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Abstract

The multicast problem is an information dissemination problem which consists, for one node
of a network, to broadcast a data to a specified subset of nodes. The broadcast problem is the
particular case of the multicast problem in which every node of the network is a destination node.
Motivated by the common use of trees as underlying topology to support group-communications
in telecommunication systems, this paper solves the multicast and broadcast problems in trees.
More precisely, this paper considers these two problems under several variants of the line model.
This communication model allows long-distance calls to be performed in a single round. The aim
of the line model is to cover communication modes such as circuit-switching or wormhole, and
certain aspects of ATM systems (virtual path), or WDM optical systems (single-hop routing).
The difficulty of the broadcast and multicast problems is sensitive to slight variations of the
model such as directed trees vs. undirected trees, single-port constraint vs. all-port constraint,
edge-disjoint calls vs. vertex-disjoint calls, etc. For each of these variants, this paper gives
a polynomial-time algorithm which returns either an optimal protocol, or a protocol which is
optimal up to a constant multiplicative factor.
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1 Introduction

1.1 Motivations

Recent advances in telecommunication systems enhanced standard point-to-point communication
protocols to multi-point protocols. These latter protocols are of particular interest for group ap-
plications. Those groups involve more than two users (some may even involve thousands of users)
sharing a common application, e.g., video-conferences, distributed data-bases, media-spaces, games,
etc. Several protocols have been proposed to handle and to control a large group of users. We refer
to [11, 25] for surveys on multi-point applications and protocols. Solutions differ, e.g., according
to the type of traffic which is induced by the shared application, and according to the quality of
service required by the users. However, a common feature of these solutions is to propose multi-
point architectures based on trees, either a single tree connecting all the group members (e.g., the
protocol CBT [1]), or several trees, one for every source (e.g., the protocol PIM [10]). The traffic
between the users is then routed along the edges of the tree(s).

The major communication problem related to multi-point applications consists to broadcast a
message from one user to all the users of the application. This operation is called broadcast at the
application level, though it is actually a multicast at the network level. The repetition of point-
to-point connections between the source and the several destinations would significantly increase
the traffic in the network, and it makes this solution not applicable in practice [11]. Therefore,
the source must require the help of other nodes to relay messages. A message will then reach its
destinations after having been relayed by several intermediate nodes (each intermediate node may
possibly get one copy of the message if it belongs to the group). In order to preserve the broadcast
application from transmission errors, and to bound the interval between successive receptions of
consecutive packets, the number of hops between the source and each destination must be as small
as possible. The aim of this paper is to provide polynomial algorithms which for any tree T' = (V, E),
any source 4 € V, and any set of destinations D C V, return a multicast protocol from u to D
which minimizes the number of hops. The algorithms depend on the communication model for
which the protocol is designed.

Several communication models have been considered in the literature. They decompose in
mainly two classes: local models and line models. Local models are motivated by switching tech-
niques such as store-and-forward or deflection routing, whereas line models are motivated by switch-
ing techniques such as circuit-switching or wormhole, and certain aspects of ATM (virtual path)
or WDM optical systems (single-hop routing). In local models, node-to-node calls must be placed
between neighbors, whereas, in line models, calls can be placed between nodes at distance greater
than one. As a consequence, the diameter of the network (more precisely, the eccentricity of the
source) is a lower bound on the number of hops required to solve the broadcast problem under
local models, whereas this is no more a constraint under line models. The multicast and broadcast
problems have been both solved in trees under several variants of the local model, but they are
still open under most variants of the line model. This paper solves both multicast and broadcast
problems in trees under all standard variants of the line model.

1.2 Line models

Communications proceed by sequence of simultaneous calls. During a given call, the source of the
call sends its information to the destination of the call. A round is defined as a set of simultaneous



calls. The efficiency of a communication protocol is estimated in terms of number of rounds. A
multicast protocol performing in k rounds is optimal if there is no protocol performing in less
than k rounds that achieves the same multicast. The construction of optimal protocols is strongly
dependent of the communication constraints. The single-port constraint states that every node can
give a call to at most one other node at a time, whereas the all-port constraint states that every
node can call as many nodes at a time, though not more than its out-degree.

In the single-port local model, the set of calls at any given round forms a matching in the
network. The structure of the set of calls performed at the same round in the line model is more
complex, and it depends on additional hypotheses. In every variant of the line model, a call
is a path connecting a source to one or more destination(s) according to whether the model is
single-port or all-port. The edge-disjoint constraint states that simultaneous calls must be pairwise
edge-disjoint. This constraint is motivated by the wish to avoid link-contention in the network.
A stronger constraint aims to avoid node-contention: the vertez-disjoint constraint states that the
calls performed at the same round must be pairwise vertex-disjoint. We will consider both directed
and undirected trees. In the directed case, the links are supposed to be oriented from the source of
the multicast (the root of the tree) toward the leaves. Thus, in the directed case, the edge-disjoint
constraint states that two simultaneous calls must not share any arc.

Let D C V be the destination-nodes of a multicast from u € V. Every node can be involved to
transmit calls. The restricted regimen states that only nodes in D can be used to relay messages.
More precisely, under the restricted regimen, a node v ¢ D can be crossed by calls, i.e., by paths,
placed between nodes in D, but v cannot be used to receive a message at a given round in order
to forward it to other nodes later. To clarify this restriction, consider a directed tree T' in which
the source (i.e., the root) u has a single child v, and v has k > 2 children wy,...,w. Let D =
{wy,...,wg}. In the unrestricted regimen all-port line model, multicast from u to D can be
performed in 2 rounds: wu calls v at the first round, and v simultaneously calls wq,...,w; at the
second round. However, still in the all-port line model, multicast from » cannot be performed in
less than k£ rounds under the restricted regimen because, for every i, 1 < ¢ < k, w; can be called
only by u since v cannot be used to relay messages, but only to transmit calls. The restricted
regimen is motivated by the wish to limit the use of nodes that are not directly involved in the
group-communication because (1) not all routers in current telecommunication systems are able to
run multicast protocols, and (2) nodes not involved in a group application may not accept to be
bothered by the traffic of this application. Therefore, although it looks a bit artificial at a first
glance, the restricted regimen is of major importance. Note that the restricted regimen does not
apply for D =V, that is as far as the broadcast problem is concerned.

Therefore, we are considering four alternatives: single-port constraint vs. all-port constraint,
edge-disjoint calls vs. vertex-disjoint calls, directed trees vs. undirected trees, and restricted
regimen vs. unrestricted regimen. The all-port vertex-disjoint line model is not considered since
the authors are not aware of systems in which nodes are able to initiate several calls simultaneously,
but are unable to be traversed by more than a single call at a time.

1.3 Previous works

Local model. The local model has been investigated in the literature since the early 50’s (see
in particular the survey [17]). With the growing interest in both parallel systems and telecom-
munication systems, a huge literature from the late 80’s to nowadays has been devoted to specific
group-communication problems (see the surveys [14, 18]). In particular, the decision problem re-



lated to broadcasting under the single-port local model was proved to be NP-complete for arbitrary
networks [31] (see also [24]). It gave rise to several approximation algorithms [2, 22, 29] and heuris-
tics [15, 30]. Trees deserved a specific interest as it was shown that computing an optimal broadcast
protocol in a tree under the single-port local model is polynomial [28]. A polynomial-time algo-
rithm to find the nodes having minimal broadcast-time among all nodes of a tree, has been derived
in [31]. The broadcast problem in undirected trees has been studied in [13] under the hypothesis
that, at the beginning of the process, many nodes know the information. Finally, it was shown
that, for any n, there exists an undirected tree whose broadcast-time from any source is at most
log, n where o = % (see [16, 23]), and that it is the best that can be achieved. From all these
results, one can say that the broadcast problem is solved in trees under the local model.

The situation is different when long-distance calls are allowed, that is under the line model.

Single-port edge-disjoint line model. In this model, it was shown that every undirected n-
node graph has a broadcast-time [logy n] (see [12], and also [21]). Interestingly, this result can be
extended to the case in which the routes along which are performed the calls are chosen according
to a shortest path routing function (see [7]). However, these results do not hold in directed graphs:
take as a counter example the digraph G in which a node « has a unique outgoing arc to a node v,
which has in turn n — 2 outgoing arcs to n — 2 vertices wy, ..., wy_2, each connected by an outgoing
arc to node u. It takes [%] rounds to broadcast from u in G' under the single-port edge-disjoint
line model. Actually, the broadcast problem is NP-complete for arbitrary directed networks in this

model [6].

Single-port vertex-disjoint line model. In this model, the broadcast problem is also NP-
complete for arbitrary networks [6]. It was therefore studied for specific architectures such as
cycles or toruses [19, 20]. More interestingly, an O(log’ign)—approximation algorithm has been
derived [22].

All-port (edge-disjoint) line model. In this model, the broadcast problem is NP-complete [6].
Some results have been however derived for specific architectures such as toruses or hypercubes [26,
27]).

Tree networks. For trees, very little is known under line models, apart in two cases.

e Under the single-port edge-disjoint line model, the result in [12] applies, that is the broadcast
time of any n-node undirected tree is [log, n].

e Under the single-port vertex-disjoint line model, an O(n3)-time algorithm which returns an
optimal broadcast protocol in any directed tree is known (see [3, 4]). It was also shown in [3]
that the duration of an optimal broadcast protocol in directed tree under the single-port
vertex-disjoint line model is at most twice as long as an optimal broadcast protocol under the
single-port edge-disjoint line model. However, it is pointed out in [4] that the complexity of
broadcasting in directed trees under the single-port edge-disjoint line model remains unsolved.

Again, the main purpose of this paper is to solve the broadcast and multicast problems for trees
in all variants of the line model.

1.4 Our results.

All our results are summarized in Table 1. More precisely:



edge-disjoint edge-disjoint vertex-disjoint
single-port all-port single-port
Undirected
trees Broadcast Opt. [7, 12] Opt. [Th. 3.2] 3-apx [Th. 5.2]
. Unrest. reg. Opt. [7] Opt. [Th. 6.1] 3-apx [Cor. 6.2]
Multicast Rest. reg. Opt. [7] Open pb. Open pb.
D‘tizc::d Broadcast 2-apx [4] & [Th. 5.3] Opt. [Th. 3.1] Opt. [4] & [Th. 5.1]
Multicast 0TTest- reg- 2-apx [Cor. 6.1] Opt. [Th. 6.1] Opt. [Th. 6.2]
UHCast  pest. reg. 2-apx [3, 4] & [Cor. 6.4] Opt. [Th. 6.3] Opt. [3, 4] & [Cor. 6.3]

Table 1: Broadcast and multicast problems in trees under the variants of the line model.

e We have almost completely solved the multicast problem in directed and undirected trees
under the all-port edge-disjoint line model. More precisely, for all but one of the variants of
the model, we have given a polynomial-time algorithm which returns an optimal multicast
protocol under the constraints of that variant. The multicast problem in directed trees under
the restricted regimen is let open. The worst-case time-complexity of our slowest algorithm is
O(nlogn) for the broadcast problem, and O(n?) for the multicast problem, where n denotes
the number of nodes of the tree.

e For every variant of the single-port vertex-disjoint line model, we have given a polynomial-
time algorithm which returns an optimal multicast protocol in directed trees. The worst-case
time-complexity of our slowest algorithm is O(n?). This improves the worst case complexity
of the algorithm in [4] by a factor of ©(n).

e For every variant of the single-port edge-disjoint line model, we have given an O(n?)-time
2-approximation algorithm for the multicast problem in directed trees. This latter result
improves the worst case complexity of the 2-approximation algorithm in [3, 4] by a factor of

O(n).

e For all variants of the single-port wvertex-disjoint line model, but one, we have given an
O(nlogn)-time 3-approximation algorithm for the multicast problem in undirected trees. The
multicast problem under the restricted regimen is let open.

1.5 Organization of the paper.

Section 2 presents some preliminary results, and introduces several notions that are crucial for
the purpose of this paper. Then, Section 3 shows how to construct optimal broadcast protocols
in trees under the all-port variants of the line model. Section 4 solves a matrix problem, called
the contention-free matrixz problem, whose solution allows to construct optimal broadcast protocols
in directed trees under the single-port vertex-disjoint line model. This construction is given in
Section 5 which focuses on the broadcast problem in trees under the single-port variants of the line
model. Section 6 shows how to generalize all the previous results to the multicast problem. Finally,
Section 7 contains some concluding remarks.

Notation. Throughout all the paper, T' = (V, E) denotes a tree (directed or not) rooted at the
source ug of the broadcast (or multicast) process. For any v € V', T, denotes the subtree of T



rooted at v (i.e., if w is the first node reached from v along the shortest path from v to w in 7', then
removing the edge (v, w) decomposes T in two subtrees, T}, containing v, and T \ T, containing
uw and w). The number of nodes of T is denoted by n, and the number of nodes of T, v # uy, is
denoted by |T,,|.

2 Shadows, and lexical optimality

A broadcast protocol B from ug in T can be described by the list of calls performed by B at every
round. Our constructions of optimal broadcast protocols are based on the following definition.

Definition 2.1 Let B be a broadcast protocol from ug performing in r rounds in a tree T = (V, E)
rooted at ug. The shadow of B on an edge e € E is the array shad(B,e) = (z1,...,2.), ©; €
{—1,0,1}, such that

e z; =1 if and only if there is a call passing downward through e at round i of B;
e z; = —1 if and only if there is a call passing upward through e at round i of B; and
e z; =0 if and only if no call is passing through e at round i of B.

Let “<” be the lexicographic order on the words whose letters are in {—1,0, 1}, and satisfying
-1<0<1

Definition 2.2 Let T = (V, E) be any tree, let B be a broadcast protocol from the root ug of T, and
let e € E. B is said lexicographically optimal in e if shad(B,e) < shad(B',e)) for any broadcast
protocol B' from ug in T.

Note that a broadcast protocol B that is lexicographically optimal in e does not necessarily
minimize the number of calls passing through e.

Remark. For directed trees, shad(B,e) € {0,1}" and thus a shadow can be viewed as an integer:
shad(B,e) = (z1,...,2,) = >,y 2" ". In this context, the relation “<” is simply the natural
order “<” on the integers.

Some variants of the line model allow broadcast protocols to be lexicographically optimal on
every edge simultaneously, as stated in the following theorem whose proof is reported in Appendix A.

Theorem 2.1 Under the all-port edge-disjoint line model, for any directed or undirected tree T
rooted at ug, there exists an optimal broadcast protocol from wuy in T which is lexicographically
optimal on every edge of T.

However, the global lexical optimality cannot be always achieved for every variant of the line
model. As a counter example, consider the single-port constraint, and let T be the directed tree
of three vertices ug,z and y, and two arcs e, = (ug,z) and e, = (up,y). There are two possible
optimal broadcast protocols from ug in T": B, consists for ug to call z first, and then y; B, consists
for ug to call y first, and then . We have shad(B;,e;) = shad(By,e,) = (0,1), but there is no
broadcast protocol B satisfying shad(B,e;) = shad(B,e,) = (0,1). Nevertheless, the single-port
vertex-disjoint line model satisfies the following property.



Lemma 2.1 Let T be a directed tree rooted at u. Assume u has a unique child v. Let e = (u,v),
and let B be a broadcast protocol from u under the single-port vertex-disjoint line model. For any
integer t > shad(B, e), there is a broadcast protocol By from u such that shad(By,e) = t. Moreover,
B, can be constructed from t and B in O(logt) time.

Proof. Lett= (t1,...,ts) > shad(B,e) = (z1,...,2,). Let 2’ = (z},...,2) = (0,...,0,21,...,2,)
with s — r zeros inserted at the front. B; performs as follows.

o If s >r thenlet k =s—r. Forevery i, 1 <i <k, if t;, =1 then u calls v at round 7 of ;.

o If s = then let £ be the smallest index such that ¢; # z). For every i, 1 <14 < k, B; performs
at round ¢ as B does at the same round. At round k, u calls v in B; (whereas u was idle in B
at round k).

The fact that v is informed at round k in B; allows to simulate the role of w in B during the
remaining rounds of B;. More precisely, let i € {k +1,...,s}.

o If t; = z! then the calls of B; performed at round ¢ are the calls of B performed at round
i—(s—r).

e If £; = 0 and z = 1 then the calls of B; performed at round 7 are the calls of B performed at
round 7 — (s — r), excepted that, if u calls w in B then v calls w in By, and u stays idle in B;.
(This transformation is valid since v is necessarily idle in B because it is traversed by a call
from u).

o If t;, = 1 and z} = 0 then the calls of B; performed at round ¢ are the calls of B performed at
round 7 — (s — r), excepted that

e if v is idle in B then u calls v in By;
e if v calls w in B then u calls w in By, and v stays idle in B;.

By construction, shad(B;,e) = t. Given B and ¢, the construction of B; can be done in O(logt)
phases by sequentially considering the [log,¢| bits of the binary decomposition of ¢. At every
phase, B; is obtained from B by a constant number of operations. |

Note that Lemma 2.1 does not holds in the single-port edge-disjoint line model. As a counter
example, let T' be the directed tree of six nodes: u, v, w1y, wo, w3, w4, where u has a unique child v,
and v has fours children w;, ¢ = 1,...,4. Here is the list of calls of a broadcast protocol B from u
in T performing in three rounds:

e Round 1: u — v;
e Round 2: v — wy and v — wo;
e Round 3: u — w3 and v — wy.

Let e = (u,v), and let ¢ = 8. We have shad(B,e) = 7, thus ¢t > shad(B,e). However, one cannot
broadcast from u in T' in four rounds by giving a single call through e. Indeed, this round would
be used by w to inform v, and u would be idle the rest of the time. Node v would then need four
additional rounds to inform the w;’s.



Vanishing and advanced calls. Let us conclude this section by some simple remarks. Let T' =
(V, E) be a tree rooted at ug. Let B be a broadcast protocol from wug in T that is lexicographically
optimal in e € E, and let shad(B,e) = (x1,...,z,). Let B’ be another broadcast protocol from wug
in T, and let shad(B',e) = (y1,...,9s), s > r. Let 2’ = (z},...,2}) = (0,...,0,21,...,2,) with
s —r zeros at the front. If T' is directed then, from Definition 2.2, if there exists i such that 2} =1
and y; = 0, then we say that x} vanishes in B'. In that case, since B is lexicographically optimal
in e, there exists j < 4 such that mg =0 and y; = 1. Let k be the largest index smaller than 4 such
that =}, < yi. The call 2} of B is said advanced at round & in B'. Similarly, if 7" is undirected then,
from Definition 2.2, if there exists ¢ such that z} > y;, then we say that z} vanishes in B’. In that
case, there exists 7 < ¢ such that x; < y;. Again, with the same definition for k, the downward call
z, or the idle time z} of B is said advanced at round k in B’, either by performing a call downward
through e in B’ at round k (whereas either no call or an upward call is performed through e in B at
round k), or by staying idle in B’ at round k (whereas round £ is used for an upward call through
e in B). We summarize this discussion for further references as follows:

Lemma 2.2 A call (resp., a downward call or an idle time) of a lezicographically optimal broadcast
protocol B in a directed tree (resp., undirected tree) which vanishes in another broadcast protocol B'
must have been advanced in B' compared to its original position in B.

3 All-port constraint

This section in concerned with the all-port model. We start by considering directed trees. Undi-
rected trees are considered afterward.

3.1 Directed trees

Lemma 3.1 Let T be a directed tree rooted at ug. The broadcast time of uy in T is at most
2[1logy 1| under the all-port edge-disjoint line model.

Proof. The proof is by induction on k& = [logy n]. The result holds for £ = 1. Assume it holds
forn <2F k> 1,andlet n € {2 +1,... 281}, Let x be the node of T such that |T,| > n/2, and
|Ty| < n/2 for every child y of z. (Such a property is satisfied by exactly one vertex z.) Now, let
us consider the following broadcast protocol from uy. At the first round ug calls z. At the second
round, u is idle, and x calls simultaneously all its children. Then, by induction hypothesis, ug can
broadcast in 7'\ T}, in at most 2k rounds, and every child y of z can broadcast in its subtree T} in
at most 2k rounds. Thus the whole protocol takes at most 2 + 2k = 2[log, n| rounds. |

Our algorithm for constructing an optimal broadcast protocol in a directed tree under the all-
port constraint proceeds bottom-up, from the leaves toward the root, by merging lexicographically
optimal broadcast protocols in subtrees.

Lemma 3.2 Let T be a directed tree rooted at ug, let v € V, v # ug, and let u be the parent of v
in T. Let Ty, ..., T, be the p subtrees of T' rooted at the p children wn,...,w, of v. Assume that,
foranyi=1,...,p, we know a broadcast protocol B; from v in T; which is lexicographically optimal
on e; = (v,w;). There is an O(plogn)-time algorithm which returns a broadcast protocol from u in
T, which is lexicographically optimal on e = (u,v).



Proof. We merge the protocols B;’s. Let ¢; be the number of rounds of B;, i.e., ¢; is the length of
the boolean array shad(B;,e;). Let ¢ = max;—1,. p¢;, and let M be the (p + 1) x ¢ boolean matrix
whose first row (say row 0) has a single 1-entry located at column ¢q. Row i of M, 1 < i < p, consists
of shad(B;, e;) possibly complemented with heading 0O-entries if ¢; < ¢q. From M, we construct a
boolean matrix M’ as follows. If every column of M contains at most one l-entry, then M’ = M.
Otherwise, let ¢ be the index of the leftmost column of M containing more than one 1-entry. (That
is ¢ is the smallest index such that column ¢ contains more than one 1-entry.) If there is no zero-
column (that is a column with 0O-entries only) left to column ¢, then add a zero-column at the
beginning of M, relabel the columns from 1 to ¢ + 1, and let d = 1. Otherwise, let d < ¢ be the
index of the rightmost zero-column located left to column c¢. Then move the 1-entry of row 0 from
the last column to column d. The remaining entries are not modified, and the construction of M’
is completed.

Let B be the broadcast protocol obtained from M’ as follows. Let d be the position of the
1-entry on row 0 of M'. For every i,i=1,...,d — 1, u calls z at round 4 of B if and only if v calls
z at round 7 of some Bj. At round d, u calls v. Then u stays idle for all the remaining rounds.
All the other calls of B are those of the B;’s. Note that v can be involved in more than a single
call simultaneously since two or more 53;’s may simultaneously place a call from v after round d.
Nevertheless, this is allowed by the all-port constraint.

The time required to construct B is the time it takes to construct M’, that is O(pq). From
Lemma 3.1, ¢; < 2[log, n| for every i. Therefore, B is constructed in O(plogn) time.

We claim that B is lexicographically optimal in e. The rest of the proof is dedicated to the
proof of that claim. If there was no added zero-column, then shad(B,e) = (z1,...,24-1,1,0,...,0)
where, for 1 < d, z; = Z?Zl shad(Bj,e;); € {0,1}. If a zero-column has been added to M, then
shad(B, e) has g+ 1 entries, and shad(B,e) = (1,0,...,0). Assume for the purpose of contradiction
that there exists a broadcast protocol B’ from u in T}, such that shad(B’,e) < shad(B,e). Let k be
the round at which u calls v in B’. We consider two cases.

Case 1. shad(B,e) has ¢ + 1 entries. Two sub-cases:

(a) k < c. Since there is no zero-column left to column ¢ in M, some B; is giving a call
through e; at round k. Therefore, from Lemma 2.2, this call has been advanced in B’,
say at round k' < k. In turn, since there is no zero-column left to column ¢ in M, some
B; is giving a call through e; at round k. Therefore, from Lemma 2.2, this call has
been advanced in B’, say at round k" < k' < k. We construct in this way a decreasing
sequence of indices. Since this sequence is bounded from below, it necessarily ends,
yielding a contradiction.

(b) k > ¢. The contending 1’s of column ¢ imply that one of these calls must be advanced
in B" at round k' < ¢ < k. Applying the reasoning of Case 1(a), we construct again a
decreasing sequence of indices yielding a contradiction.

Case 2. shad(B,e) has ¢ entries. Let shad(B',e) = (y1,...,¥q), and let ¢ be the smallest index
such that y, < xy. Note that £ < d because z; = 0 for every ¢ > d. Moreover, ¢ # k because
yr = 1. Two sub-cases:

(a) k < £. Since y; = x; for every i < £, in particular z; = yx = 1 and thus some B; is giving
a call through e; at round k. From Lemma 2.2, this call must be advanced in B’, say at
round k' < k. By repeating for ¥ what we did for k, we construct a decreasing sequence



of indices. Since this sequence is bounded from below, it necessarily ends, yielding a
contradiction.

(b) ¢ < k. Two sub-cases:

(%) k < d. Hence we have ¢ < d, and thus, since xy = 1, some B; is giving a call through
e; at round £. Since yy = 0 and v is not yet informed at the /-th round of B’, from
Lemma 2.2, this call must be advanced in B', say at round &' < £ < k. Applying the
reasoning of Case 2(a), we construct again a decreasing sequence of indices yielding
a contradiction.

(#2) k > d. Two sub-cases:

e If d < k < ¢, then since there are exactly one l-entry on every column of M
between column d and column ¢, some B; is giving a call through e; at round
k. From Lemma 2.2, this call must be advanced in B’ at round k¥ < k. We
construct again a decreasing sequence of indices yielding a contradiction.

e If ¢ < k, then the contending 1’s of column c¢ imply that one of these calls
must be advanced in B’ at round k' < ¢ < k. We construct again a decreasing
sequence of indices yielding a contradiction.

All cases lead to a contradiction. Therefore 5 is lexicographically optimal, which completes the
proof. |

Theorem 3.1 There is an O(nlogn)-time algorithm which, given any directed tree T rooted at uy,
returns an optimal broadcast protocol from ugy in T under the all-port edge-disjoint line model.

Proof. The algorithm proceeds bottom-up, from the leaves toward the root. For each arc e = (u, v)
incoming to a leaf v, the optimal broadcast protocol B, from w in T}, consists of a unique call from
u to v. We get shad(By,e) = (1). Let v € V, v # uyg, be an internal node, and let u be the father
of v in T. Let Ti,...,T, be the p subtrees of T rooted at the p children wi,...,w, of v. Let
e; = (v,w;), i =1,...,p. Assume that, for every i = 1,...,p, we know a broadcast protocol B; that
is lexicographically optimal in e;. From Lemma 3.2, a broadcast protocol B,, that is lexicographically
optimal in e = (u,v) can be constructed in O(plogn) time. At the root, let Si,...,S, be the p
subtrees of T rooted at the p children vy,...,v, of ug. Let e; = (ug,v;), ¢ = 1,...,p. Given the p
broadcast protocols B; that are lexicographically optimal in e;, respectively, merging these protocols
at ug takes a constant time since ug can perform several calls simultaneously. The resulting protocol
is an optimal broadcast protocol from ug in 7" because it is lexicographically optimal in all incident
edges of uyg.

The total time required by this bottom-up construction is (3", ¢y deg™ (v) log n) where deg™ (v)
is the number of children of v in T'. Therefore, the whole construction takes O(nlogn) time. W

3.2 Undirected trees

We proceed for undirected trees in a similar way as we did for directed trees. However, merging
broadcast protocols is a bit more tricky in undirected trees than in directed trees because of the
upward calls. (Recall that we are dealing with the all-port model here.)



Lemma 3.3 Let T be a tree rooted at ug, let v € V, v # ugy, and let u be the parent of v in T.
Let Ty,...,T, be the p subtrees of T rooted at the p children wi,...,w, of v. Assume that, for
any 1 =1,...,p, we know a broadcast protocol B; from v in T; that is lexzicographically optimal on
e; = (v,w;). There is an O(plogn)-time algorithm which returns a broadcast protocol from u in T,
that is lexicographically optimal on e = (u,v).

Proof. We use the same notation as in the proof of Lemma 3.2. Therefore, we start with a matrix
M of p+ 1 rows and ¢ columns labeled from left to right. The first row (row 0) contains only
zeros, but a single 1-entry at column g. The p other rows are the p shadows of the protocols B;’s.
Note that M has its entries in {—1,0,1}. From M, we derive a matrix M’ as follows. If every
column of M satisfies that the sum of its entries is in {—1,0,1}, then M' = M. Otherwise, let ¢
be the smallest index such that column ¢ has the sum S of its entries not in {—1,0,1}. If S < —1
then the l-entry of the first row is moved to the column c. If S > 1, then let d < ¢ be the largest
index smaller than ¢ such that the sum of the entries of column d is in {—1,0}. If there is no such
column, then a zero-column is added to the left of the first column of M. The l-entry of the first
row is moved to the column d. The remaining entries are not modified. The construction of M’ is
completed.

Let B be the broadcast protocol from u in T}, obtained from M’ as follows. Let d be the column-
index of the 1-entry of the row 0 of M'. For every j, j =1,...,d—1,let M, i= 17 ...,p, be the p
entries of rows 1 to p of the column j of M’ (row 0 contains a 0 entry) Slnce Z ; €{-1,0,1},
we pair every 1 with a —1, such that at most one l-entry is not palred7 or at most one —l-entry
is not paired. If M; ; is paired with M; ., say M ;= —1 and M ; =1, then the source of the
upward call of B;, calls the destination of the downward call of l”:»’l2 If it remains a 1 that is not
paired, say MZ’0 ; = 1 is not paired, then u calls the destination of that call of B;,. If it remains a
—1 that is not paired, say Mi’o,j = —1 is not paired, then the source of that call of B;, calls u (this
call is actually useless for the purpose of transmitting information, but it allows to minimize the
shadow on e). At round d, there are three cases according to the sum ¥ of the entries of column d,

distinct from the 1-entry of row 0.

e If3 < —1, then the 1’s are paired with the —1’s. It remains at least two —1 that are unpaired,
say M ’1 d and p,de I B, the upward call of B;, has destination v, and the upward call of
B;, has destmatlon u. The possible other upward calls are removed.

e If ¥ = —1, then the 1’s and the —1’s are paired as before. The remaining —1, say MZ'0 &
corresponds to an upward call of B;,. In B, this call has destination v.

e If ¥ = 0, then the 1’s and the —1’s are paired as before, and a call from w is added in B to
inform v.

After round d, u stays idle in B and node v takes in charge the calls inside T, corresponding to
the 1-entries in the shadows of the B;’s. Moreover, v provides upward calls through e toward u at
every round.

As for Lemma 3.2, the complexity of computing B from the B;’s is O(plogn). Note that
Lemma 3.1 holds for the undirected case as well.

The rest of the proof is dedicated to proving that B is lexicographically optimal on e. If
there is no added column, then shad(B,e) = (xi,...,24-1,24,—1,...,—1) where, for i < d,
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zi = Y5_;shad(Bj,e)i, and 24 = sign(1l + >2%_, shad(B;,e;)4). If a column has been added,
then shad(B,e) has ¢ + 1 entries, and shad(B,e) = (1,—1,...,—1). Assume, for the purpose of
contradiction, that there exists a broadcast protocol B’ such that shad(B',e) < shad(B,e). Let k
be the round at which v is informed in B’. Note that, as opposed to Lemma 3.2, v is not necessarily
informed by w.

Claim 3.1 No B; has a downward call through e; or an idle time of e; advanced to some round
k' < min{k,c} in B'.

Proof. Assume, for the purpose of contradiction, that there exists such a B;. Let S* (resp. S)
be the number of B;’s giving a call upward (resp. downward) through the e;’s at round &’. Since
K <e¢, |ST— 87| €{0,1}. Since k' < k, v cannot be involved in a call in B’ because it is not yet
informed. Therefore, from Lemma 2.2, a downward call or an idle time of some B; is advanced
from round £’ to some round £” < k’. One can repeat for ¥ what we did for k. We construct in
this way a decreasing sequence of indices. Since this sequence is bounded from below, it necessarily
ends, and gives rise to shad(B', e) > shad(B, e), a contradiction. o

Let shad(B',e) = (y1,...,Yq), and let £ be the smallest index such that y, < z,. We consider
several cases according to the value of the sum S of the entries of column c.

Case 1. § < —1, that is there are at least two more —1-entries than 1-entries in column ¢ of M.
In that case, £ < d = ¢ because z4 = —1. Two sub-cases:

a) ¢ < k. Let us consider round ¢. If zy = 1 and y;, = 0 or —1, the pairing of the —1
and 1-entries of column ¢ of M either lets unsatisfied in B’ at least one B; giving a call
downward through e; at round /, or one idle B; must give a call upward through e;.
From Lemma 2.2, this downward call or this idle time must be advanced in B' at a
round k' < £. If zy = 0 and y;, = —1, then B’ afford the ability of giving a call upward
through e. Thus, from Lemma 2.2, either a call downward through e; of some B;, or an
idle time of some B;, has been advanced in B', at round £’ < £. Since £ < min{k, c}, we
get a contradiction with Claim 3.1.

b) ¢ > k. Let us consider round k. In order to inform v in B’ either u calls v, or some
B; that is able to place a call upward does it. Let S’ be the sum of the entries of the
k-th column of M. Since k < £ < d = ¢, we have S’ > —1 and z; = yi. Thus either
a downward call, or an idle time of some B;, has been advanced at round ¥’ < k in B'.
Since k = min{k, c}, we get a contradiction with Claim 3.1.

Case 2. § > 1, that is there are at least two more l-entries than —1-entries on column ¢ of M.
In that case, £ < ¢ because ¢ < d and d < c¢. If £ < /¢, then we use the same arguments
as Case 1(b). If £ < d, then we use the same arguments as in Case 1(a). Otherwise, three
sub-cases assuming £ = d < k:

a) { =d =k < c. Since yy < xy, a downward call or an idle time of some B; has been
advanced from round ¢ to some round k' < £ = min{k,c} in B’. This is a contradiction
with Claim 3.1.

b) £ =d < k < c¢. Every column v of M, d < 7 < ¢, has the sum of its entries equal to 1.
Therefore, for v to be informed at round k, a downward call or an idle time of some
B; has been advanced at some round k' < k = min{k,c}. This is a contradiction with
Claim 3.1.
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c) £ =d < ¢ <k. Then at least two contending 1’s in column ¢ forces one of these calls to
be advanced at some round k' < ¢ = min{¢, k}. This is a contradiction with Claim 3.1.

Case 3. The sum of the entries of every column of M is in {—1,0,1}. Therefore M' = M and
d = q. Consider round & and get a contradiction with claim 3.1 (with ¢ = 400).

All cases lead to a contradiction. Therefore B is lexicographically optimal in e. |

Theorem 3.2 There is an O(nlogn)-time algorithm which, given any tree T' rooted at ug, returns
an optimal broadcast protocol from ug in T under the all-port edge-disjoint line model.

Proof. Same as the proof of Theorem 3.1 by applying Lemma 3.3 instead of Lemma, 3.2. |

4 The contention-free matrix problem

This section describes a polynomial-time algorithm solving a matrix problem similar to the matrix
problems solved in the proofs of Lemma 3.2 and Lemma 3.3. The interest of this problem will
appear clearly in the forthcoming sections.

Definition 4.1 Given a p X q boolean matriz M, a contention-free version of M is a p x ¢’ boolean
matriz M', ¢' > q, such that:

e M' has at most one 1-entry per column, and
e cvery row v of M', viewed as the binary representation of an integer, is larger than the
corresponding row T of M, 1 <r < p.

For instance, for any p X ¢ boolean matrix M, the p X (p + ¢) boolean matrix M’ whose p
first columns form the p x p identity matrix, and the ¢ last columns form the zero-matrix, is a
contention-free version of M. Such a solution M’ may not be “minimum” even in term of number
of columns. The following definition makes explicit the parameter that we want to optimize.

Definition 4.2 Let M be a p X q boolean matriz, the shadow of M, denoted by shad(M), is the
boolean array of size q such that the i-th entry of shad(M) is 1 if and only if there is at least one
1-entry in the i-th column of M.

We look for contention-free version of M that are optimal in the following sense.

Definition 4.3 Given a p X q boolean matriz M, a contention-free version M' of M is minimal if
shad(M'), viewed as the binary representation of an integer, is minimum among the shadows of all
the contention-free versions of M.

Note that there can be several minimal contention-free versions of a matrix, even up to a
permutation of the rows. On the other hand, the shadow of the possibly many minimal contention-
free versions of a matrix is unique. As an example, let us consider the matrix

000010
M=]10201U00
010011
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The reader can check that two minimal contention-free versions of M are
000 010

Mi=|[1 0 01 0 0| and My =
01 1000

My and My are two different matrices, even up to a permutation of their rows. However, M; and
M have both a shadow equal to 62 = (111110)3. The following result, by Cohen, Fraigniaud, and
Mitjana, was announced in [8]:

Theorem 4.1 There is an O(q(p + q))-time algorithm which computes a minimal contention-free
version of any p X q boolean matriz.

A sketch of the proof of Theorem 4.1 can be found in [9]. The complete proof is reported
thereafter.

Let M be a p x ¢ boolean matrix. We describe an algorithm which transforms M into a minimal
contention-free version of M. This is achieved via a sequence of elementary matrix operations of
two types (columns are labeled from left to right):

e insertion of a zero-column at position 0 of the current matrix, and
e shifting of an existing zero-column from position ¢ — 1 to position ¢, that is an exchange
between columns ¢ — 1 and ¢.

The shift operation has an important consequence on the 1l-entries of the matrix. When a zero-
column is shifted one position to the right, from position ¢ — 1 to position ¢, the entries of the
matrix are modified according to the following rule:

Rule 1. For every ¢, 1 <14 < p, if there is a l-entry originally at column ¢ and row 4, then, after
the exchange of a zero-column at position ¢ — 1 with the column ¢, all 1-entries of row ¢ at
position ' > t are switched to 0.

Rule 1 is motivated by the fact that, for any k, 2¥+1 > Zf:o a;2' for any a; € {0,1},i=0,...,k.
Therefore, any row modified according to Rule 1 is larger than the original, whatever are its entries
left to position .

Our algorithm is formally described in Algorithm 1. An example of the run of Algorithm 1
is provided on Figure 1. Informally, Algorithm 1 performs as follows. The ¢ columns of M are
considered from left to right (Instruction 1). Problems occur when there are two or more 1-entries
in the current column (Instruction 6). On Figure 1(a), this occurs at column 4 since there is a
single l-entry in each of the three leftmost columns of M. The goal of Algorithm 1 is to produce
enough zero-columns on the left of the current column to spread out the contending 1’s over these
zero-columns. Therefore, Algorithm 1 tries to increase the number of zero-columns on the left of the
current column by shifting existing zero-columns from their current position to their right, and by
applying Rule 1 (Instruction 14). Possibly, a zero-column is inserted at position 0 (Instruction 20),
and additional zero-columns are provided (Instruction 26). These latter zero-columns are then
inserted directly to the left of the current column for the purpose of speeding up the execution of
the algorithm.
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1234567 1234567 1234567 1234567 1234567 1234567

A A A

110[1]000 o110ljooo 100000loo 10000[0[00 10000[0j00 1000000[0
001[0[101 0001[0[101 00010[1]01 00100000 00100[0/00 00100000
000[1{101 00001101 00001[1]01 00001|1[0 1 00010[0/00 00010000
000[0[110 0000[0[110 00000[1/10 000001/10 00000[1[10] 00001000
000[0[100 0000[0]110 00000/100 00000[1]00 00000100 00000100
000[0j00 1 0000/0/00 1 00000001 00000001 0000000 1 0000000|1
000[0j001 0000j0/001 00000/0/01 00000)0/01 00000/0/01 0000000
(@) (b) (c) (4) (e) (£)

Figure 1: An example of the execution of Algorithm 1.

On Figure 1(a), there is no zero-column at the current phase of the algorithm, and thus a zero-
column is inserted at position 0, as shown on Figure 1(b). Then the two first columns are exchanged
and Rule 1 is applied. This application has a major consequence on the matrix: all 1-entries of the
first row, but the leading 1-entry, are switched to 0. This creates a new zero-column, and one of
the two contending 1’s of column 4 vanishes (see Figure 1(c)).

Algorithm 1 then considers position 5 (now the 6th column from the left). Four l-entries are
contending at position 5 of the matrix. The rightmost zero-column is then shifted to the right.
It is worth to notice that it is the rightmost zero-column on the left of the current column which
is considered. Choosing this column instead of any zero-column has an important effect of the
shadow of the resulting matrix. The effect of the shift in the example of Figure 1 is to delete
one contending 1-entry (see Figure 1(d)). The zero-column is then shifted once more to the right.
Again, it deletes one contending 1l-entry (see Figure 1(e)). Once there are enough zero-columns to
solve all conflicts between 1-entries in the current column, the contending 1’s are spread out over
these zero-columns. Note that if after all possible shifting there is still not enough zero-columns to
absorb the contenting 1’s, then some additional zero-columns are inserted (Instruction 26). In our
example, there is one zero-column and there are two contending 1’s, so there is no need to insert
a new zero-column (see Figure 1(e)). The choice of the unique l-entry of column 5 which is not
moved to a zero-column matters. Algorithm 1 keeps in place the 1-entry which corresponds to the
row with the minimum lexicographic order, starting from the current column (Instruction 28). In
our example, it means that the 1-entry of row 5 is let in place, while the 1-entry of row 4 is moved
to the zero-column. Indeed, from the current position, row 4 is 110 whereas row 5 is 100, and
110 > 100 in lexicographic order.

At this point of the running of Algorithm 1 on the example of Figure 1, we are let with the
matrix on Figure 1(f) in which the last 1-entry of row 4 has been switched to 0. Letting in place the
1-entry of the smallest row in lexicographic order has the effect to postpone other conflicts with this
row as far as possible. In the example of Figure 1, letting in place the 1-entry of row 5 transforms
the penultimate column of the matrix into a zero-column. Therefore, the conflict appearing at
position 7 can be solved easily by moving one of the two 1-entries at position 6.

The shadow of the resulting matrix is (10111111)5, and we claim that it is minimum among all
contention-free versions of the matrix of Figure 1(a).
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Algorithm 1 This algorithm computes a contention-free version of a p x ¢ boolean matrix M.

1 For i:=1 to q do

/% We sparse the columns from column 1 to column q %/

2 C; := current column;
3 If C; is a zero-column then
4 7Z = ZU{C}
/* Z currently denotes the set of zero-columns left to the current column */

) Else
6 If there is more than a single l-entry in C; then
7 nby := # 1's'in C;;
8 W := set of consecutive zero-columns immediately to the left of C;;
9 not_yet_inserted := true;
10 While (nb; > |W|+1) and (Z # W or not_yet_inserted) do

/* while there is not enough zero-column immediately to the left of C; */
11 If Z # W then

[* A zero-column can be moved rightward */
12 7' = Z\W,
13 ¢ := rightmost zero-column in Z';
14 Shift ¢ one column to the right, and apply rule 1;
15 Z := set of zero-columns left to C;;
16 W := set of consecutive zero-columns immediately to the left of C;;
17 nby := # U’sin C;;
18 EndIf
19 If (nby > |W|+1) and (W = Z) and (not_yet_inserted) then
/* One needs to insert a zero-column at position 0 of the matriz %/

20 Insert a zero-column at position 0;
21 not_yet_inserted := false;
22 7 .= set of zero-columns left to C;;
23 W := set of consecutive zero-columns immediately to the left of C;;
24 EndIf
25 EndWhile
26 If nby > |W| + 1 then insert nb; — |W/| — 1 zero-columns left to C;;

/* If there is not enough zero-columns to solve all contentions, */

/* then additional zero-columns are inserted immediately to the left of C; */

/* The nb1 1’s are now spread out over the zero-columns of W */
27 Truncate each row with a 1 in C; in order to keep only entries to the right of C;;
28 { := index of the row of minimum lexicographic order among the truncated rows;
29 W' := nb; — 1 rightmost columns of W
30 Let the 1-entry of row £ in place in C;, and spread out the nb; other 1’s of C; over W';
31 Z := set of zero-columns left to the current column;
32 EndIf
33 EndIf
34 EndFor
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The fact that Algorithm 1 computes a minimal contention-free version of any p X ¢ boolean
matrix M is based on the following three lemmas. For any matrix M, shad*(M) denotes the
shadow of any minimal contention-free version of M. Note that shad*(M) > shad(M), and that
shad*(M) = shad(M) if and only if M has at most one l-entry in each of its columns.

Lemma 4.1 Let A; and B; be the i-th row of two matrices A and B, respectively. If A; < B; for
every i, then shad*(A) < shad*(B).

Proof. Let B* be a minimal contention-free version of B. For every 4, B > B; > A;. Therefore,
B* is a contention-free version of A. Thus shad*(A) < shad(B*) = shad*(B). [ |

Lemma 4.2 Let A and B be two matrices of p rows, p > 0, and q4 and qg columns, respectively.
Let X;,Y;, 1 =1,...,k, be 2k 1-dimensional arrays, k > 2, where the X;’s are of size g4 and the
Yi’s are of size qp. Let

X; 0 ... 01 Y1
v | o Do
X, 0 ... 01 Y,
A 0 ... 00 B

be a matriz of p + k rows, and q4 + k + qp columns. Assume that there is at most one 1-entry in
each of the qa leftmost columns of M. Fori=1,...,k, let

Xy % ... x 00
Xi:—l ¥ ...k 0
MO — X)iil 2 (: (1) 1(?
N
A 0 ... 00 B

where the x’s forms the (k — 1) x (k — 1) identity matriz. Let iy be such that Y;, <'Y; for every
i # ig. Then shad*(M) = shad* (M (0)).

Proof. From Lemma 4.1, shad*(M) < shad*(M()). The reverse inequality is a bit more delicate
to establish. Let M* be a minimal contention-free version of M.

Claim 4.1 There is no zero-column in M* between columns qa + 1 and ga + k.

Proof. For the purpose of contradiction, assume the reverse, and let ¢ be the index of this zero-
column. Let R be the set of rows of M whose some 1-entry has been “moved” left to column g4 +1
in M*, that is rows of M* of the form r* = (z1,...,24,,0,...,0), z; € {0,1}, satisfying r* > r
where r is the original row in M. Since there is a zero-column between columns ¢4 + 1 and g4 + k,
and since the contention between the k 1-entries of column ¢4 4+ k& must be solved, R is not empty.
Let 7 be the index of the row of R whose rightmost l-entry is the most to the right among all
rows in R. Let ¢ be the column index of the rightmost 1-entry of row j. By moving the 1-entry
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of row 7 from position ¢’ to position ¢, and by restoring the original entries of this row between
position ¢’ and g4, we get a contention-free version M’ of M. Indeed, there is at most one 1-entry
on each of the g4 leftmost columns of M, so M’ has still at most one l-entry on each column by
the choice of row j. Moreover, row j of M’ is still larger than the original row j of M. Since
shad(M') < shad(M™*), we get a contradiction. o

Based on this claim, we proceed in two cases:

Case 1. All the k£ l-entries of column g4 + k of M have been moved to the left. Then one can
reorder entries of M* between columns g4 + 1 and ¢4 + k so that the resulting matrix N is a
contention-free version of M), and shad(N) = shad(M*). Indeed, the fact that there is no zero-
column in M* between columns g4 + 1 and g4 + k£ make exchanges between the 1-entries on these
columns possible. (Recall that, in the statement of the theorem, the *’s form the (k — 1) x (k — 1)
identity matrix, this is why the rearrangement is required.)

Case 2. One of the k 1-entries of column ¢4 + k of M stands at the same position in M*. Then
let ¢ be the row index of this entry.

— If 4 = 4y, then, again, by reordering the positions of the k& — 1 other 1-entries of M* between
columns g4 + 1 and g4 + k, solving the contentions at column g4 + &k of M, M* can be transformed
in a contention-free version N of M) such that shad(N) = shad(M*).

—If ¢ # 1p, then let Y;* be the ¢p rightmost entries of row ¢ in M*, and let ¢ be the column index
of the rightmost 1-entry of row 4g in M*. We consider two sub-cases.

a) If ¢ > g4, then let N be the matrix obtained from M™* by:

1. Exchanging all the entries of row 7 with those of row i¢, from position c.

2. Possibly reordering the positions of some 1l-entries of rows 1,...,k of M* between
columns g4 + 1 and g4 + k to make each of these rows larger than the correspond-
ing row of M ().

We have shad(N) = shad(M*), and N is a contention-free version of M) because Y;* >
Y > Y.

b) If ¢ < g4, then at least one of the l-entries of the p X (g4 + k + ¢p) matrix AOB has been
moved left to column g4 + k since, otherwise, there would be a zero-column in M™* between
columns g4 + 1 and g4 + k, which is impossible by Claim 4.1. Therefore, let R be the set of
rows of the p X (g4 + k + ¢p) matrix AOB whose some 1-entry has been moved left to column
ga + k. Let j be the index of the row of R whose rightmost 1-entry is the most to the right
among rows in R. Let ¢’ be the column index of the rightmost 1-entry of row j. We have
c > qa. Indeed, otherwise, there would be a zero-column between position g4 and g4 + k, in
contradiction with Claim 4.1. Then let N be the matrix obtained from M* by:

1. Exchanging all the entries of row 7 with those of row j, from position ¢

2. Possibly reordering the positions of some of the 1-entries of rows 1,...,k of M* between
columns g4 + 1 and g4 + k to make each of these rows larger than the corresponding
row of M(i0),

N is a contention-free version of M () because 1Y;* > 0B;. Moreover, shad(N) = shad(M*).
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In each case, we can construct a contention-free version N of M () such that shad(N) = shad(M*) =
shad*(M). Therefore shad*(M(°)) < shad*(M). |

Given two matrices A and B of the same number of rows p, and of g and ¢’ columns respectively,
A|B denotes the p x (¢ + ¢') matrix obtained by putting A and B next to each other, A on the left,
and B on the right.

Lemma 4.3 Let M = Alz|Bly|C where A is a matriz of g4 columns, qa > 0, with at most one
1-entry per column, T is a zero-column, B is a matriz of qg columns, qg > 1, with exactly one
1-entry per column, y is a column with at least two contending 1-entries, and C is an unspecified
boolean matriz of qc columns, qc > 0. Let M' be the matriz resulting from M after an exchange
between x and the leftmost column of B. We have shad*(M) = shad*(M").

Proof. From Lemma 4.1, shad*(M) < shad*(M’). The remaining of the proof is dedicated to
the proof of the reverse inequality. Let M™ be a minimal contention-free version of M. Assume,
w.lo.g., that the 1-entry of the leftmost column of B stands on row 1. Let M; be the ¢th row of
M*. We consider two cases.

Case 1. M7 > (A41,1,0,...,0) where A; is the first row of A, and the 1-dimensional array of the
right hand side is of size g4 + ¢ +qc +2. Then M* is a contention-free version of M', and therefore
shad*(M) > shad*(M').

Case 2. (41,1,0,...,0) > M{ > (A1,0,B1,0,C}). Since at least one 1-entry of B|y must be moved
to the left of column g4 + 2 of M, let ¢ be a row index of M* such that (a) M > (4;,1,0,...,0),
and (b) the rightmost 1-entry of M is the most to the right among rows satisfying inequality (a).
Let ¢ be the column-index of the rightmost 1-entry of M. Let N be the matrix obtained from M*
as follows:

1. The g + 1 + g¢ rightmost entries of row 4 are set to be equal to the g + 1 + ¢g¢ rightmost
entries of row 1;

2. The g4 + 1 leftmost entries of row ¢ are restored as they were originally in M;
3. The entry at column ¢ of row 1 is set to 1; and

4. The entries of row 1 left to column ¢ are set to 0.

Since M* and A are matrices with at most one 1-entry per column, the resulting matrix N satisfies
the same property by the choice of row i. Moreover, we have (By,y1,C1) > (B, yi, C;) because, by
hypothesis, the 1-entry of the leftmost column of B stands on row 1. Therefore, N is a contention-
free version of M', and shad(N) = shad(M*). Therefore shad*(M) > shad*(M"). |

Now, we know enough to prove Theorem 4.1.

Proof of Theorem 4.1. Algorithm 1 constructs a finite sequence of matrices My = M, My, ..., My,
such that M; is obtained from M;_; either by shifting a zero-column to the right, or by distributing
l-entries over zero-columns. Lemma 4.2 shows that the distribution of the 1’s over the zero-column
preserves shad*(M). Similarly, Lemma 4.3 shows that the shift of a zero-column also preserves
shad*(M). Therefore, shad*(M;) = shad*(M;_1), that is shad*(M) = shad*(Mj). Since My is a
contention-free version of M, we get that shad*(M) = shad(My).
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It just remains to compute the time-complexity of Algorithm 1. The for-loop is executed ¢
times. However, Instruction 5 is not performed more than p times because there are p rows, and
solving a contention between 1-entries creates at least one row whose all entries are null after the
current position. Let ¢ be an index of the for-loop for which there is a contention. From what was
said before, there are at most p such indices. Let k; be the number of contending 1-entries. All
instructions before the while-loop do not require more than O(p + ¢) time units. The while-loop
is executed at most ¢.k; times because each execution of the loop corresponds to a right-shift of a
zero-column, and one cannot move a zero-column more than ¢ times to the right, this for each of
the k; 1-entries. Actually, one can slightly modify the algorithm so that there are no more than ¢
right-shifts in total. Indeed, when shifting the zero-columns to the right, one can jump columns
that were previously exchanged with a zero-column because rule 1 was already applied for these
columns. Therefore, rule 1 is not applied more than ¢ times. Application of rule 1 has a cost of O(q)
since at most one row is updated after a right-shift. All other instructions inside the while-loop have
a cost of O(p+q). Instruction 28 has a cost of O(q.k;), same as Instruction 30. Therefore, the total
time-complexity of Algorithm 1 is O(q(q + p) + ¢*> + >, g¢.k;). We have >_. k; < 2p because solving
contending 1-entries at a column ¢ removes the 1-entries on the right of column ¢ in all but one of
the contending rows. Therefore, we get that the time-complexity of Algorithm 1 is O(q(q + p)). B

5 Single-port constraint

In this section, we will show how to apply Theorem 4.1 to derive optimal broadcast protocols in
trees under the single-port constraint. We start by the vertex-disjoint constraint.

5.1 Vertex-disjoint constraint

Let us first study the case of directed trees. The case of undirected trees comes afterward.

5.1.1 Directed trees

Again, we apply a bottom-up construction consisting of merging protocols of intermediate levels.

Lemma 5.1 Let T be a directed tree rooted at ug, let v € V, v # wug, and let u be the parent of
v. Let Tt,...,T, be the p subtrees of T' rooted at the p children wi,...,w, of v. Assume that, for
every 1 = 1,...,p, we know a broadcast protocol B; from v in T; which is lexicographically optimal
on e; = (v,w;). There exists an O(pn)-time algorithm which returns a broadcast protocol from u in
T, that is lexzicographically optimal on e = (u,v).

Proof. Let M be the p x ¢ boolean matrix whose p rows are the p shadows shad(B;, e;), possibly
complemented with heading zero-entries if ¢ is larger than the number ¢; of entries in shad(B;, ;).

Let M* be the minimal contention-free version of M obtained by application of Algorithm 1 on
M.

Let M be the (p + 1) x ¢ boolean matrix obtained from M* by adding a row at position 0.
This row has all its entries set to 0, but one. The single 1-entry of row 0 of M is placed at the
column-index of the rightmost zero-column of M* (if any). If M* has no zero-column, then a
zero-column is added at the left of M*, and the l-entry of row 0 of M is placed on this column.
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Let B be the broadcast protocol from u in T}, derived from M as follows. Let ¢ be the index
of the column containing the 1-entry on row 0 of M. Let i < c. If there is a l-entry on column
i, say on row j > 1, then u gives a call inside T} at round 4, otherwise u stays idle. At round c,
u calls v. During the remaining calls, u stays idle. Let ¢ > c¢. If there is a l-entry on column i,
say on row j > 1, then v gives a call inside T} at round i. The destinations of the calls performed
from v or v at rounds i # ¢ are not specified here. However, since each row of M is larger than the
corresponding row of M, we get from Lemma 2.1 that every row 5 > 1 of M describes a broadcast
protocol B;- in Tj. B;- can be obtained from B; and the j-th row of M in O(q) time. Thus the
construction of B requires O(pq) time, once the matrix M has been computed. From Theorem 4.1,
it takes O(p(p + q)) time to compute M*, and M just requires O(pq) additional time units to be
constructed. So the whole construction of B takes O(p(p + ¢)) = O(pn) time since ¢ < n.

It remains to show that B is lexicographically optimal on e. Let
shad(M™) = (z1,...,2.-1,0,1,...,1),

where z; € {0,1} for every i =1,...,c— 1, and there are £ > 0 1’s left to the 0-entry. Then
shad(B,e) = (z1,...,Tec—1,1,0,...,0).

Assume for the purpose of contradiction that there is a broadcast protocol B’ such that shad(B', e) <
shad(B,e). Then let M’ be the boolean matrix of p + 1 rows such that there is a 1-entry at row
i € {1,...,p} and column j of M if and only if u gives a call to a node of T} at round j of B'.
Moreover, there is a l-entry on row 0 and column j of M’ if and only if u calls v at round j of
B'. Let M' be the boolean matrix obtained from M by removing row 0. M' is a contention-free
version of M because (1) shad(B',e;) > shad(B;,e;) for every i (since the B;’s are lexicographically
optimal), and (2) there is at most one 1-entry per column of M’ (since B’ satisfies the single-port
constraint). Let
shad(M') = (y1,-++,Yd-1,0, 21, .., 2)

where r > 0, y; € {0,1} and 2; € {0, 1} for all 4, and d is the round at which u calls v in B'. Let
shad(B',¢e) = (y1,---,Ya—1,1,0,...,0).

Let us show that shad(B’) < shad(B) and shad(M*) < shad(M') are in contradiction. For that
purpose, let us consider three cases according to the relative values of ¢ and d.

e If ¢ > d then shad(B') < shad(B) and shad(M*) < shad(M') imply (z1,...,24 1) =
(y1,---,Yd—1). Then shad(M*) < shad(M') implies 24 = 0. On the other hand, shad(B') <
shad(B) implies z4 = 1, a contradiction.

e If ¢ = d then shad(B') < shad(B) implies that (y1,...,y4-1) < (z1,...,24-1). On the other
hand, shad(M*) < shad(M') implies that (z1,...,24 1) < (y1,---,Yq_1), a contradiction.

e If ¢ < d then shad(B') < shad(B) and shad(M*) < shad(M') imply (z1,...,Zc—1) =
(y1,--+,Yc—1). Then shad(B') < shad(B) implies y. = 0. On the other hand, shad(M*) >
shad(M') implies y. = 1, a contradiction.

Every case yields a contradiction. Therefore, B is lexicographically optimal on e. |
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Theorem 5.1 There is an O(n?)-time algorithm which, given any directed tree T rooted at uy,
returns an optimal broadcast protocol from ug in T under the single-port vertex-disjoint line model.

Proof. Same as the proof of Theorem 3.1. Only the time complexity changes, since merging
protocols using Lemma 5.1 is more costly than using Lemma 3.2. The total time required by the
bottom-up construction is O(3, oy deg™ (v)n) = O(n?). [ |

5.1.2 TUndirected trees

Theorem 5.2 There exists an O(nlogn)-time 3-approzimation algorithm for the broadcast prob-
lem in trees under the single-port vertex-disjoint line model. More precisely, this approzimation
algorithm returns a broadcast protocol which is optimal up to an additive factor of 2[logyn].

Proof. Let T = (V, E) be a tree rooted at uy. We construct a broadcast protocol B from ug in T’
by induction on k = [logsn|. If k = 1, then B consists of one call from ug to the leaf. If & > 1 then
T is a tree of at least three nodes. Analogously to the proof of Lemma 3.1, let = be the node of T
such that |T| > n/2, and |T,| < n/2 for every child y of z. Let y;,...,y, be the p children of .
By induction, compute a broadcast protocol B; from y; in T),, for every i. Let T' = T'\ T,. T" has
at most [5] nodes. By induction, compute a broadcast protocol B’ from ug in T". The protocol B
is then the following. At the first round, ug calls . During the remaining rounds, two broadcast
protocols, one from ug in 7”, and one from z in T, are performed in parallel. B’ is applied in
T'. The broadcast protocol inside T}, performs as follows. Node z calls its p children successively
in the following order. Let §; be the number of rounds of B;, and let o be the permutation of p
elements such that d5(1) > ... > d,(p). Then z calls the y;’s in the order yy(1),...,Ys(p). Once y;
gets the information, it broadcasts this information in T}, according to B;. The construction of B
is completed. This construction takes O(nlogn) time because sorting the §;’s takes O(plogp), and

>ver O(deg™ (v) log(deg™ (v))) = O(nlogn).
We claim that the broadcast protocol B completes in at most ¢+ [logy 7] rounds where ¢ is the
number of rounds of an optimal broadcast protocol from ug in T'.

The proof is by induction on k = [logy n]. The result holds for £ = 1. Assume that it holds for
every n < 2%, Let n € {2¥ 4+ 1,...,2F"1}, let T be a tree of n nodes, and let = and the y;’s be as
defined in the construction of B. By induction, every B; completes in

0; < t; + 2k

rounds, where ¢; is the number of rounds of an optimal broadcast protocol from y; in T},. Let 6 be
the permutation of p elements such that ty;) > ... > #y(,). Let 7 be the number of rounds of an
optimal broadcast protocol from z in T,,. We have

max {i +1tp;} —1 <7< max {1+ g}
i= i=1,...,p

=1,..5P

The upper bound is obtained by calling y; at round 7, ¢ = 1,...,p. The lower bound comes from
the single-port constraint. Indeed, this constraint implies that, if a call is given downward through
some e; = (z,y;), then no downward call can be given through e; = (z,y;), j # i. Therefore, since

max {(i — 1) + 1,4} > max {(i — 1) +#g(;}, for any permutation u of p symbols,
i=1,...,p i=1,...,p
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we get that the order 6 is the best possible order in which the calls through the e;’s can be given.
In other words, broadcast in 7, can’t start before round ¢ — 1 without delaying the broadcast

Yo ()
process in some Tj j < i, which may cause a possible increase of the time to complete the p
broadcasts from z.

0(5)?
Now, let 0 be the number of rounds of our broadcast protocol from z in T,,. We have

0= ~max {Z + (50@-)},

i=1,...,p

where 05(1) > ... > d5(p). We get § < max;=1,..p{i + 59@}, and thus

d < max {i+ tg(i)} + 2k.
i=1,...,p
Therefore,
d < (74 1)+ 2k.

In addition, let ¢’ be the number of rounds of our broadcast protocol B’, and let 7' be the number
of rounds of an optimal broadcast protocol from ug in 7”. From the induction hypothesis, we have

8 <71+ 2k.

Since the number of rounds of B is max{l + §,1 + ¢'} < max{7 + 2k + 2,7" + 2k + 1}, and
since ¢t > max{7, 7'}, we get that B completes in at most ¢ + 2k + 2 rounds, that is in at most
t + 2[logy n] < 3t rounds. [ |

5.2 Edge-disjoint constraint

The broadcast problem has been already solved in undirected trees under the single-port edge-
disjoint line model (see [7, 12]). Therefore, this section deals with directed trees only.

Theorem 5.3 There exists an O(n?)-time 2-approzimation algorithm for the broadcast problem in
directed trees under the single-port edge-disjoint line model.

Proof. Let T be a directed tree rooted at ugy. Let t. and ¢, be respectively the broadcast time
from ug in T under the single-port edge-disjoint line model, and the broadcast time from ug in T’
under the single-port vertex-disjoint line model. We have

te <ty < 2 to. (1)

The first inequality ¢, < ¢, is straightforward since pairwise vertex-disjoint paths are pairwise
edge-disjoint. The second inequality comes from the fact that, in a directed tree, any set S of
pairwise edge-disjoint paths can be decomposed into two subsets S’ and S” such that any two
paths belonging to the same subset are vertex-disjoint. Indeed, let G be the graph whose vertices
are the paths in .S, and there is an edge between two paths if they share any vertex of T'. Since T is
a tree, there is no cycle in G, and thus G is a forest. Therefore, G is bipartite, and its vertices can
be colored with two colors. This completes the proof of Equation 1. Since Theorem 5.1 says that
an optimal broadcast algorithm under the single-port vertex-disjoint line model can be derived in

O(n?)-time, the result follows. [ |
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6 Multicasting

Let T = (V,FE) be a tree, let ug € V, and let D C V. As stated in the introduction, we have
considered two variants of the multicast problem from ug in D. The restricted regimen states that
only nodes in D can be used to relay messages. The restricted regimen requires protocols that differ
significantly from those derived for the unrestricted regimen. Therefore, this section is divided into
two sections focusing on the restricted and the unrestricted regimen respectively.

6.1 Unrestricted regimen

Theorem 6.1 There is an O(nlogn)-time algorithm which, given any tree T = (V, E) (directed
or not) rooted at ug, and any D C V', returns an optimal multicast protocol from ug to D under
the all-port edge-disjoint line model.

Proof. We modify the proof of Lemma 3.2 and Lemma 3.3 to take into account that, with the
same notations as in the statements of these lemmas, possibly v ¢ D.

If v € D then the protocols are merged as described in the proof of Lemmas 3.2 and 3.3.

If v ¢ D, then the matrix M has p rows instead of p + 1. The construction of M’ works the
same apart that the operation of moving the 1-entry of row 0 from column ¢ to some column d < ¢
(motivated by a conflict in M) is transformed into: (1) add a new row in M’, (2) place a l-entry
at position d of this row, and (3) set all the remaining entries of this row to 0.

The broadcast protocol B is then constructed according to the rules stated in the proofs of
Lemmas 3.2 and 3.3 (if no additional row is created in M’ then d is set to ¢ + 1). The lexical
optimality of B is obtained by the same arguments as those of the proofs of Lemma 3.2 and
Lemma 3.3, in particular by setting the time k at which u calls v to kK = ¢+ 2 if v is not informed in
B'. The whole protocol is then obtained according to the construction in the proof of Theorem 3.1.
|

Theorem 6.2 There is an O(n?)-time algorithm which, given any directed tree T = (V, E) rooted
at ug, and any D C V, returns an optimal multicast protocol from ug to D under the single-port
vertez-disjoint line model.

Proof. We revisit the construction given in the proofs of Lemma 5.1 and Theorem 5.1. We use
the same notation as in these proofs.

Let us start by Lemma 5.1. We are given u,v, and the p children w; of v, ¢ = 1,...,p.
We are also given p multicast protocols B; in D; C V(T;) that are respectively lexicographically
optimal in ¢; = (v,w;), ¢ = 1,...,p. We are looking for a multicast protocol, either from u to
D = {v} U (U_D;), or from u to D = U?_, D;, depending on whether or not v € D. For that
purpose, we construct M and M’ as in the proof of Lemma 5.1. If D = {v} U (U!_; D;), then the
resulting protocol B given in the proof of Lemma 5.1 is lexicographically optimal in e = (u,v). The
situation is a little bit more complex if v ¢ D. In this latter case, we also consider the p x ¢ boolean
matrix N whose p rows are the p shadows shad(B;, e;). Let N’ be a p x ¢’ minimal contention-free
version of N.

e If shad(M') < shad(N'), then the multicast protocol B is the one described in the proof of
Lemma 5.1 in the sense that it is worth to use v as relay.
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e Otherwise, B is the following: for i = 1 to ¢/, if there is a l-entry on column i of N', then
u gives a call at round ¢, otherwise u stays idle. If the l-entry of column 4 is located on
row j, then the destination of the call is in T}, and it can be computed in O(q’) time using
Lemma 2.1.

B is lexicographically optimal in e = (u,v) because M’ yields a multicast protocol that has the
smallest shadow on e among the protocols using v to relay messages, and N’ yields a multicast
protocol that has the smallest shadow on e among the protocols that are not using v to relay
messages.

The bottom-up construction of the proof of Theorem 5.1 then works the same, although it is
not applied directly on T but on the tree Tp obtained from 7" and D by pruning 7' so that every
leave belongs to D. [ ]

For the same reasons as those given in the proof of Theorem 5.3, it is a direct consequence
of Theorem 6.2 that an optimal solution for the multicast problem in directed trees under the
single-port edge-disjoint line model can be approximated up to a factor of two.

Corollary 6.1 There exists an O(n?)-time 2-approzimation algorithm for the multicast problem
in directed trees under the single-port edge-disjoint line model.

Moreover, we have:

Corollary 6.2 There exists an O(nlogn)-time 3-approzimation algorithm for the multicast prob-
lem in trees under the single-port vertez-disjoint line model. More precisely, this approzimation
algorithm returns a multicast protocol that is optimal up to an additive factor of 2[logy |D|] where
D is the set of destinations.

Proof. The proof is based on the same protocol as the one described in the proof of Theorem 5.2.
The only difference is that the induction is now based on the number of destination nodes. In other

words, z is the node such that (1) z has more than % destination nodes in its subtree, and (2)

every child of z has at most % destination nodes in its subtree. Note that x may or may not be
a destination node. However, both cases are allowed under the unrestricted regimen. Note also
that the same analysis as in the proof of Theorem 5.2 works because the multicast time from ug to
D is at least the multicast time from x to D N1}, and it is at least the multicast time from x to

(T\ (T \ {«})) N D. u

6.2 Restricted regimen

In this section, we assume that only nodes in the destination set D can be used to relay messages.

Corollary 6.3 There is an O(n?)-time algorithm which, given any directed tree T = (V, E) rooted
at ug, and any D C V, returns an optimal multicast protocol from ug in D under the restricted-
regimen single-port vertez-disjoint line model.

Proof. Let T'= (V, E) be a tree, and let D C V be a set of destination nodes. Let Tp be the tree
obtained from 7" and D as follows. Let z ¢ D, and let y be the parent of . Node z is removed
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and every child of z (if any) becomes a new child of y. This operation is repeated until all nodes
belong to D.

Let P be the shortest path from a € D to b € D in T, and let P’ be the shortest path from
a € Dtol € DinT. Each of these two paths corresponds to a shortest path in Tp with same
extremities. Let Pp and P}, be these two paths. P and P’ are vertex-disjoint in 7" if and only if
Pp and Pj, are vertex-disjoint in Tp. Therefore the broadcast time from ug in Tp is exactly the
multicast time from ug in D C V. An optimal broadcast protocol from ug in T)» can be computed
in O(n?) time by application of Theorem 5.1. This protocol can be transformed into a multicast
protocol from ug to D in O(1) time. [ |

Theorem 6.3 There is an O(n?)-time algorithm which, given any directed tree T = (V, E) rooted
at ug, and any D C V', returns an optimal multicast protocol from ug in D under the restricted-
regimen all-port edge-disjoint line model.

Proof. We transform 7T into a tree Tp obtained from T and D as follows. T is first pruned so that
every leaf is in D. Then, let x € D, z # uyg, let y be a child of x, and let z be a child of y. If y ¢ D
and z ¢ D then z is removed from 7', and the children of z (if any) are directly connected to y.
Repeat this operation until no branch of T' from ug to any leaf contains two consecutive nodes both
distinct from wg, and both not in D. Tp requires O(n?) time to be constructed. Because of the
restricted regimen, the multicast time from ug to D in T is the same as the multicast time from wuyg
to D in Tp. Moreover, an optimal multicast protocol from ug to D in Tp can be directly obtained
from an optimal multicast protocol from ug to D in T by applying the same set of calls. Thus, for
the remaining of the proof, we assume that D is such that every leaf is in D and, for every branch
from ug to a leaf, there is no two consecutive nodes both distinct from uy and both not in D.

Let v be an internal node of T', let u be v’s parent, and let wy,...,w, be the p children of v.
Let D; = D NV (Ty,), and assume that, for every i, we know a multicast protocol B; from v to
D;, which is lexicographically optimal in e; = (v,w;). Let us compute the shadow of a multicast
protocol B, from u to D NV (T,) which is lexicographically optimal in e = (u,v).

If v € D, then B, can be obtained in O(plogn) time by a direct application of Lemma 3.2.

If v ¢ D then let M be the p x ¢ boolean matrix whose p rows are the p shadows shad(B;, e;).
Let M’ be a p x ¢’ minimal contention-free version of M. From M', we derive a multicast protocol
B, from u in D by the usual technique: for i = 1,...,q/, if there is a 1-entry on column i of M’,
say at row j, then u calls a node of T),; at round ¢ of B,. The destination node of this call can be
computed from Lemma 2.1. Note that this lemma does apply to Tp under the restricted regimen
because, since v ¢ D, every w; is in D. This construction requires O(pn) time.

The whole multicast protocol is constructed in O(n?) time, bottom-up from the leaves in the
same way as done in the proof of Theorem 3.1. |

Finally, as a direct consequence of Corollary 6.3, and by the same arguments as in the proof of
Theorem 5.3, we have:

Corollary 6.4 There exists an O(n?)-time 2-approzimation algorithm for the multicast problem
in directed trees under the restricted-regimen single-port edge-disjoint line model.
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7 Conclusion

As a brief conclusion, let us just point out directions for further researches.

First, there are two (over eighteen) problems that remains unsolved in Table 1, namely the
multicast problem in undirected trees under the restricted regimen, for both the all-port edge-
disjoint model and the single-port vertex-disjoint model. The techniques derived in this paper
does not seem to apply. Apart these two cases, the broadcast and multicast problems are almost
completely solved in trees, for all variants of the line model.

More generally, deriving approximation algorithms for the broadcast (or multicast) problem in
arbitrary graphs or digraphs remains a challenging problem in all models. Recall that the best
result for the local model is an O(logn)-approximation algorithm [2], and the best known result
for the single-port vertex-disjoint line model is an O(Fgg(fg—n)—approximation algorithm [22]. There
is room for improvements.
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A Proof of Theorem 2.1

Let us first assume that 7' is directed. Let B be an optimal broadcast protocol from ug in T =
(V,E). Assume that B is not lexicographically optimal on every arc. The arcs for which B is
not lexicographically optimal are called “bad” arcs. Let us consider the bad arc e = (u,v) € F
that is closest to the root (if there are more than one such arc, pick one arbitrarily). We have
shad(B,e) > shad(Be,e) where B, is a broadcast protocol from ug in T' that is lexicographically
optimal in e. Let us show how to transform B in B’ such that shad(B’,e) = shad(B,,e), and such
that the calls of B’ are performed according to B, inside T, and according to B outside T,. The
aim of the following is to show how these two protocols can be linked by calls through e. In both
B and B,, there are at most r calls passing through e, where r is the minimal broadcast-time from
up in T. Let shad(Be,e) = (z1,...,2,) € {0,1}", and let shad(B,e) = (y1,...,yr) € {0,1}". Let k
be the smallest index such that zp < yy.

e At every round i < k, if x; = 1, then y; = 1. That is if there is a call in B,, say from a to
b, traversing e, then there is a call in B, say from o’ to b, traversing e. This latter call is
transformed into a call from o’ to b in B'.

e At round k, there is no call traversing e in B, but there is a call traversing e in B from some
node w to some node in 7T,. This call is transformed into a call from w to u in B'.

e At every round 7 > k, the call traversing e in B (if any) is removed. On the other hand,
if there is a call traversing e in B, from some node w to some node w’, then u calls w' in
B'. Note that u may be involved in other calls in B but the all-port constraint allows to add
another call from wu.

The broadcast protocol B’ satisfies shad(B',e) = shad(B.,e). For every arc € of T \ Ty,
shad(B',¢’') < shad(B,e’) because some calls of have been removed in T\ T, and no call has
been added. Therefore, the set of bad arcs may have increased, but the additional bad arcs are
included in T, that is are below the considered bad arc. Therefore, one can repeat for B’ what
we did for B while preserving the optimal shadow of e. After at most |E| operations of that type,
there is no more bad arcs.

Now, let us assume that T is undirected. Again, let B be an optimal broadcast protocol
from ug in T' = (V, E), and assume that B is not lexicographically optimal on every arc. Let us
consider any branch B of T' from ug to some leaf, and let e = (u,v) € E be the arc of B that is
closest to the root and such that shad(B,e) > shad(B.,e) where B, is a broadcast protocol that
is lexicographically optimal in e. We transform B into B’ such that shad(B’, e) = shad(B,e) and
such that the calls of B’ are performed according to B, inside T, and according to B outside T},.
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Let shad(Be,e) = (z1,...,z,) € {—1,0,1}", and let shad(B,e) = (y1,...,y,) € {—1,0,1}". Let k
be the smallest index such that zp < yy.

e At every round ¢ < k, if z; = 1, then y; = 1. That is if there is a call traversing e downward
in B,, say from a to b, then there is a call traversing e downward in B, say from a’ to b’. This
latter call is transformed into a call from o’ to b in B’. Similarly, if 2; = —1, then y; = —1.
That is if there is a call traversing e upward in B, say from a to b, then there is a call
traversing e upward in B, say from o’ to 0. This latter call is transformed into a call from a
to b in B'.

e At round k, let us consider two cases.

e z;, =0 and y; = 1. Then there is a call traversing e downward in B from some node w
to some node w’. This call is transformed into a call from w to u in B'.

e 7, = —1,and yp = 1 or 0. Then there is a call traversing e upward in B, from some node
w to some node w'. This call is transformed into a call from w to w in B'. If y, = 1, the
corresponding call of B is just removed.

e At every round 7 > k, if there is a call traversing e downward in B,, say from w to w’, then
u calls w' in B'. If there is a call traversing e upward in B, say from w to w’, then w calls u

in B'.

For the same reason as in the directed case, there is no more bad arcs after at most | E/| operations
of that type.
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