
Gossiping in Chordal Rings under the Line ModelLali Barri�ereDept. Mat. Aplicada i Telem�aticaUPC Barcelona and Johanne Cohen�LRI, Univ. Paris-Sud91405 Orsay cedexFranceand Margarida MitjanaDept. Matem�atica Aplicada IUPC BarcelonaAbstractThis paper is devoted to the gossip (or all-to-all) problem in thechordal ring under the one-port line model. The line model assumeslong distance calls between non neighboring processors. In this sense,the line model is strongly related to circuit-switched networks, worm-hole routing, optical networks supporting wavelength division multi-plexing, ATM switching, and networks supporting connected moderouting protocols.Since the chordal rings are competitors of networks as meshes orthe tori because of theirs short diameter and bounded degree, it isof interest to ask whether they can support intensive communications(typically a all-to-all) as e�ciently as these networks. We propose poly-nomial algorithms to derive optimal or near optimal gossip protocolsin the chordal ring.1 IntroductionIn the study of the properties of interconnection networks, the problem ofdissemination of information is an important and a very active researcharea [12, 27]. Indeed, the ability of an interconnection network to e�ec-tively disseminate the information among its processors (e.q., accumulation,�Additional support by the DRET of the DGA.1



broadcast or gossip) is a \pertinent" measure to determine the best com-munication structures for parallel and/or distributed computers. Assumethat every node of a network holds a piece of information. Broadcast is theinformation dissemination problem that consists, for one node of a network,to send its piece of information to all the other nodes. The accumulationproblem can be considered as the reverse of broadcast problem. In the ac-cumulation problem, every vertex has to send its piece of information to onespeci�c vertex of the network. Finally, gossiping is a simultaneous broadcastfrom every node of the network. Due to their complexity, these three com-munication primitives are often provided at the software level. Most of thecommunication libraries available on parallel systems (as MPI [25]) provideaccess to such communication procedures. More generally, these three com-munication patterns are fundamental primitives used in many algorithms forthe programming, and for the control of parallel and distributed systems.For example, they are used for barrier synchronization or cache coherence[29], for parallel search algorithm [7], and for linear algebra algorithms [8].In [10], Farley introduced the model called Line Model which satis�esthe following: (i) a call involves exactly two nodes (these two nodes can beat distance more than 1), (ii) any two paths corresponding to simultaneouscalls must be edge-disjoint. Furthermore, Farley assumed that nodes satisfythe 1�port hypothesis, that is: (iii) a node can take part in one call ata time. The vertex-disjoint paths mode can be de�ned analogously to theline model by replacing hypothesis (ii) by the following (iv) any two pathscorresponding to simultaneous calls must be vertex-disjoint. The calls aresubject to di�erent possible constraints: when two nodes are involved inthe same call, they can either exchange all the informations they are awareof (full-duplex mode) or alternatively, the information can only 
ow in onedirection (half-duplex mode).A round is the set of all calls carried out simultaneously. The complexityof our communication protocols will be measured by the number of commu-nication rounds required to complete these protocols. For a given graphG = (V;E), and for any arbitrary node u in G, we denote by b(G; u) (resp.a(G; u)) the minimum number of rounds for broadcasting from the sourcenode u (resp. for accumulation) in the graph G. Similarly, the gossip time ofG, denoted by g(G), is the minimum number of rounds necessary to performa gossip in G.In [10], Farley proved that, in the 1�port model, broadcast from anynode in any n�node network can be performed in dlog2 ne rounds. Hisproof makes use of routing along the edge of a spanning tree of the network.2



However, the gossip problem is still open for arbitrary networks, that is, thecomplexity of gossiping in the 1�port line model in arbitrary networks is notknown. Hromkovic et al. [18] gave a lower bound for the gossip problem,and some results have been derived for tree-networks [9] and for planargraphs [17].Chordal ring networks were introduced in [6]. They form a family ofgeneralized loop networks [3]. The chordal ring of N vertices and chord c,denoted byC(N; c), is the graph with vertices labeled inZN, and adjacenciesgiven by i � i� 1, i � i+ c for every even vertex i. The structure of thesegraph has been extensively studied. For example, Arden and Lee [1] studiedthe problem of the maximization of the number of nodes for a given diameter,and Yebra et al. [30] found a relationship between a certain type of planetessellation and the chordal ring. Moreover, due to their simple structure,and their short diameter, chordal ring graphs are attractive topologies forinterconnection networks. Chordal ring can support compact [26] and fault-tolerance [2] routing functions. Finally, Comellas and Hell [5] presentedan optimal solution for the broadcast problem in chordal ring under thetelephone model.As [5], this paper is devoted to the study of communication problemsin chordal rings. In particular, our aim is to �nd an algorithm for thegossip problem in the full-duplex edge-disjoint paths mode since the modelis appropriate to networks supporting long distance calls such as wormholeor circuit-switched routing. The next section describes the method to �ndthe gossip time in the chordal ring. Section 3 deals with some properties ofthe chordal ring and, �nally, in Section 4 gossiping algorithms are describedin order to give the upper bound of the gossip time in chordal ring.2 Basic conceptsAn interconnection network is modeled by a connected undirected graphG = (V;E), where the vertices in V correspond to the processors, and theedges in E represent the communication links of the network. Our gossipalgorithms are based on the so-called 3-phase gossip method [15]. For thatpurpose, we conclude the section with a decomposition of the chordal ringinto disjoint cycles. This decomposition is the base of all our gossip protocolsof Section 4. In the full-duplex line model, Farley has shown the following:Lemma 1 (Farley [10]) Let G be a graph of n nodes. In the 2-way mode3



line model, b(G) = a(G) = dlog2 ne:Moreover, Hromkovic et al. [18] gave a lower bound for the gossip prob-lem:Lemma 2 (Hromkovic et al. [18]) Let G be a graph of N nodes and ofedge-bisection B. In the 2-way mode line modelg(G) � 2dlog2Ne � log2B � log2 log2N � 2:In order to get upper bounds, we use the "three{phase algorithm" methodas in [15]. The three{phase algorithm is composed of an accumulation phase,a gossiping phase, and a broadcasting phase.Algorithm 1 Three-phase gossip algorithm1 Divide G into r connected components containing exactly one accumulationnode. These components are called accumulation components. A(G) is the setof accumulation node.=� Accumulation phase �=2 Each vertex u 2 A(G) accumulates the information from the nodes of its com-ponent.=� Gossip phase �=3 Perform a gossip among the set A(G) of accumulation nodes.=� Broadcast phase �=4 Every node in A(G) broadcasts information in its components.To obtain an e�ective algorithm, we will look for a set of accumulationnode such that the gossip phase can be performed as quickly as gossiping ina complete graph, and such that the size of the accumulation components issu�ciently small in order to minimize the time for the �rst and third phases.Moreover, these accumulation components should be connected so that theoptimal dlog2Ne-round accumulation and broadcast algorithms describedin [10] (see Lemma 1) can be independently applied in all the components.For the gossip phase, our algorithms will be based on the two followingalgorithms 2 and 3. KN stands for the complete graph of N nodes.Algorithm 2 Gossiping in a KN , N even1 For j:=1 to dlog2Ne do2 For each vertex i, i even, do in parallel4



3 exchange information between node i and node i + 2j � 1 (mod N );Algorithm 3 Gossiping in a KN , N odd1 m:= bN=2c;2 For each node i, 0 < i < N=2, do in Parallel3 exchange information between node i and node i+m;4 if m is odd then n0 = m + 1 else n0 = m+ 2;5 Gossip in the complete graph of vertices f0; : : : ; n0g;6 For each node i, i < N=2, do in Parallel7 exchange information between node i and node i+m;In our algorithms for the chordal rings, a call between vertices i and jare replaced by a call between the accumulation node of the ith componentand the accumulation node of the jth component. For a given call betweenthe accumulation node xi of the ith component and the accumulation nodexj of the jth component, that is for a given path P between xi and xj , thelength of the call is de�ned as the number of components traversed by Pplus one.Now, we will present some properties of the chordal rings.3 De�nition of the chordal ringsDe�nition 1 Let N be an even integer and c an odd integer between 1 andN=2. The chordal ring graph of order N and chord c, C(N; c), is the graphof order N , with vertices labeled in ZN, and adjacencies given by i � i� 1,i � i+ c for all even vertex i.Chordal ring graphs are connected and 3-regular. They are bipartite,with partition sets V0 = f0; 2; 4; : : :N � 2g and V1 = f1; 3; 5; : : : ; N � 1g.For any two vertices x; y, we de�ne �x;y :ZN !ZN as follows:if x�y � 0 (mod 2) then �x;y(i) = y�x+ i, otherwise �x;y(i) = y+x� i.In both cases, �x;y is an automorphism and it veri�es �x;y(x) = y. So,C(N; c) is vertex-transitive.For more details on these graphs, see [2].In this section we present upper bounds for the edge bisection widthof a chordal ring C(N; c). The edge bisection width, B, is the minimumnumber of edges which separate the graph into two sets of vertices of thesame cardinality. 5



Lemma 3 Let C(N; c) be the chordal ring of order N and chord c. Let Bbe the edge bisection width of C(N; c), then B � c+ 2.Proof.First, we observe that the natural order for integer numbers gives anatural partition of the vertices, so we have an immediate bound for k :ZN = [0; N=2� 1][ [N=2; N � 1] where [a; b] = fa; a+ 1; : : : ; bg.Let A = f(i; j) 2 Ej i 2 [0; N=2� 1]; j 2 [N=2; N � 1]g be the set ofedges between [0; N=2� 1] and [N=2; N � 1]. Clearly, from the de�nitionof the edge bisection width, we have that the number of edges of A is anupper bound for B.For N=2 even we haveA = f(N � c+ 1; 1); (N � c+ 3; 3); : : : ; (N � 2; c� 2)g[[f(N=2�c+1; N=2+1); (N=2�c+3;N=2+3); : : : ; (N=2�2; N=2+c�2)g[[f(N � 1; 0); (N=2� 1; N=2)g.Thus jAj = (c� 1)=2 + (c� 1)=2 + 2 = c+ 1 � B.For N=2 odd, we apply the same argument as previously and we getjAj = c+ 2 � B. 2>From Lemmas 3 and 2, we can deduce a lower bound of the gossip timein chordal rings C(N; c).Lemma 4 Let C(N; c) be a chordal ring of N . In the 2-way mode linemodel g(G) � 2dlog2Ne � log2(c+ 2)� log2 log2N � 2:3.1 Decomposition of the chordal rings into cyclesLet us introduce a decomposition of the chordal ring C(N; c) of order N andchord c that will be particularly helpful for the design of our gossip algo-rithm. C(N; c) can be decomposed into a union of cycles C0; : : : ; Cb Nc+1 c�1:Ci = fi(c+ 1); i(c+ 1) + 1; : : : ; i(c+ 1) + cg:If N = a(c + 1) + b, then the chordal ring C(N; c) consists of a cycles oflength c+ 1, labeled from 0 to a� 1, and a path of b vertices, b even.Given a cycle Ci, a vertex is said to be the jth vertex of cycle Ci, j =0; : : : ; c, if its label is equal to i(c+ 1) + j. Note that the vertex 0 of Ci is6



connected to vertex 1 and c of Ci. Moreover, for each i, 0 � i < b Nc+1 c � 1,cycles Ci and Ci+1 share (c+1)=2 edges. Among these edges, (c�1)=2 edgesare of type [x; x+ c] and one edge is of type [x; x+ 1]. In other words, forany even value j, the jth vertex in Ci is adjacent to the j � 1st vertex inCi+1 by a chordal edge. See the decomposition of C(64; 7) in Fig. 1.4 Gossip Algorithm for the chordal ring C(N; c)In this section, we describe a polynomial time algorithm to compute anoptimal communication scheme for gossiping in any chordal ring C(N; c).We consider two cases: N = a(c+1) andN = a(c+1)+b where 2 � b � c�1.For these two cases, we split the graph into a certain number of components,say � components, such that the number of vertices of each component isalmost equal to dN=�e. Then, we explain how to choose the accumulationnode for each component. Finally, we set the paths corresponding to callssuch that the gossip phase between the accumulation nodes perform almostas quickly as gossiping in the complete graph.By convention, the integers r and s represent respectively the number ofcomponents, and their maximum size.4.1 A simple case: N = a(c+ 1)Since the graph is composed of a cycles of c + 1 vertices (see Section 3.1),the components are naturally de�ned by groups of these cycles. Actually,there are two types of decompositions according to the parameter a:� If a � c+ 1, then there are a components (r = a): each component isa cycle of c+ 1 vertices (s = c+ 1).� If a > c+1, then there are c�1 components (r = c�1). More precisely,assuming that a = �(c � 1) + �, � of these components are an unionof �+1 cycles of c+1 vertices, and c� 1� � of these components arean union of � cycles of c+ 1 vertices (s = (c+ 1)(�+ 1)).We label the components between 0 and r � 1. In the kth component,the cycles are labeled between 1 and �, where � is the number of cycles inthe component k. Thus, the vertex j of the ith cycle in the kth component isdenoted by (k; i; j). The kth component has (k; 1; R = c�1) as accumulationnode. 7



Since each component is connected, the accumulation phase and thebroadcast phase can be performed using the algorithm in [10]. Now, wefocus on the gossip phase, and we are interested in a path Pi!i+` (mod r)corresponding to a call between the two accumulation nodes of componenti and i+ ` (mod r), i = 0; : : : ; r � 1 and ` = 1; : : : ; R=2. We consider twocases.Case 1. The number of components is even (r = 2r0): The pathPi!i+` is an union of paths denoted, P (i; 0); P (i; 1); : : : ; P (i; `) such thatP (i; k) is as follow (in the following we set R = c� 1):1. if 0 � k � ` � 1, then we consider two cases:� if the component i+ k is composed of one cycle of c+ 1 vertices,then the path P (i; k) is f(i+ k; 1; R� 2k); (i+ k+ 1; 1; R� 2k�1); (i+ k + 1; 1; R� 2k � 2)g� if the component i+k is composed of � cycles of c+1 vertices, thenthe path P (i; k) is f(i+k; s; R� 2k); (i+k; s+1; R� 2k� 1)js =1; : : : ;�� 1g [ f(i+ k;�; R� 2k� 1); (i+ k + 1; 1; R� 2k � 2)g.2. if k = `, then the path P (i; `) is a path of component i+`, from vertex(i+ `; 1; R� 2`+ 1) to (i+ `; 1; R) passing through vertex (i+ `; 1; 0).Note that, at any round of the algorithm 2 applied to the accumulationnodes, the calls have the same length, and there are calls between two accu-mulation nodes of components whose labels have a di�erent parity. Let usprove that the calls are pairwise edge{disjoint.Lemma 5 Let � = 0 or 1. For any odd value of `, ` < (c � 1)=2, all callsPi!i+` between accumulation nodes of the component 2i+� and accumulationnodes of the component 2i+ � + `, i = 0; : : : ; r=2, are edge disjoint.Proof. Let �k be the number of cycles of c+ 1 vertices in the componentk. We focus on the calls that cross the component k.Assume w.l.g. that � = 0. Assume k = 2i+ `, where 0 � i � r=2. Thecall Pk�1!k�1+` crosses component k by de�nition (see case 1). Moreover,Pk�1!k�1+` contains vertices in f(k; s; R� 1); (k; s; R� 2)js = 1; : : : ;�kg.The call Pk�3!k�3+` also crosses component k. Moreover, Pk�3!k�3+` con-tains vertices in f(k; s; R� 5); (k; s; c� 6)js = 1; : : : ;�kg. It is easy to proveby induction that, for any odd integer h in f0; : : : ; `�1g, Pk�h!k�h+` crosses8



the component k using the vertices in f(k; s; R� 2h+ 1); (k; s; R� 2h)js =1; : : : ;�kg. Finally, the pathP2i!k contains vertices of f(k; 1; s)js = 0; : : : ; R� 2`+ 1g, and verticesof f(k; 1; s)js = 0; : : : ; Rg (see case 2). Hence, all calls passing throughcomponent k are vertex{disjoint, and thus they are edge{disjoint.We can apply the same arguments for the case k = 2i+ `+ 1. And thelemma holds. 2At each round t = 1; : : :dlog2 re � 1 of the gossip phase (instruction 1),the call Pk!k+` has length ` = 2t � 1. Thus ` is at most 2dlog2 re�1 � 1 <r=2 < R=2. The paths corresponding to the last round, t = dlog2 re, havelength ` = 2dlog2 re � 1 (mod r) = 2dlog2 re � 1 � r < R=2. In all casesLemma 5 holds and at each round the calls are pairwise edge{disjoint.In Fig. 1 there is an exemple of the paths Pi!i+3 corresponding to theround t = 2, in the chordal ring C(64; 7). Since in the decomposition of thisgraph all the groups have only one cycle, the vertex j in cycle i is labeledby (i; 1; j).
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Figure 1: The chordal ring C(64; 7).9



Therefore, we conclude that the decomposition in cycles as de�ned inSection 3.1 allows a gossip among accumulation nodes that performs asquickly as the gossip in the complete graph.Case 2. The number of components is odd (r = 2r0 + 1). The �rstround and the last round in algorithm 3, are identical (see instructions 2and 6). During these rounds, all calls have the same length r0 < r=2. Afterround 1, only the accumulation nodes of the components 0 to n0 take partin a call where n0 = r0 if r0 is odd and n0 = r0 + 1 otherwise. (see theinstruction 5). We merge the components n0; : : : ; r � 1 into a single n0{component. After this merging, the number of components is even and wecan apply the same algorithm as in Case 1. Hence Lemma 5 holds and ateach round the calls are pairwise edge{disjoint.4.2 The upper bound in case N = a(c+ 1)Since the gossip algorithm performs in 2dlog2 se + dlog2 re, the calculationof the number of rounds gives:� a > c+ 1, then r = c� 1 and s = (�+ 1)(c+ 1).g(C(N; c)) � 2dlog2Ne � dlog2 ce+O(1)� a � (c+ 1), then r = a and s = c+ 1.g(C(N; c)) � 2dlog2Ne � dlog2 ae+ O(1)4.3 The general case: N = a(c+ 1) + b, 0 < b < c.Note that, since N and (c+ 1) are even, b is necessarily even. We considertwo cases: a � b=2 and a < b=2.4.3.1 Case 3. a � b=2A graph of type A is a subgraph of the chordal ring that contains c + 3consecutive vertices. A subgraph of type A contains two chordal edges oftype [x; x+ c], and c+ 2 edges of type [x; x+ 1]. If i is the smallest label ofnodes of a subgraph H of type A, then the vertex of label i+ j is called thejth vertex of H (the vertex 0 of H is incident to vertices 1 and c in H).10



We split the graph in a � b=2 cycles of c+ 1 vertices and in b=2 graphsof type A of c+3 vertices. We note S = fSiji = 0; : : : ; a� 1g the set of sub-graphs which constitute this decomposition. There are two cases accordingto the parameter a:� If a � c + 1, then there are a components: each component is oneelement of S.� If a > c + 1, then there are c � 1 components. Assuming that a =�(c� 1)+ �, � of these components are an union of �+ 1 elements ofS, and c� 1� � other components are an union of � elements of S.Each component contains at most one subgraph of type A and possiblymany cycles as de�ned in Section 3.1. The subgraph of type A is labeled 1,and the remaining cycles are labeled 2; 3; : : :The component k has (k; 1; c�1) as its accumulation node if componentk does not contain a subgraph of type A, and (k; 1; c+1) otherwise. We setR = c� 1.The accumulation phase and the broadcast phase can be performed usingthe algorithm in [10] since each component is connected. Now, we focus onthe gossip phase, and we are interested in the call P 0i!i+` between the twoaccumulation nodes of the component i and the component i+ `. Again, weconsider two cases according to the parity of the number of components.Case 3.a. the number of components is even (r = 2r0): This pathP 0i!i+` is an union of paths denoted by P 0(i; 0); P 0(i; 2); : : : ; P 0(i; `) suchthat P 0(i; k), k = 0 � k � `, is as follows:1. if the component i+k is composed of cycles of c+1 vertices only, thenP 0(i; k) = P (i; k) 1;2. if the component i + k contains a graph of type A, then we considerthree sub-cases:� if k 6= 0 and k 6= `, then P 0(i; k) = P (i; k)� if k = 0, then the path P 0(i; 1) is f(i; 1; c+1); (i+1; 1; c� 2); (i+1; 1; c� 3)g if the component i+ k is composed of a subgraph oftype A only. If the component i+ k is contains also some cycles,say � cycles, then the path P 0(i; 0) is set to f(i; 1; c+ 1); (i; s; c�2); (i; s; c� 1); (i+ 1; 1; c� 3)js = 2; : : :�g.1de�ned in Case 1 11



� if k = `, then the path P 0(i; `) is set to f[(i+`; 1; s)js= 0; : : : ; c�2`g [ f(i+ `; 1; 0); (i+ `; 1; c); (i+ `; 1; c+ 1)]g.Let us prove that the calls performed at the same round are pairwiseedge-disjoint.Lemma 6 Let � = 0 or 1. For any odd value of `, ` < (c � 1)=2, all callsbetween the accumulation node of the component 2i+� and the accumulationnode of the component 2i+ � + `, i = 0; : : : ; r=2, are edge-disjoint.Proof. To prove this lemma, let us consider the kth component. Let�i+k be the number of cycles of c + 1 vertices in the component k. If thecomponent k does not contain a graph of type A, then by similar argumentsas in the proof of Lemma 5, it is easy to prove that the calls passing throughcomponent k are edge disjoint. So, we mainly focus on the case where thecomponent k contains a graph of type A.Assume w.l.g. that � = 0. Let k = 2i + ` where 0 � i � r=2. Ap-plying the same argument as in lemma 5, we get that, for any odd integerh in f1; : : : ; ` � 1g, Pk�h!k�h+` crosses the kth component using verticesf(k; s; c� 2h); (k; s; c� 2h � 1)js = 1; : : : ;�kg. For h = `, the call P 02i!kcontains vertices f[(i+`; 1; s)js= 0; : : : ; c�2`g[f(i+`; 1; 0); (i+`; 1; c); (i+`; 1; c+ 1)]g, by de�nition. Thus all calls crossing component k are vertex-disjoint and, hence, edge-disjoint. 2Case 3.b. The number of components is odd (r = 2r0 + 1). Thiscase can be treated in a similar way as Case 2 of Section 4.1.4.3.2 Case 4. a < b=2Since b < c+1, it implies that a < (c+1)=2. By using the cycle decomposi-tion, we split the graph into r = ba=2c+ 1 components 1. The components1 : : :ba=2c contain two c+ 1{cycles and the component 0 is a path of b ver-tices if a is even, or a union of a path of b vertices and a cycle of c+1 verticesif a is odd. The vertex j of the b{path in component 0 has label (0; 1; j)and the vertices in the other components are labeled as in Section 4.1. Wetake (k; 1; R = b � 2) as accumulation vertices (in Section 4.1, R = c � 1).Let us notice that there are b=2+ 1 edges connecting component r� 1 withcomponent 0.This decomposition allows us to de�ne an algorithm as in Section 4.1.12



4.4 The upper bound in case N = a(c+ 1) + bSince the gossip algorithm performs in 2dlog2 se + dlog2 re, the calculationof the number of rounds gives:� a � b=2:a > c+ 1, then r = c� 1 and s = (� + 1)(c+ 3).g(C(N; c)) � 2dlog2Ne � dlog2 ce+O(1)a � (c+ 1), then r = a and s = c+ 3.g(C(N; c)) � 2dlog2Ne � dlog2 ae+ O(1)� a < b=2 < (c+ 1)=2, then r = ba=2c+ 1 and s = 2(c+ 1):g(C(N; c)) � 2dlog2Ne � dlog2 ae+ O(1)5 ConclusionWe have decomposed the chordal ring C(N; c) into r components of size s inordre to apply the three{phase algorithm. This enables us to give an upperbound for the gossiping time under the half-duplex line model:g(C(N; c)) � 2dlog2 se+ dlog2 reAccording to the di�erent values of c and N = a(c+1)+b we can reducethe results into the following two cases:� a � (c+ 1) g(C(N; c)) � 2dlog2Ne � dlog2 ce+O(1)� a < (c+ 1) g(C(N; c)) � 2dlog2Ne � dlog2 ae+ O(1)>From Lemma 2 and Lemma 3 we can conclude that in the �rst of theabove cases our bound is optimal. In the second one, we expect that a betterapproximation of the edge{bisection width could prove the optimality of thisalgorithm. 13
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