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Abstract

Slotted Optical Time Division Multiplexing Deflection networks make use of the
synchronous arrival of the packets to the routers in order to optimize locally the num-
ber of deflections. In this paper, it is shown that the difference of performances between
slotted and unslotted networks is mainly due to the fact that unslotted networks cannot
directly make benefit of such local optimization. It is also shown that, unfortunately, op-
timizing locally the routing in unslotted networks gives rise to an NP-complete problem.
Therefore a heuristic for routing in unslotted networks is proposed. In the experimental
context considered, our heuristic enhances unslotted routing almost at the same level
as slotted routing. It makes unslotted deflection routing a competitive alternative to

slotted deflection routing for OTDM networks.
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1 Introduction

All-optical networks provide high bandwidth and fault-tolerant communications by avoiding
the bottleneck due to the electro-optic conversion. Several types of optical networks are
considered in the literature [2, 5], and several methods are used to share the bandwidth
of optical networks. Among them, the TDM technique (Time Division Multiplexing) is a
technique used to improve the bandwidth of a single wavelength channel [23]. In TDM
networks, every message is decomposed in packets. Several studies (including experimental
testbeds) have been carried out to high-capacity optical packet routers [15, 22|. Deflection
routing is a frequently proposed protocol because it does not require large buffers |7, 5, 20].
In deflection routing, a packet requesting a given output link already used by another packet
is deflected on an alternate path. This technique allows to avoid packet destruction inside

the network. It simplifies management and avoids congestion.

Most of the papers in the literature assume a slotted system for OTDM (Optical TDM)
networks [3, 10, 25]. In such a system, each packet is inserted in a time-slot of fixed duration,
which includes the header and the payload that are conveyed at different bit rates, and all
incoming slots entering a router on different input links are synchronized. However, unslotted
systems are sometimes proposed as an alternative for OTDM networks [8, 9, 12]. In such

systems, each packet has a length proportional to its size.

Slotted systems offer many advantages. For instance, packets can be inserted in the
network as soon as a free time-slot is available. Slot synchronism allows to locally optimize
the requests of the packets, and therefore to limit the number of deflections. Moreover, syn-
chronous routing can be performed by rearrangeable multi-stage switches. However, slotted
systems present some drawbacks. They require additional hardware that produces impor-
tant degradation of the signal [23]. Furthermore, fixed slot length does not allow to adapt
the packet size to the need of the application. Finally, slotted networks are very sensitive

to faults in the synchronization system. Unslotted systems do not require synchronization



hardware (but a standard non blocking switch). Packet sizes are tuned according to the
needs of the users. However, it is often said that unslotted systems present three major
problems. First, such systems do not succeed to make use of the whole bandwidth of the
network because of the variability of the inter-packet spaces. Second, asynchronous packet
arrival does not allow to maximize the global requests of the packets (a “don’t care” packet
can force the deflection of a forthcoming packet). Thirdly, it is pointed out in [8, 9] that

unslotted systems may cause important congestion phenomenons.

In this paper, we show that the three previously listed problems related to unslotted
OTDM deflection networks are either of minor influence or can be overcome. Indeed, we show
that the bandwidth lost in inter-packet spaces of unslotted networks is not more significant
than the bandwidth lost in the filling up of the slots by small packets. Moreover, we show that
in unslotted networks, congestion appears in a particular configuration of the network that
can be easily avoided. The second problem, that is the local optimization of the requests,
is actually the most important problem. Indeed, it cannot be solved via small hardware
adjustments, but requires an algorithmic approach. We show that the underlying problem
is NP-complete, but that it is possible to derive a fast and efficient heuristic. This heuristic
allows to increase the throughput of unslotted networks of about 35%. It makes unslotted

deflection routing a competitive alternative to slotted deflection routing for OTDM networks.

2 OTDM networks

2.1 Routing in all-optical networks

In all-optical TDM networks, a message is composed of its payload and its header. The
payload contains the data (files, images, sounds, etc.), and the header includes useful infor-
mation for the routing function (destination label, packet number, source label, etc.). The

payload circulates at the photonic rate whereas the bandwidth allocated to headers is lim-



ited by the electronic bottleneck (622 Mb/s). When a message arrives at a given router, its
header is converted in electronic format, and it is decoded by the routing control processor
(RCP) which takes the routing decision. Once the decision has been taken according to some
simple rules, that is when a single output port has been selected, the router connects the
input port to the output port so that the payload can cut through the photonic switch. The
payload is just slightly delayed in a loop while the RCP is computing the route. The RCP

generates a new header which is added to the outgoing payload.

The routing is performed according to a routing table T'. On a given node z, the entrance
T.li,y] of T measures the “quality” of routing along link 7 a packet currently in z, and of
destination y. For instance, the shortest path routing is specified by T,.[7,y] = 1 if the link ¢

is on a shortest path from x to y, and 0 otherwise.

2.2 Slotted and unslotted networks

Slotted networks impose packets of fixed length whereas unslotted networks allow to adapt
the length of the packets to the user requirements. It is somewhat difficult to choose the
“optimal” packet size in slotted networks. Indeed, too short packets create ordering problems
and overcosts due to the reconstruction of the original message. On the other hand, too long

packets imply a significant waste of bandwidth.

Inserting packets in slotted networks is easy: it only requires to test whether a slot is
empty among the incoming slots. Insertion is a bit more complex in unslotted networks. Four
solutions have been proposed in [9]. One of them requires to discard inserted packets as soon
as they contend with incoming packets. Two others do not always give priority to transit
packets. This suggests to adopt the fourth solution of [9]. A fiber loop is added to each input
link in order to delay the arrival of the packets. The arrival times of packets entering the
loop are taken into account by the RCP to decide whether there is enough space to insert a

packet. This strategy is applicable as soon as packets are of bounded length. However, as



opposed to the case of slotted networks, this system does not change the fact that the links

cannot be fully occupied by packets. Indeed, the inter-packet space is a priori arbitrary.

Slotted networks require to synchronize the arrival time of the incoming packets because
providing links of length multiple of the packet length is not enough due to temperature
variation and fiber chromatic dispersion [22]. Synchronization is performed by the introduc-
tion of switchable delay lines [6, 23]. In any case, the number of traversed optical couplers is
at least logarithmically proportional to the product of the precision of the synchronization
by the maximum delay between two packets. This induces power losses and decreases the

robustness of the network.

Slotted networks make benefit of the simultaneous arrival of the packets. Given k& incom-
ing packets mq, ..., mg, let us denote by p; ; the “preference” of packet m; for the output link
7,7 =1,...,n. In all our experiments, the preference of a packet is precisely defined by the
routing table although it could have been set according to many other parameters such as
priority level or alternative routing strategies (source-routing [24], centralized protocol, etc.).
These preferences induce a weighted complete bipartite graph whose first set of the partition
represents the & packets, and the second one represents the n output links. A natural way
to optimize routing in slotted networks locally is to compute a maximum weighted matching
in this bipartite graph [18]. If the edge (i,7) belongs to the matching, the packet m; is said
to be assigned to the output link j. The polynomial complexity of the maximum weighted
matching [17] makes this solution realistic in this context. A packet is said to be deflected
when it is assigned to an output link which does not correspond to a shortest path between

the current node and the destination.



3 An experimental model for OTDM networks

3.1 Topology and routing

We have considered the bidirectional Manhattan street network that is the symmetrically
oriented torus. Each router is therefore supposed to be a 5 x 5 crossbar: one of the bidirec-
tionnal link is devoted to the input-output of the optical network. The size of the torus is

fixed at 12 x 12.

We have used the so called Z?* shortest path routing [4]. This routing selects the out-
put link supporting the maximum number of shortest paths from the current node to the
destination. For instance, if the source and the destination are the two opposite corners of
a square, then (in absence of contention), the route will zig-zag between these two corners.
More formally, for any two nodes x and y, and any output link ¢ of node z, let N,[i,y] be the
number of shortest paths from x to y that pass through link :. The routing table relative to

the 72 routing is defined by: T,[1,y] = %

3.2 Traffic generation

We have fixed the size of the input queue to be 100 packets at each node. The bandwidth of

the links is supposed to be 10Gb/s, and each link is supposed to have a length of 2 kilometers.

3.2.1 Packet of variable length

According to the typical IP-traces (see [1]), the length of the packets follows a bimodal
law polarized at (1) the length of the acknowledgment packets, and (2) the length of the
maximum packet size. Indeed, every message is decomposed in packets by the network-
application interface. Therefore, a lot of packets are of length the maximum packet size.

However, a few other packets are smaller, in particular the packets corresponding to the



remaining part of messages which are not of a length multiple of the maximum packet size.

The choice of the “optimal” packet size, in a fixed packet size context, has been the source
of many discussions. In deflection routing, a too small packet (as an ATM cell) would not
be suitable because of the need of reordering packets, and of the too large ratio header size
over pay load. (Recall that we are in a datagram mode.) A too large packet would produce

a waste of bandwidth as small messages will not fill up the slot.

The time slot is set to be 1us in slotted networks (1us at 10Gb/s represents 10Kb). The
minimum size of a packet is 200ns (that is the size of a header). Let L be the length of a
packet. We set Prob(L = 200ns) = 0.3, and Prob(L = 1us) = 0.4. The other packet lengths
are chosen as multiple of 0.1us, uniformly in the interval [0.3us,0.9us]. The average length
of a packet is then 642 ns, that is the bit load of a slot is 6.42 Kb.

Unslotted networks support packets of different lengths. We have fixed the maximum
size of a packet at 1us (that is the size of the slot of slotted networks) in order to facilitate
the comparison of slotted and unslotted networks. This equality implies that the packet
length distribution is the same as previously described. In particular, the average length of

a packet is 642 ns.

3.2.2 Problems arising with time scaling

Simulations of slotted networks are usually performed using a simulation tick exactly set to
the time slot. At each tick, all the routers of the network are scanned and the routing is
performed. The packet emissions are set according to a Bernouilli law. Unslotted networks
could be simulated in a similar way using a shorter simulation tick. However, if the simulation
tick is shortened, the average of the Bernouilli law must also be decreased in order to obtain
the same average offered load as in slotted networks. The side effect would be that the
emission laws of slotted and unslotted simulations would not be exactly the same. Therefore,

to perform slotted and unslotted simulations in the same setting, we have separated the



simulation tick and the emission tick. Precise details are given in Appendix A. Using this
setting, we have performed experiments which showed that simulations performed with a
tick equals to 1/200 of a time slot give similar results as simulations performed with a tick
equals to the 1/10 of a time slot. Therefore, in all our experiments, the simulation tick is
set to 1/10 of the time slot. Finally, in order to simulate sporadic traffic observed in real
networks [19, 21], we have modeled the packet emission law by a two states Markovian chain.
The method used to obtain the same law for slotted and unslotted networks is detailed in

the Appendix B.

3.3 Experimental measures

All measurements are performed at the steady state, on a single run of 10°us (the steady
state is always reached after at most 5 10°us). We have measured the throughput of the
network as a function of the input demand. More precisely, we have counted the average
number of packets that arrive at destination every ps, divided by the number of nodes (that
is 144). The throughput is in [0, 1] for slotted networks. Note that the throughput per node
and per ps expressed in byte can be obtained in both slotted and unslotted networks by a
simple multiplication by 6.42Kb. The input demand is the average number of packets that
each node sends at each step. Since input queues are of bounded size, packets can be lost
when the network approaches the saturation. The number of lost packets is then inversely
proportional to the throughput. We have also considered the link occupation of the network,

that is the percentage of the bandwidth used at the steady state.

Furthermore, we have created a specific traffic, called spy traffic, between two given
nodes in order to obtain local measurements. In our experiments, node (2,2) sends packets
to node (9,9) according to a Poisson law of mean 0.01 (i.e., at a low rate). We have reported
the average number of times spy packets are deflected. For a sake of uniformity, we have

normalized the results as a function of the number of received packets.



4 A comparison of slotted and unslotted networks

The aim of this section is to show why the slotted mode allows better performances than

the unslotted mode.

4.1 Slotted routing

Figure 1 presents the well know behavior of synchronous routing under Poisson traffic. Fig-
ure 1(a) shows the two states of the network: a linear increase of the throughput until the
network gets saturated. When the network saturates, the throughput becomes constant, and
the number of lost packets increases (whereas no packets are lost for a low offered load). One
can check that the network starts to saturate for an offered load larger than 0.45 (either by
comparison with the diagonal line, or by looking at the number of lost packets).

globsgp loadsgp

o
o

o
o

o

3

o
IS

o

w
o
~

# msg/slot/node
o
N
% bandwith used
o o o
Now &)

o

0 0
0 0.1 02 03 04 05 06 0 0.1 02 03 04 05 06
Offered load Offered load

(a) Throughput (%) and lost packets (o) (b) Link occupation

Figure 1: Slotted routing under Poisson traffic

Figure 1(b) presents the average number of packets per link. Again, the result is not
surprising. When the offered load increases, the number of packets per slot increases super
linearly. This is due to the interactions between the network load on one hand, and the
number of packet deflections on the other hand. When the network reaches the saturation,

the whole bandwidth of the network is used. This is always the case for slotted networks.



Figure 2 shows that, under low traffic condition (that is for an offered load at most
0.5), the number of deflections increases super linearly. After this threshold, the number of
deflections does not significantly change. The same behavior can be observed for standard

deviation.
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Figure 2: Average and standard deviation of the number of deflections for slotted routing

under the Poisson traffic.

Figures 3(a) and (b) show the influence of a sporadic traffic on slotted routing. Figure 3(a)
shows that, when the network is not yet saturated, the number of lost packets is larger under
the sporadic traffic than under the Poisson traffic. The difference looks rather small on the
curves, but such a small difference corresponds to thousands packets that are lost in case of
sporadic traffic (actually many packets are lost even for an offered load of 0.1). This is due
to the large standard deviation of the bi-Poisson traffic. When the network is saturated, the
routings of the two types of traffic offer the same behavior. As one can check on Figure 3(b),
the loss of packets under a sporadic traffic imply that the links saturate for a larger offered
load than for Poisson traffic. The number of lost packets is the major difference between
Poisson and sporadic traffic. However, for a same number of packets inside the network, the

behavior of these packets is roughly the same for both traffics.

We did not noticed a significant difference between sporadic and Poisson traffics when
looking at the distribution of the delays. Tiny improvements under the sporadic traffic come

from the smaller average number of packets per slot in this mode. This confirms the fact
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Figure 3: Synchronous routing under sporadic traffic

that, as we already pointed out, the internal behavior of a deflection network is roughly

independent of the traffic nature.

4.2 Unslotted routing

Figure 4(a) shows that the throughput of unslotted routing is qualitatively the same as the
one of slotted networks. In particular, the saturation state is stable, that is there is no
degradation of the throughput as the offered load increases. This is in contradiction with
a similar study in [8, 9] which observed a severe degradation of the throughput. However,
the experiments performed in [8, 9] assume packets of fixed length (although the routing is
unslotted). It is shown in [11] that unslotted routing with fixed size packets induces resonance
phenomenons when the length of the links is a multiple of the packet size. Moreover, it is
pointed out in [9] that “assuming a fully occupation of the links, any packet arriving at a node
finds just one output link free and is forced to follow the path of its predecessor”. All these
phenomenons induce possible livelocks that strongly reduce the throughput of the network.
Finally, the throughput is sensible to the length of the delay loops. Anyway, in standard
unslotted networks, packets are of variable length and all these boundary phenomenons do

not occur.
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Figure 4: Asynchronous routing under Poisson traffic

Figure 4(b) presents the link occupation of unslotted networks. At the saturation state,
the link occupation is near 0.7. It corresponds to 1.1 packets per us. Unslotted networks
cannot totally fill up the links because too small inter-packet space does not allow to insert
packets (we have measured an average inter packet space of roughly 0.3us). We did not
present results on bursty traffic since, as shown in [12], and as it was the case for slotted
networks, as far as the internal traffic is concerned, there is no big difference between Poisson

and sporadic traffic in unslotted networks.

Even if unslotted networks present qualitatively the same behavior as slotted networks,
there is quantitatively a big difference. In order to understand why such a difference, we have
run experiments on greedy routing in slotted networks. Greedy routing considers sequentially
the packets arriving at a node in the same time slot. It assigns to the current packet the
not yet assigned output link which maximizes the preference of the packet. This strategy is
similar to the usual unslotted routing since it does not make use of the global preferences of

the packets arriving at a node in the same time slot.

Figure 5 presents the behavior of greedy routing under a Poisson traffic. One can notice a
large degradation of the performances in comparison with synchronous routing. For instance,

the network get saturated for a much smaller offered load (roughly 0.3 rather than 0.45).
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Thus, as observed in [14], a sequential rather than simultaneous treatment of the packets
does not allow to reduce the number of deflections locally, and the throughput decreases:
the throughput of greedy slotted routing is roughly the same as the throughput of unslotted
routing. Moreover, as shown in [12], the distribution of the number of deflections for greedy
slotted networks and for unslotted networks offers roughly the same shape (same median,
same standard deviation, etc.). This shows that the performance degradation of unslotted
routing is mainly due to the difficulty of minimizing the number of deflections locally. This
is an algorithmic problem rather than an intrinsic problem of the network asynchronism.
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Figure 5: Throughput (%), and number of lost packets (o), for the greedy slotted routing

under Poisson traffic

5 A heuristic for routing in unslotted networks

In this section, we will make use of the delay loops introduced in Section 2 to predict the
future arrival of packets. This prediction will allow us to detect the possible contentions
between packets, and thus to minimize the conflicts. Formally, we introduce the mazximum
assignment problem which is, given a set of incoming packets, to maximize the preferences
of these packets. Unfortunately, as shown in Section 6, the maximum assignment problem

is NP-complete. Therefore, the current section presents a heuristic. This heuristic will
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be experimentally shown to be quite efficient, and improves the performances of unslotted

deflection routing networks of about 35%.

5.1 The maximum assignment problem

Assume that the loops used for inserting packets in unslotted networks produce a delay At.
The routing decision taken on a packet at time ¢ can benefit from the knowledge of all the
future arrivals of packets between times t and ¢ + At. Let us consider a packet mg routed
at time ¢, and assume that & packets m;, ¢ = 1,... &k, will arrive within At times. One
does not want to only maximize the preference of mg according to the free output links, but
rather to maximize the global preferences of all the &+ 1 packets. For that purpose, we have
to take into account the possible contentions between these packets. Let us denote a packet
by a couple (t1,13) where ¢; denotes the arrival time of the packet in the router, and t; — #;

denotes its length.

Definition 1 There is a conflict between two packets (t1,t2) and (t],t5) if and only if t; <
1y <ty orty <ty <t,. The conflict graph is a graph (V, E) where V denotes the set of

incoming packets m;, 1 = 0,...,k, and E denotes the set of conflicts between these packets.

Note that the conflict graph is an interval graph [17]|. Note also that this graph contains
information on the future but not on the past of the current router at the current time.
Indeed, none of the packets currently routed are considered in the conflict graph. This
notion is captured by another structure. Let s; be the time at which the output link 7 will
be freed by the packet currently using link 7 (s; = ¢ — 1 if no packet is using the link j at

time t). A packet (¢1,13) will not be allowed to request link j if s; > ;.

Definition 2 Let p;; be the preferences of packet i, 1 € {0,...,k} toward link j. The

preference graph is a weighted bipartite graph G = (V1,Va, E) where Vi denotes the set of

14



incoming packets m;, 1 = 0,...,k, V5 denotes the set of the n output links, and there is an
edge between a packet m = (t1,13) € Vi and a link j € Vy if and only if s; < t1. An edge

between packet m; and link j has the weight p; ;.

Both the conflict graph and the preference graph allow to define the maximum assignment

problem.

Definition 3 An assignment is a function ¢ from {0,....k} to {1,...,n} such that (1) if
(1) = J then (i,7) is an edge of the preference graph, and (2) if (i) = j and ¢(i') = j then

(1,1") is not an edge of the conflict graph.

The maximum assignment problem: Finding the assignment ¢ which maximizes

Z Pio(i)

1€{0,...,k}
Solving the maximum assignment problem is NP-complete (see Section 6). Thus, the next

section is devoted to a heuristic for that problem.

5.2 A heuristic for the maximum assignment problem
5.2.1 Description of the heuristic

The maximum assignment problem is polynomial in slotted networks for two reasons: the
conflict graph is the complete graph, and there are at least as many output links as the
number of routed packets. The idea of our heuristic consists of simplifying the general
problem for unslotted networks in order to get a situation similar to that of slotted networks.
As a consequence, it will allow us to use the standard routing algorithms devoted to slotted
networks. Our simplication is based on the fact that, in general, the routing decision on a
packet must take more care of the next packets than of packets arriving much later. Let us

formalize this idea.
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If a packet mg has to be routed at time ¢, let n’ be the number of free output links at that
time. Let mq,...,mp, k' < k, be the next arriving packets (ordered by their arrival time),
and such that, for every 7, 1 < ¢ < k', m; is in conflict with mg. Note that two such packets
are not necessarily in conflict, although they are both in conflict with mg. To route mg, our
heuristic takes into account mg and the r = min(k’,n’ — 1) next arriving packets. According
to slotted routing, we assume that all these r +1 packets are pairwise in conflict. This makes
the conflict graph complete. We take, as the preference graph G’ of our restricted problem,
the subgraph of the original preference graph GG induced by the n’ output links, and the r+1

packets.

Remark G’ contains a complete bipartite graph whose two partition sets are the r + 1

packets on one side, and the n’ output links free at time ¢ on the other side.

The transformation above yields a problem similar to the assignment problem seen in
Section 2.2 for slotted networks. It can be solved by a polynomial maximum weighted
matching algorithm in the preference graph '. The maximum weighted matching in G’ can
be completed in a maximum matching by adding edges of weight 0. Hence, every considered
packet, that is each of the next r+1 arriving packets, is assigned to an output link. Therefore
the current packet can be routed, and this routing avoids as many deflections as possible for

the r next packets.

5.2.2 Property of our heuristic

The complexity of our heuristic is similar to the complexity of the preference optimization
in the slotted case. Indeed, the complexity of our algorithm is dominated by the search of
a maximum weighted matching in a bipartite graph, as in the slotted case. Even if such a
search is time consuming, an efficient linear heuristic have been proposed in [25] that can be

applied to implement 4 x 4 switches with few levels of preferences.
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Note however that a run of our heuristic is a priori required for each packet entering the
router. If the difference between the arrival times of two packets m and m’ is too small, it
is possible that the assignment of the first packet m is not completed before the assignment
process of the second packet m’ should start. A solution to this problem is to assign m’ to
the output link specified by our heuristic applied on m. This solution is however not suitable
to the case where the heuristic determines the assignment for mgy and the r next arriving
packets my,...,m,, and a r+1th packet arrives before our heuristic completes. As a solution,
packets mg,mq,...,m, are routed according to the assignment of our heuristic, and m, 14
is routed according to its preference as in the standard unslotted deflection routing. This
stays true if more than a single packet arrive too early. Actually, it is difficult to evaluate
the influence of this phenomenon since it depends on many architectural parameters such
as the computational power of the RCP, the number of input links, the distribution of the
packet size, etc. Although we will see that our heuristic performs quite efficiently, it is of
course not optimal as the following example shows. Let us consider a 2 x 2 switch with
2 input and output links called North and South. Assume a huge packet requesting the
north output link arrives at the same time as a short packet requesting the south output
link. Our heuristic will satisfy both requests. Assume now that a sequence of packets arrive
briefly after the short packet, and that all these packets request the north link. As the
huge packet is currently routed on the north link, the sequence of packets will be deflected.
The maximum assignment would have deflected the huge and the short packet, and would
have routed all the sequence of other packets according to their request. Of course, such
a situation rarely occurs because the average inter-packet time is relatively large compared
to the average packet size, and the delay loop used to “predict” future cannot contain more

than a small amount of packets.

17



5.3 Experimental results

Figure 6(a) presents the throughput of the optimized deflection routing in unslotted networks.
As we can check on the figure, the performance increases of about 35% in comparison with
the standard unslotted routing. In the experimental context considered in this paper, it
enhances unslotted routing almost at the same level as slotted routing.
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Figure 6: Throughput, link utilization and average number of deflections of optimized un-

slotted routing

The link occupation (Figure 6(b)) does not increase in comparison with the link occu-
pation of the non optimized unslotted routing (Figure 4(b)). Therefore, 0.7 seems to be the
“probabilistic saturation level” of the unslotted routing under the experimental context of
this paper. In any case, the optimization of the unslotted routing does not allow to reduce
the inter packet space. In some sense, it is a good news since it reduces the dependences

between packets.

Figure 6(c) shows that our heuristic allows to strongly reduce the average number of
packet deflections. As far as the number of deflections is concerned, it makes unslotted
routing almost as good as slotted routing. The difference between these two modes is not
only a consequence of our approximated solution of the NP-complete maximum assignment

problem. Indeed, even the optimal solution would not eliminate the fact that, firstly, delay
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loops are of bounded length, and, secondly, the dependency chain between packets can be
very long (optimally, the routing decision on a packet at time ¢ should take into account the

state of the network since it was turned on).

6 NP-completeness of the maximum assignment problem

In this section, we will show that the assignment problem is NP-complete. Note that an
extended version of the assignment problem that is to take an arbitrary graph as the conflict
graph would lead to an NP-complete problem in a trivial manner. Indeed, such a problem
could be easily transformed from the clique-maximum problem, which is NP-complete [16].
The transformation to the clique-maximum problem cannot be applied since our conflict

graphs are interval graph (for which the clique-maximum problem is polynomial [17]).

Theorem 1 The following problem is NP-complete:

MAXIMUM ASSIGNMENT (MA)

Instance: a set of n output links, a set of k+1 packets (together with their arrival time,

length, and preferences p; ;, 1 =0,...,k, 7 =1,...,n, and an integer K;

Question: Does there exist an assignment ¢ of these k + 1 packets to the n output links

such that Eie{o oy Do) 2 K?

Proof. MA is in clearly in NP since we can check in polynomial time whether a correct
assignment has a weight at least K. The proof of the NP-completeness is by transforma-
tion from the Maximum 2-Satisfiability problem, which has been proved to be NP-complete
in [16]:
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MAXIMUM 2-SATISFIABILITY (2-SAT)

Instance: a set U of variables, a collection €' of clauses over U such that each clause ¢

in C' contains two literals, and an integer K”.

Question: Is there a truth assignment for U that simultaneously satisfies at least K’ of

clauses in C'?7

Let us describe a polynomial-time algorithm to transform any instance of 2-SAT (with
clause neither of type (x, T) nor of type (z,2)) in an instance of MA. Let an arbitrary instance
of 2-SAT be a set U of v variables xy, ..., z,, aset C of u clauses ¢, ..., c,, and an integer K.
Let us build an instance of MA. Each variable z in U is represented by a set P, of 2u packets,
among which p packets m; ;@ = 1,...,p correspond to the literal z, and p other packets
miz,t = 1,...,p correspond to the literal @2 P, = {m;,m;z ¢ = 1,...,p}. The arrival
time' #; ,, of the ith packet of the literal x;, j € {1,...,v}, satisfies t; ,, = 205 +16(i — 1).
Similarly, the arrival time #;z of the ith packet of the literal 77, j € {1,...,v}, satisfies

lizr = tie; + 8. All packets are supposed to be of the same length 10 (see Figure 7).

The pv packets m;, are supposed to arrive by the same input link, say link 1, for all ¢,
and all . Similarly, the pr packets m; z are supposed to arrive by the same input link, say
link 2, for all 7, and all . The packets corresponding to a same variable arrive consecutively

in a period of time of 20u (see Figure 7).

Moreover, let us denote each clause ¢; by a couple of literals (u,v), where ¢, ,, < t;,. Then
each clause ¢; = (u,v) in C, 1 <@ < pu, is represented by 6 packets denoted by M, ., M, ,,

and M, ;, 7 = a,f3,7,9, and the arrival times and lengths of these packets are set as follows:

L] Ti,u = tiﬂ + 2, Li,u =6
L] Ti,v = tij + 2, Li,v =6

LAll times and length are given in an arbitrary time-unit.
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Tio=tmg+7, Lia=3

Tig=tig+9, Lig=tz—1iz—10

Ti,w = ti,? - 27 Li,w =3

Tis =ty Lis=3

The 24 packets M, ,, (1 <1 < p) arrive on the same input link, different from link 1 and
link 2. The 2 packets of type o arrive on the same input link, different from all the previous
links. Each of the 2u packets of type 3 arrives on a different input link. Similarly, every
packet of type v arrives on a different input link. Finally, the u packets of type ¢ arrive on
the same input link. Therefore, there are 2u + 5 input (and output) links in total labeled
from 1 to 2u +5 (n = 2u 4 5). In the structure of our proof, packets M;, and M;, play
the same role. Similarly, packets M;, and M;s play the same role. Although packets M, s
and M, ., look different, they also play the same role (to get a totally symmetric situation, it

would be enough to balance the length of packet M; 5 and packet M;.,).

There are 2ur 4 6u packets in total in the system, that is & +1 = 2ur + 6u. Related
to this number of packets, we set p = 2ur 4+ 6 + 1. Note that an assignment that would
contain just one edge of weight p is of weight larger than any assignment that would contain

only edges of weight 1.

Recall that the preference graph is a complete bipartite graph between the packets and
the the links. For each (positive or negative) literal u, the preferences of the ith packet m, ,,
i =1,...,p, toward links 1 and 2 are set to p*. Moreover, for each clause ¢; = (u,v) in C,
1 < ¢ < p, the preferences of packets M;, and M;, toward both output links 2 and 2z + 1
are equal to p. The preferences of M; s and M, toward output links 27 + 1 and 2¢ 4 2 are
set to p®. Finally, the preferences of M;, and M, toward output link 2i + 1 are set to 1.

All the other preferences are set to 0. Note that we are only using 2u 4+ 3 output links.

The construction is completed by setting K = (2uv + 2u)p* + 2up + K'.
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Figure 7: An example of the transformation in Theorem 1 where z, y are two variables of

U, and ¢; = (x,7) is a clause of C.
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Clearly this transformation is polynomial. Figure 7 is an example of this transformation.
In order to prove the equivalence of 2-SAT and MA by this transformation, we derive below
a general property that must satisfy the maximum assignment of the instance issue from the

transformation.

Lemma 1 Any assignment ¢ of value at least K, satisfies the following properties:

1. ¢ involves 2vp + 2u edges of weight p?, and 2u edges of weight p.

2. If a packet m is incident to an edge of weight at least p in the preference graph, then

¢ contains an edge incident to m that has a weight at least p.

3. All packets m; ., 1 € {1,...,u}, are assigned to the same output link. This link can be
link 1 or link 2. The same property holds for packets m;z. Moreover packets m;, and

m;z are not assigned to the same link.

Proof. First, we prove Property 1. Let us focus on edges of weight p?. Note that there are
only 2vp + 2u packets incident to the edges of weight p?. So, there are at most 2vpu + 2u
edges in ¢ whose weights are equal to p?. Assume that in ¢, there are ay edges of weight p?,
a; edges of weight p, and ay edges of weight 1. If ay < 2vu + 2, then ag + ayp > p*. This is
in contradiction with the definition of p, and with the fact that ag 4+ a; is at most equal to
the number of packets. Thus ¢ contains at least 2vu + 2u edges of weight p?. We apply the
same argument for the edges of weight p to show that the assignment ¢ contains exactly 2u

edges of weight p. And so property 1 holds.
The property 2 can be easily deduced from property 1.

For proving property 3, assume without loss the generality that ¢ contains the edge
(my 4, 1). Since there is a conflict between m; , and m; z, the edge (myz,2) is in ¢. Since

there is a conflict between my 7 and ma, the edge (ma ., 1) is in ¢. This argument applies
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successively for all i’s and the property 3 holds.

Based of the previous lemma, let us show that there exists a truth assignment for the
variables in U such that at least K’ of the clauses in C are simultaneously satisfied if and

only if there exists an assignment ¢ of weight at least K.

Sufficient condition. Assume that there exists an assignment ¢ of weight at least K. Let
us construct a truth assignment 7. For every packet m; ., ¢ € {1,...,u} and € U, we set
7(x) as follows:

o if (my,,1)isin ¢, then 7(x) = true;

o if (myz1)isin ¢, then 7(x) = false.

Let us count the number of clauses that are simultaneously satisfied by 7.

If clause ¢; = (u,v) is not satisfied by 7, then both (m,,,2) and (m;,,2) are in ¢. Since
packets m; , and M, , are in conflict, the edge (M;,,2) is not in ¢. Note that this edge is of
weight p. Property 2 implies that the edge (M, ,,,2i+1) is in ¢. Moreover, since packets M, ,,
and M, , are in conflict, the edge (M, ,,2¢ + 1) is not in ¢. Similarly, the edge (M;5,2i 4 1)
is not in ¢. Thus, the weights of the two edges corresponding to the assignment of packets

M, , and M, s are both equal to zero.

If clause ¢; = (u,v) is satisfied by 7, then there are two cases to consider:

1. One and only one of the two literals is true. Assume without loss of generality that

7(u) = true and 7(v) = false.

2. Both literals are true.

In case 1, since 7(v) = false, then, by definition of 7, and thanks to property 2, both
edges (m;,,2) and (M, ,,2¢ + 1) are in ¢. Since 7(u) = true, the edge (m;,, 1) is in ¢. If
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both edges (M, ,,2: + 1) and (M, ,,2) are in ¢ then the sum of the weights of the two edges
corresponding to the assignment of packets M; , and M, s is equal to 1, otherwise this sum

is equal to 0.

In case 2, (M, ,,, 1) and (M, ,, 1) are both in ¢. Moreover, either (M; ,,2i+1) or (M, 5,21+
1) is in ¢, but not both. Indeed, Property 2 implies that one and only one of the edges
(M; 5,204+ 1) and (M;.,,204+ 1) is in ¢. Assume without loss of generality that (M, z,2¢ + 1)
is in ¢. Since there is a conflict between packets M; 5 and M, ,, the edge (M, ,,2i+ 1) is not
in ¢. Thus, only one of the two edges (M, ,,2¢ + 1) and (M;s,2i 4+ 1) is in ¢. Therefore, the
sum of the weights of the two edges in ¢ that are incident to M; , and M, 5 is at most equal

to 1.

Hence, the number of clauses satisfied by 7 is at least the number of edges of weight 1 in
¢. If ag denotes the number of edges of weight 1 in ¢, then since the weight of ¢ is at least

K, we have

(20 + 2u)p* + 2up + a0 > (2vp + 2p)p* + 2up + K,

and thus ag > K'. Therefore, the truth assignment 7 for U simultaneously satisfies at least

K’ of the clauses in C.

Necessary condition. Assume that there exists a truth assignment 7 for U that simulta-

neously satisfies at least K’ of the clauses in C'. We construct an assignment ¢ as follows:

o if 7(x)=true, then (m;,,1)isin ¢, 1 =1,...,u;
o if 7(x) = false, then (m;z,1)isin ¢, i =1,...,u.
Moreover,

o fori=1,...,p,if ¢; = (u,v) is false, then (M, ,,20 + 1), (M;,,20 + 1), (M, 5,20 + 1),
and (M, ., 2i + 2) are in ¢;
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o forv=1,...,pu,if ¢, = (u,v) is true, then

1. if only one of the two literals v and v is true, say u, then (M, ,,2), (M;,,2i + 1),
(M; 0,204+ 1), (M; 5,20+ 2), and (M;.,,20 + 1) are in ¢;

2. if both literals u and v are true, then (M, ., 2), (M;.,2), (M; o, 2i+1), (M, 5, 2i42),
and (M, .,2i+ 1) are in ¢.

By construction, there exists a truth assignment for U that simultaneously satisfies at
least K’ of the clauses in C' if and only if there exists an assignment ¢ such that its weight

is at least K. This completes the proof.

The following result is a direct consequence of Theorem 1:

Corollary 1 The following problem is NP-complete:

GENERAL MAXIMUM ASSIGNMENT (GMA)

Instance: An interval graph G = (V, E), a weighted bipartite graph H = (V1, Vo, F)

where Vi =V, and an integer K ;

Question: Does there exist a subset ¢ C F such that (1) every vertex of Vi is the
extremity of exactly one edge in ¢, (2) if two edges of ¢ are incident to the same vertex
of Va, say e = (v1,v2) and €' = (v, va), then the edge (vi,v1) ¢ E, and (3) the global
weight of the edge of ¢ is > K ¥

Acknowledgments. The authors are thankful to Fabrice Clérot for many helpful com-

ments on many aspects of our research on all-optical networks.
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A Time scaling

We have considered two time scaling in order to separate the behavior of the network from
the behavior of the applications using the network. The main purpose of these two ticks is
to perform simulation on synchronous and asynchronous networks using exactly the same

probabilistic law for the emission process. We have considered:

1. Simulation tick, or network tick; and

2. Processor tick, or emission tick.

At each simulation tick, we consider possible emission of packets at each node, and we route
packets in the network. The traffic demand is simulated as follows. At each node, the decision
to introduce or not a packet in the input queue is taken according to a probabilistic law,
and destinations are chosen uniformly at random among the other nodes. Each node follows
the same law. At each processor, the emission follows a Bernoulli law (when a processor
sends, it sends exactly one packet). This Bernoulli law is in turn simulated by a Binomial
law at the simulation tick. We denote by ¢, (resp. ,), the tick of the network (resp. of the
processor). In our experiments, we have fixed ¢, = 0.1us, and t, = 20ns. Note that other

experiments done with a smaller simulation tick (¢, = 20ns) produced the same results.

Most of our experimental results are presented as a function of the load offered to the
network. The offered load is expressed in packets per node and per slot. (In unslotted
networks, the slot is an abstract measure expressing the maximum size of a packet.) The
time slot is denoted by t;. We have fixed the time slot at ¢, = 1ps. Hence, to get a fixed

offered load L, we have forced the parameter of the Bernoulli law B(\) followed by the

L

emissions to be A = -4
e/t

. Then the emission law of a network is B(A,t,/t,). This protocol
produces the same emission law for both slotted and unslotted networks. Note that it would
not have been the case if we would have followed the naive approach consisting of setting

t, = t, for synchronous simulation.
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B Sporadic traffic

We mainly consider two different emission laws for two different kinds of experiments: Poisson
traffic, and sporadic traffic. In the Poisson traffic, every processor follows the same Bernoulli

law. This is the most commonly studied traffic in the literature.

In order to simulate a sporadic traffic, we have used an emission law denoted by S(L,, p, L, p')
[13]. This law is nothing else than a two states Markovian chain. More precisely, each node
is in two possible states called ground and bursty. These states alternate according to two
probabilities p and p’. From the ground state, the probability to enter the bursty state is p.
From the bursty state, the probability to enter the ground state is p’. In the ground state,
the emission law is Poisson. In the bursty state, we allow processors to send a large number
of packets within one slot (such packets will be stored in the input queue). When a processor
is in the bursty state, its offered load is of average £, > 1 (to be compared with the global

offered load in the Poisson traffic which is always strictly less than 1).

As in [21], we have considered that bursty traffics are mainly caused by ftp-data-like
applications. Moreover, whatever the load of the network is, a burst offers the same charac-
teristic. Thus, we decide to set £, = ¢st, independently from the global load £. For the same
reasons, the probability p’ to get out of a bursty application is not related to the global load,
and thus it is set as a constant. The ground emission rate £, is defined as a linear function
of the offered load of the network L. Indeed, the ground traffic is induced by telnet-like
connections [21] whose number grows linearly with the number of running applications. We
have set £, = ¢ L. Note that ¢ should not be larger than the saturation threshold of the

network. The constant ¢ is hence set to 0.3. For a given offered load, the probability p is

/,C(l—c)

fixed to p S

so that the mean of the law S(L,, p, Ly, p’) is L. Thence, in our sporadic
model, an increase of the load will be induced by an increase of the frequency at which we

enter in the bursty state.

We have fixed (somewhat arbitrarily) the value of £, at 5 (smaller bursts would not be
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significant, and larger bursts would saturate the input queues). We also set p’ = 0.02. This

value was fixed according to the value of £;. It implies that a burst will fill up the input

queue with 25 packets on average, that is with 25% of the size of the queue. One can see on

Figure 8 that Poisson and sporadic traffics are indeed very different.
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Figure 8: Poisson traffic (on the left) versus sporadic traffic (on the right): number of packets

in a queue as a function of the time.
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