum {2,4,6}.

4 NP-completeness results
In [2] the authors show that the following problem called B-CHROMATIC NUMBER
Problem is NP-complete.

B-CHROMATIC NUMBER Problem
Instance: a graph G and an integer k



Question: Does there exist a b-coloring of size ¢ such that k < ¢?

Problem X3C may be defined as follows:
Exact Cover by 3-Sets (X3C)
Instance: A set S = {s1,82,---,8,} and a collection T' = {T1,T>»,--- , T}
where Vi, |T;| =3
Question: Does T contain an exact cover for S, i.e, is there a set T' (T' C T
of pairwise disjoint sets whose union is S7

A polynomial transformation R is provided. R transforms any instance of
X3C defined by (S,T) into an instance of B-CHROMATIC NUMBER Problem de-
fined by (G, k).

Let I = (S,T) be an arbitrary instance of the X3C problem with S =
{s1,82,- - ,8n}, and T = {T1,Ts,--- , T} . We describe the polynomial trans-
formation R see [2], such that R(S,T) = (G, k).

Let G = (V,E). Let V.= {u1,...,Un, U, W1y, Wiy T1yeevy Ty Ylye-orYm )
and consider the set E containing the elements

ug,v] for 1 <i < n,

{v,wi] forl1 <i<m, Lo, 2] for 1 < i < j <m,
[
[

[zi,yjlfor 1<i<n,1<j<m& s €Ty,

o <ici<
wi,wy] for 1 <i <5 <m, i, yjlfor 1<i<j<m&T;NT; #0.

wi,z;]for 1<i<m,1<j<n,
More precisely, in [2], the authors prove

— Fact 0: m + n + 1 vertices of the graph obtained by R have degree at least
m + n and all the other vertices have degree less than m + n.

— Fact 1: T contains an exact cover for S if and only if there exists two
b-colorings of graph G of cardinal m +n + 1 and m + n.

— Fact 2: T does not contain an exact cover for S if and only if there exists
one and only b-coloring of G of cardinal m + n.

— Fact 3: The minimum number of colors having no b-chromatic vertices for
any coloring of graph G of size m +n + 1 is equal to the minimum number
of elements of S not covered.

The purpose of this section is to prove that the Problem B-CERNABLE is
NP-complete.
B-CERNABLE Problem
Instance: a graph G, x(G), and b(G).
Question: Is G b-continuous?

Before, giving the main result of this section, we show the following technical
lemma.

Lemma 1. Let K;,, = (U UV, E) be the complete bipartite graph minus a
perfect matching. In every coloring © of K, ,, by k colors, with 2 < k < n,each
bipartition classes contains a b-chromatic vertices for at most one color.



Proof. Suppose the contrary. By symmetry, say U contains b-chromatic vertices
for at least two colors. This implies that |7(V)| = k. Since k < n, at least one
vertex of U would have all the k colors in its neighborhood, a contradiction. O

Theorem 1. The problem B-CERNABLE is NP-complete.

Before proving Theorem 1, we give the upper bound of b(G) presented in [2].
Assume that the vertices vy, ..., v, of G are ordered such that d(v,),...,d(v,),
where d(z) denotes the degree of x. Let #(G) := maxz{i : d(v;) > i — 1}. Then
t(G) > b(G).

Proof. Problem B-CERNABLE is in NP. Since for a graph G, for each integer
k between x(G) and b(G), a non-deterministic polynomial time algorithm can
determine if there exists a (k)b-coloring of G.

The proof involves a transformation W from the NP-complete problem X3C.
We provide the transformation W from the X3C problem using the transforma-
tion R described in [2] given above. We describe the polynomial transformation

W, W(S,T) = (G, x(G),b(Q)).

— Input: An instance of X3C, i.e., S = {51, 52, -, Sn}, and a collection
T={T\,T>,--- ,T),} where Vi, |T;| =3,T; C S.
— Output: A graph G, x(G), and b(G).

1. S"'={s],sh,---,s5,}and T = {1}, T, --- , T3}
for 1 < i < m, if T; = {sj,sx,se} then T} = {s},s},s,}, T}, =
{S;'+n7 S;chn’ SIE + TL}, and Til+2m = {S.I]'Jan’ S;c+2n7 Sll + 2”}

CR(S, T = (G', k' =3n+3m +1).

. F= C(Gla ({’LL}, @))

. B= C(({U}, ®)7 Kili(m+n)+2,3(m+n)+2)'

. G = FUB (with a common vertex u)

return (G,3m + 3n + 1,3m + 3n + 3)

o Ul W N

(The obtained graph G is shown in Fig. 3. In Fig. 3 the graph G’ is the
resulting graph from the transformation R and a = 3m + 3n + 2.)

-

Fig. 3. The resulting graph G from the transformation W



Since the transformation R is polynomial, the transformation W is polyno-
mial too. Now, we show that 7' contains an exact cover for S if and only if the
graph G is b-continuous .

First we prove that x(G) = 3m + 3n + 1 and that b(G) = 3m + 3n + 3.

Obviously G’ obtained by R contains a clique of size 3m+3n. Thus ((G', ({u},0))
contains a clique of size 3m + 3n + 1, and so x(G) > 3m + 3n + 1. From Facts 1
and 2, the graph G’ obtained by R has a (3m + 3n)b-coloring and from Proposi-
tion 1, the graph ((G', ({u}, ®)) has a (3m + 3n + 1)b-coloring r. Moreover, from
Proposition 1 and Proposition 2 the graph ¢(({u}, ), K3 (mtn)+2,3(mtn)+2) has
only two b-colorings ¢’ and ¢ of size resptively 3, 3m + 3n + 3. W.l.o.g.. Assume
that ¢/(u) = ¢'(u) = r(u). The graph G has (3m + 3n + 1)b-coloring d, defined
as follows:

— d(v) =c'(v) if v € V(C(({u}, 0), K34 n)12,3(mtn)+2))-
— d(v) = r(v) otherwise.

It is clear that d is a (3m + 3n + 1)-coloring of G. So x(G) = 3m + 3n + 1 and
d is a (3m + 3n + 1)b-coloring of G. The graph G has (3m + 3n + 3)b-coloring
d' defined by :

— d'(v) = ¢"(v) if v € V(C(({u} 0), K5, ) 42,3(metm) 42))-
— d'(v) = r(v) otherwise.

It is easy to see that coloring d' is a (3m + 3n + 3)b-coloring. From Fact 0, G’
contains 3m+3n+ 1 vertices of degree 3m+3n and all other vertices have degree
less than 3m + 3n, and it is obvious that V(C(({u},0), K31 )12 3(mtn)+2))
contains 2(3m+3n+2)+1 vertices of degree 3m+3n+2. Hence ¢(G) = 3m+3n+3,
so |d'| = b(G).

— Assume that T contains an exact cover for S. So, from Fact 1, there exists
a (3m + 3n + 1)b-coloring £ of G'. Then ((G', ({u},®)) has a b-coloring ¢’ of
size 3m + 3n + 2, and (3m + 3n + 2)b-coloring ¢ of G can be defined by:

- c(v) = (v) if v € V(C(({u},0), K34 )12 30mtm)42))-
- ¢(v) = ¢'(v) otherwise.
Thus G is b-continuous .

— Assume that graph G is b-continuous .

We prove by contradiction that 7' contains an exact cover for S. Suppose
that T' does not contain an exact cover for S. So, by definition, 7" does not
contain an exact cover for S’. Let ¢ be a (3m + 3n + 2)b-coloring of G.

The vertex u is adjacent to all the other vertices in G. So no vertex can be
of the same color as u. Assume that c(u) = 0. So, u is a b-chromatic vertex
for the color 0 and there are 3m + 3n + 1 colors for all other vertices in G.
Since T does not contain an exact cover for S, T' does not contain an exact
for S" and by construction, any cover of S’ has at least 3 elements of S’ not
covered. From Fact 3, any coloring of graph G’ of size 3m + 3n + 1 has at
least 3 colors having no b-chromatic vertex in G'. So, these 3 colors must

have their b-chromatic vertices in Ké(m+n)+2’3(m+n)+2, but by Lemma 1 in



every (3m+3n + 1)-coloring of Ky, . o 3,4, o 8t most two colors may
have b-chromatic vertices , a contradiction So, T' contains an exact cover for

S. a

A similar proof can be used to show that Given only a graph G the problem of
knowing if G is b-continuous is NP-complete (see The Apendix).

5 b-continuity of some sets of graphs

5.1 Interval graphs

In this section we prove that some classes of graphs are b-continuous. Let G be
a graph. If one can constuct an algorithm which reduce any (k)b-coloring, for
any k > x(G), to a (k — 1)b-coloring, than G is b-continuous.

Definition 1. A graph G = (V, E) is an interval graph, if one can associate to
each vertex v € V an interval [iy, s;] C R, such that (z,y) € E & [ig,sz] N

[iy, 8] # 0.

Definition 2. Let G = (V, E) be an interval graph and © : V(G) — {1,...,p}
a coloring of G. Let S C V(G) a set of vertices. We call a vertex x € S
left-mazimum in S, if for anyy € S, we have iy < i,. Moreover, a color k € m(S)
will be said left-mazimum in S, if for any x € S with 7(x) = k and any j € 7(S)
there exists a vertex y € S with n(y) = j and iy < i,.

Theorem 1. Ewvery interval graph G is b-continuous

Proof. Let 7 be a b-coloring of G with p colors, p > x(G). We give an algorithm
which reduces 7 to a b-coloring 7’ of G using only p — 1 colors. Recall that the
extended neighborhood I'z[z] of a vertex z results from the adjonction of z itself
to its ordinary neighborhood I'¢(z) ={y €V : (z,y) € E}.

Let X be the set of b-chromatic vertices for the coloring 7. First we shall
apply the following subroutine, in order to eliminate the b-chromatic vertices for
at least one color :

Pruning X
While |7(X)| =p do

— (a) Choose a left-maximum vertex z € X. Call S(z) = {y € V(G) : iy, >
iz}, Igle] = Talz] \ S(z) and S'(z) = {y € S(z) : =(y) ¢ 7(I5[x])}

— (b) Select a color k which is left-maximum in S’(z), and color each vertex
having this color in §’(x) with another color, in such a way that the coloring
7 remains a good one.

— (c) Delete from X the vertices which are no more b-chromatic for the (mod-
ified) coloring .

od.
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Before going further we must show that this subroutine is consistent, and
that it gives as output a good coloring ¢ for which at least one color has lost all
its b-chromatic vertices, i.e. for which |7(X)| < p.

As regards part (a), note that by definition of a left-maximum vertex, no
vertex in S(z) is b-chromatic. Also, the set I';[z] is a clique of G, since every
interval I, with y € I'¢[z] contains i,. Therefore we have |I';[z]] < x(G) < p,
and the set {1,...,p}\7(L};[z]) is nonempty. But, since vertex x is b-chromatic,
the colors of the last set must be found in S(z) and the set S’ () also is nonempty.

As regards part (b), since y € S'(z) is not b-chromatic, we have |7 (I'c[y])| <
p and the recoloring of y is possible. Note also that the set of vertices in S'(z)
having color k is a stable set of G, so we may recolor these vertices independently.

As regards part (c), color k is no longer present in I'g[z] C I, [z] U S(x), so
at least x may be deleted from X, but we must prove that no new b-chromatic
vertex can arise from the recoloring of part (b). This is clear for any vertex
y € S(z) since I'gly] C I'L[z] N S(z) in which color k£ no longer appears. But it
could happen that some vertex y € I';[z] keeps a neighbor of color k outside of
the previous set, while its neighbors of the same color in S’(x) were recolored
in part (b). Let therefore y € I';[z] and z € I'¢[y] N S'(z) with 7(z) = k before
recoloring, and 7(z) = j # k afterwards. It suffices to prove that j is not a
new color in the neighborhood of y, which is easy if this color already was in
(L4 [x]) since I'G[z] C I'gly]. Otherwise, {j, k} is a subset of 7(S’(z)). By the
left-maximality of k there is a vertex 2z’ € S’(z), already of color j before step
(b), with i, <., implying that 2’ is in I'¢[y], and we are done.

After the last application of the previous subroutine, we get a new set X
of b-chromatic vertices such that at least one color lacks in 7(X). We have to
consider two cases.

Case 1. We obtain |7(X)| = p — 1. So only one color, say k, lost all its b-
chromatic vertices at the end of the previous subroutine. It is now easy, for the
same reason as given above for part (b), to recolor all the vertices remaining in
V with color k, by another color, and obtain by this way a b-coloring 7’ of G
using only p — 1 colors, namely the set {1,...,p}\ {k}.

Case 2. |7(X)| < p — 2. Let & be the b-chromatic vertex selected in the last
application of part (a), with w(z) = j. After application of (b), together with
x, other b- chromatic vertices, necessarily in I;[z], lost all their neighbors of
color k. If we now give to x this color k, these vertices may reintegrate X for a
coloring without j. In fact, since # was the last b-chromatic vertex of color 7 we
may recolor all the vertices having this color, by another color, and the result is
a b-coloring 7' of G with set of colors {1,...,p}\ {4} a

5.2 A special family of graphs
Let G be a connected graph, (T,)yev (@) a family of nonempty trees. For each

T,, select a vertex w,, and consider the graph H obtained by identification of
each v € V(G) with v.
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Definition 3. Let w be a b-coloring of H, we say that v € V(H) is an extreme
vertex of w if it is a b-chromatic vertex such that the graph induced by V (H)\{v}
has at least two connected component, and only one connected component called
C, contains all the b-chromatic vertices of .

Proposition 1. If G is b-continuous, so is H

Proof. G is b-continuous, so for any k, x(G) < k < b(G), G has a (k)b-coloring.
As trees are bipartite we may extend any (k)b-coloring of G to a (k)b-coloring
of H. It is clair that b(G) < b(H).

If b(G) < b(H), it is suffices to construct an algorithm which reduce, for
any k, b(G) < k < b(H), a (k)b-coloring 7 of H to to a b-coloring 7' using
only k£ — 1 colors. For this, if there are b-chromatic vertices outside of V(G),
choose an extreme vertex v of 7 in this set. One can easily recolor all connected
components C' # C,, in such away that all the neighbors of v take the color of its
neighbor in C,,. We iterate this recoloring process until one color has lost all its
b-chromatic vertices or that all the b-chromatic vertices are in V(G). We must
now consider two cases.

Case 1. If one color ¢ lost all its b-chromatic vertices then it is easy to recolor
any vertex of this color by a missing color in its neighborhood.

Case 2. V(G) contains at least one b-chromatic vertex of each color. As b(G) < k
there exists at least one b-chromatic vertex v such that not all the k colors appear
in I'¢[v] and by recoloring T, with the set w(I'[v]), v becomes a non b-chromatic
vertex. We iterate this until one color has lost all its b-chromatic vertices, so this
case reduces to the previous one. O

Corollary 1. The graphs containing only one cycle are b-continuous.
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Appendix

B-CONTINUITY Problem
Instance: a graph G
Question: Does G be b-continuous?

Theorem 2. The problem B-CONTINUITY is NP-complete

Proof.

First, we prove that the problem B-CONTINUITY is in NP. For a graph G, x(G)
and b(G) can be computed using non-deterministic polynomial time algorithms.
For each integer i between x(G) and b(G), a non-deterministic polynomial time
algorithm can determine if there exists a b-coloring of G' by i colors.

The proof involves a transformation 7 from the NP-complete problem X3C.
We provide the transformation 7 from the X3C problem using the transforma-
tion R described in [2].

We suppose that S = {s1,s2,---,s,}, and a collection T' = {T},T5,--- , Tin }
( where Vi, |T;| = 3,T; C S) is some arbitrary instance I of the X3C problem.
From this instance, we obtain an instance I" of B-CHROMATIC NUMBER problem
of by using transformation R. The instance I" is composed of graph G and
an integer k. After that, the graph ((G, H3) is build where Hj is a hypercube
of 8 vertices. So, the instance of the B-CONTINUITY problem obtained by the
transformation 7 is the graph ((G, Hs3).

T(I)=1TI'is if and only if
R(I)=1" where I" = (G, k) and
I' = (¢(G, H3)) where Hj is a hypercube of 8 vertices.

where [ is an arbitrary instance of the X3C problem such that I = (S,T)
with |S| = n and |T| = m. Since the transformation R is polynomial, the
transformation 7 is too polynomial. Now, we show that 7' contains an exact
cover for S if and only if graph ((G, H3) is b-continuous.

— Let assume that T contains an exact cover for S. So, by Fact 1, there exist
two b-colorings of graph G obtained by R of size m + n + 1 and m + n.
From Proposition 1, graph ((G, H3) has four b-colorings of size m + n + 2,
m4n+1+2 m+n+4, m+n+1+4. So graph ((G, H3) is b-continuous.

— Let assume that graph ((G, H3) is b-continuous. We prove by contradiction
that T' contains an exact cover for S. Assume that 7" does not contain an
exact cover for S. So, by Fact 2, there exists one b-coloring of graph G of
size m+n. Thus, from Proposition 1, graph ((G, Hs) has some b-colorings of
size m+n+2, m+n+4. As graph ((G, H3) is b-continuous, it implies that
graph ((G, H3) has too a b-coloring of size m + n + 3. From Proposition 1,
it implies that graph G has a b-coloring of size m+n+3—-2, m+n+3—4
and it is a contradiction with Fact 1.so, T contains an exact cover for S. O



