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Abstract

This paper addresses the one-to-all broadcasting problem, and the one-to-many broadcast-
ing problem, usually simply called broadcasting and multicasting, respectively. Broadcasting is
the information dissemination problem in which a node of a network sends the same piece of
information to all the other nodes. Multicasting is a partial broadcasting in the sense that only
a subset of nodes forms the destination set. Both operations have many applications in parallel
and distributed computing. In this paper, we study these problems in both line model, and
cut-through model. The former assumes long distance calls between non-neighboring processors.
The latter strengthens the line model by taking into account the use of a routing function. Long
distance calls are possible in circuit-switched and wormhole routed networks, and also in many
networks supporting optical facilities.

In the line model, it is well-known that one can compute in polynomial time a [log, n]-round
broadcast or multicast protocol for any arbitrary network. Unfortunately, such a protocol is often
inefficient from a practical point of view because it does not use the resources of the network in
a balanced way. In this paper, we present a new algorithm to compute broadcast or multicast
protocols. This algorithm applies under both line and cut-through models. Moreover, it returns
protocols that efficiently use the bandwidth of the network. From a complexity point of view, we
also show that most of the optimization problems relative to the maximization of the efficiency
of broadcast or multicast protocols in term of switching time or vertex load are NP-complete.

We have derived polynomial efficient solutions for tree-networks however.
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1 Introduction

Given any point-to-point interconnection network [24], broadcastingis the information dissemination
problem in which a source node sends the same piece of information to all the other nodes of
the network. Such a communication scheme typically appears in many parallel or distributed
applications [17, 18, 29, 30]. It is one of the kernels of the Collective Communication Routines of
the Message Passing Interface (MPI) library [8, 11]. Broadcasting is actually a particular case of
multicasting in which a source node sends a unique message to an arbitrary subset of nodes. For
instance, a broadcast at the application level in a multi-user parallel machine is actually a multicast
at the system level. Multicasting has many applications for the control of parallel systems as it is
involved in barrier synchronization or cache coherence; it is also a basic tool for the implementation
of parallel data-bases [33].

In most of the modern distributed memory parallel computers, the store-and-forward routing
mode has been replaced by various types of cut-through routing modes, including circuit-switching,
wormhole routing [27] and single-hop Wavelength Division Multiplexing (WDM) [1, 26]. In the
circuit-switching mode, when a node z sends a message to a non-neighboring node y, a path that
directly connects these two nodes is created between them. The message from z is then transmitted
towards y along the path. On each node, a router is in charge of transmitting messages, but
intermediate processors do not necessarily receive the message that passes through them. Actually,
a router sends a message to the local memory only when the local processor is one of the destinations
specified in the header of the message. Wormhole routing differs from circuit-switching routing in
the way messages are transmitted along the path from the source to the destination. In wormhole
routing, a message is decomposed in small units called flits. The first flit is used to determine the
route followed by the message at each intermediate node, and the remaining flits follow in a pipeline
fashion (the last flit releases the intermediate connections). Wormhole routing does not require a
whole path to be reserved between the source and the destination, it makes use of a number of
links proportional to the length of the message. In single-hop WDM routing, upon reception of a
communication-request (source,destination), the system is in charge of allocating a wavelength A
to a path P from the source to the destination so that no other path sharing a link with P has

the same wavelength. When the communication-request has been satisfied, the message is encoded



using A, and it is routed along P. Like any cut-through routing, circuit-switching, wormhole and
WDM routing are not very sensitive to the path length.

In this paper, we are interested in the communication complexity of broadcasting and multi-
casting in cut-through routed networks. For this purpose, we will make use of the so-called line
model [4] which supposes that (1) a call involves exactly two nodes (these two nodes might be at
distance greater than one), (2) a node can take part in at most one call at a time, and (3) any
two paths corresponding to two simultaneous calls must be edge-disjoint’. As opposed to the so-
called telephone model [12] which allows neighbor-to-neighbor communications only (and indeed
has nothing to do with telephone networks), the line model allows long distance calls between non-
neighboring nodes in order to reflect the cut-through ability?. However, the line model suffers from
a major drawback. Indeed, in most of the systems, the paths followed by messages are determined
by the use of a routing function. To take into account this fact, we will consider the following
simple additional hypothesis to the line model : (4) paths followed by messages are constructed by
application of a routing function. To simplify the analysis, such a routing function is modeled here
as a function R : V xV +— F where V denotes the set of vertices, and IV denotes the set of edges of
an undirected graph G' = (V, F). That is, when a message of destination y is currently at node z,
it is routed through the edge R(z,y). (Such an edge is always supposed to be incident with node
z.) R is adaptive if the routing function returns several possible solutions to route a given message,
that is R: V x V +— P(F). In this case, a selecting function is in charge of choosing a free channel
among the selected links. A routing function is said to be minimal if, for any source-destination
pair, any path generated by the routing function is of length the distance in the network between
these two nodes. In this paper, the line model plus hypothesis 4 is called the cut-through model
(the routing function can be adaptive or not).

Most of the known results about broadcasting under these hypotheses deal with particular
network architectures as trees [4, 21, 22], cycles [19], meshes or tori [5, 10]. Many results have
been also derived when hypothesis 2 is replaced by the all-ports hypothesis, that is, when a node

can simultaneously communicate with as many nodes as its number of ports (see for instance the

!As in [4], but as opposed to [16], a sender or receiver node can be an inner node of another path.

2We will assume a two-way mode in this paper, although our results also apply to the one-way mode since broadcast

and multicast protocols involve one-way calls as far as the number of rounds is concerned.



references in [13, 28]). Similarly, broadcasting has also been investigated when hypothesis 3 is
replaced by a vertex-disjoint constraint [20], or by a similar constraint which assumes that an inner
node of a path cannot be a sender or receiver [14, 15]. Unfortunately, most of these variations yield
NP-complete problems when looking for the minimization of the number of rounds for broadcasting
or multicasting, whereas we will see that it is not the case for the line model. Similarly, multicasting
has been intensively studied in the literature. Results concern either store-and-forward routing (see
for instance [23, 25]) or cut-through routing (see for instance the references in [6, 7]). As for the
broadcasting problem, the network is usually fixed (generally a mesh). Moreover, many papers
dealing with the multicasting problem make use of the path-based hypothesis that will not be
considered in this paper. This hypothesis assumes that a message header can contain multiple
destination addresses, and the flow control allows the intermediate destinations to get a copy of
the message traversing their routers.

In this paper, we will consider the line model applied to arbitrary network topologies. Since
cut-through routing is not very sensitive to the length of the paths, a primary approach to estimate
the complexity of a broadcast or a multicast protocol in the line model is to count its number of
rounds (a round been defined by the set of calls performed at the same time). Note that it does not
mean that the network must be synchronous, it is just an estimation of the time required by the
protocol assuming that the network is synchronous. Hypotheses 1 and 2 imply that the number
of informed nodes can at most double at each round, and therefore [log, n] is a lower bound on
the number of rounds necessary to perform broadcast from any node of any network of n nodes.
Farley [4] showed that this bound is tight, that is, for any network GG of n nodes, the number of
rounds required to perform broadcast from any node of GG is actually equal to [logy n]. As we will
see, Farley’s theorem can be extended to the multicast problem: for any network G' = (V, F), for
any source node u € V, and for any destinations set D C V, u € D, the number of rounds necessary
to complete multicast from w in D is exactly [log, |D|].

The discussion is not closed however. This paper addresses two fundamental questions that

arise in this field.
Question 1. Is it possible to adapt Farley’s theorem in the cut-through model?

Question 2. What is the limit of the “furtiveness” of a broadcast or multicast protocol? (This



will be quantified using several different measures.)

The former question is quite natural since, in the line model, paths are constructed somewhat off-line
whereas the cut-through model constructs paths on-line by application of the routing function. The
latter question is even more natural. Indeed, it is required that the traffic generated by a broadcast
or a multicast protocol does not interfere significantly with other possible traffic. For instance,
any broadcast initiated by a user-process of a multi-user parallel machine must not slow down the
communications of other users. More generally, multicasts are often initiated by system processes
which must not reduce the ability of user processes to exchange messages at their maximum rate.
In other words, one requires that the number of resources used by a multicast or a broadcast be
minimal, or, at least, be small. Unfortunately, Farley’s protocol is not appropriate for that purpose
because it is based on transmitting messages along edges of a spanning tree of the network. This
induces lot of contentions, and high latency. Our main goal in this paper is to figure out whether
it is possible to derive [log, n]|-round broadcast protocols that achieve a better use of the resources
of the network for both line model and cut-through models.

Among the several possible parameters which measure the “furtiveness”, and the efficiency
of a multicast or a broadcast protocol, we will be interested in minimizing the total number of
communication links that are used at each round of the protocol, or during the whole protocol.
The less number of links is used, the most “furtive” is the protocol. Defining a transmitter as
a router that is explicitly used to forward a message during a broadcast of a multicast protocol,
we will be interested in minimizing the number of such transmitters. It allows to decrease the
number of nodes which will be disturbed by the multicast protocols. Again, we will consider
either a given round, or the whole protocol. Alternatively, we will be interested in minimizing the
maximum number of communication paths that a given transmitter handles simultaneously during
a multicast or a broadcast protocol. Indeed, we must not overload intermediate routers, so that
they keep their ability to route other messages at their maximum speed. Of course, there is a
tradeoff between the number of transmitters and the load of these transmitters. And last but not
least, we will be interested in minimizing the maximum length of the paths used during a broadcast
or a multicast protocol. This parameter will allow us to estimate the possible degradation of the

time complexity of the protocol when the switching time of the routers cannot be neglected.



About Question 1, we will show that the answer is “yes” for minimal (possibly adaptive) routing
functions. About Question 2, we will give polynomial algorithms minimizing the values of the
parameters listed before, or we will alternatively show that the corresponding decision problems
are NP-complete.

More precisely, in Section 3, we will derive a new polynomial algorithm which returns, for any
networks (7, a time-optimal multicast protocol (and, as a particular case, a time-optimal broadcast
protocol) in GG in the line model. This protocol minimizes the total number of edges used at each
round. A major point is that this new protocol applies to the cut-through model also, under the
simple condition that the routing function generates shortest paths only. This is an improvement
compared to all time-optimal protocols previously described in the literature. Indeed, in order to
be applied to the cut-through model, all these protocols require a routing function using the edges
of a spanning tree (such a routing function cannot be used in practice since it would create a lot
of contentions, in particular at the root of the tree, and the lengths of the routes would be much
too large compared to the shortest paths between the sources and the destinations). In Section 3,
we will also show that the decision problem corresponding to the minimization of the sum, taken
over all rounds, of the total number of edges used at every round is NP-complete. However, we will
show that our protocol is optimal up to a logarithmic multiplicative factor. In section 4, we will
derive specific lower and upper bounds for tree-networks. These bounds approximate in a much
better way the optimal total number of used edges.

Sections 5 and 6 are dedicated to the NP-completeness of minimizing the number of trans-
mitters, or minimizing the load of the transmitters, or minimizing the total switching-time (i.e.,
the maximum length of the routing paths used to broadcast or to multicast). These results imply
that routers must be sophisticated enough to support simultaneous routing of many paths without
degradation of their switching-time. Similarly, even if it is not a major issue to minimize the length
of the routes in cut-through networks, these results show that broadcasting or multicasting mes-
sages of small size is difficult to optimize when the switching-time cannot be neglected. Section 7

contains some concluding remarks.
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Figure 1: A double star of 8 vertices.
2 Line model versus cut-through model

The aim of this section is to point out the difference between the line model and the cut-through
model. Let us consider the network on Figure 1. It is a double-star S? = (V, E)) with two centers
u and v, and n — 2 rays. Let us show how to broadcast in [log, n] rounds from any source of S?2
in the line model (Farley’s theorem insures that such a broadcast protocol exists). Nodes at the
extremities of the rays are labeled from 1 to n — 2, node u is labeled 0, and node v is labeled n — 1.
Note that nodes u and v play the same role. Thus, there are only two cases to be considered: either
the source of the broadcast is a center (say node 0), or it is one of the extremities of the n — 2
rays (say node 1). In both cases, one can always proceed so that both nodes 0 and 1 are aware of
the broadcasted message after one round. Now, if one considers the subgraph of the double star
obtained by removing all the edges between v and the other nodes but u, we obtain a usual star
with center u. On this star, the next [log,n] — 1 rounds are given by: at round ¢, ¢ > 1, if the
node labeled k is aware of the message, then it informs the node labeled k4 2:='. There is no edge
contention, and, after round [log, n], all nodes are aware of the message.

Let us now consider the non-adaptive routing function R that routes the messages on the double

star as follows:

Vw e Viw# u,w # v,Vo € V, R(w, z) = (w, u);
Vo e V,R(u,z) = (u,v);
Ve e V,R(v,z) = (v, 2).
Assume n = 8. It is not possible to broadcast in 3 rounds from any source in the double star of

8 vertices under the cut-through model with this routing function. Indeed, to broadcast in 3 rounds,



the last round would consists of 4 calls performed at the same time. Therefore, at least two of these
calls would use the arc from u to v, which is impossible. (Recall that both line model and cut-
through model require edge-disjoint paths.) This example shows that the cut-through model is
more restrictive than the line model. In particular, it is not true that, for any network &, and for
any routing function R on G, there exists a broadcast protocol from any node of G that performs

in [log, n] rounds. However, one can state the following result:

Property 1 (cut-through version of Farley’s theorem).
In the cut-through model, for any network G of n nodes, there exists a non-adaptive, and non-

minimal routing function R such that the broadcasting time from any node of G is [log, n].

Proof. There exist many proofs of Farley’s theorem and similar results (see [4, 16, 21, 22]). All
of them use an arbitrary spanning tree of the considered network, and all the calls are performed
along the edges of this spanning tree. Any spanning tree induces a routing function R since there
is a unique path between any two nodes in a tree. Therefore, all paths used by the broadcast
protocols derived in [4, 9, 16, 21, 22] can be generated by a routing function.
O
The proof of Property 1 is based on a routing function which follows the edges of a spanning
tree of the network. Such a routing function induces a lot of contentions and hot-spots when it is
used for other communication problems. Indeed, the traffic is not balanced, and the root of the tree
is clearly overloaded. Moreover, though the use of shortest paths is not necessarily important in
networks using circuit-switching or wormhole routing, such a routing function may route messages
exchanged between neighbors along a path of length twice the diameter of the network! In the next

section, we will show that it is possible to do much better.

3 A new multicast protocol for minimal routing functions

In this section, we will first focus on the total number of links that are used by a broadcasting
or a multicasting protocol at each round, or during the whole protocol. By total number of links
used during the whole protocol, we mean the sum, over all the rounds, of the number of links used

at each round (an edge can therefore contribute more than once). As we saw, this parameter can



be considered as a measure of the “furtiveness” of the protocol. At each round of a broadcasting
protocol, nodes aware of the message are “matched” with other nodes that have not received the

message yet. Let us formalize this fact:

Definition 1 Let U be a subset of vertices of a graph G = (V, F). A pseudo-matching in U is a
set P of L'zﬂj pairwise edge-disjoint paths in G such that every vertex of U (but one if |U| is odd)

is an extremity of a path in P.

The following result shows that a pseudo-matching in U exists for any choice of U C V. We

denote by d(z,y) the distance between two nodes 2 and y of a graph G.

Lemma 1 Let U be a subset of vertices of a graph G = (V, E). One can group the vertices of U in
. U ..

pairs ($17y1)7 ($27y2)7 R (xlmyk) where k = L|2_|Jf and} fOT all 1] € {17 .. ‘7k}} z; € U} Y; € U}

x; # x5, Yi Y, and x; # y;, such that any shortest path between x; and y; is edge-disjoint with

any shortest path between x; and y;, ¢ # j, and such that Zle d(x;,y;) is minimum among all the

possible choices of the pairs (x;,y;), 1=1,...,k.

Proof. Let m = |U|, and let us consider the complete graph K, of m vertices where each vertex
of K,, is identified with a vertex of U. We add weights on the edges of K,,: the edge {z,y} has
weight d(z,y), the distance between z and y in . Consider a perfect matching of minimum weight
in K,, (or a matching that leaves just one node unmatched if m is odd). This matching induces
a set P of L'zﬂj shortest paths in G such that every vertex of U (but one if |U] is odd) is an
extremity of a path in P. (In case of multiple shortest paths between two matched vertices, choose
one arbitrarily.)

We claim that the paths of P are pairwise edge-disjoint. Indeed, assume that two paths P,
and Pg s of P are not edge-disjoint. It means that there exist two vertices z and z’ such that
Plagy = Plasy U Py U Playy, and Pl = Py U Py U Plagyy or Py = Plran U
P{’Z,7Z} U P,y where P, ., has at least one edge in common with P{’Z7Z,}. Assume without loss
of generality that P, = Py U P’Z7Z,} U Py It implies that the two matchings {z,y}
and {z',y'} can be replaced by two other matchings {x,2'} and {y,y’}. The former matching
has a weight of d(z,z) + d(Z',y) + d(2',2) + d(Z',y') + 2d(z,z’) whereas the latter has a weight
of d(z,2") 4+ d(y,y’) which is less than or equal to d(z,z) + d(2',y) + d(2', 2z) + d(%',y’). Since



d(z,z') # 0, we obtain a contradiction with the fact that the original matching is of minimum
weight, and therefore the paths of P are pairwise edge-disjoint.

O

Let us define the weight of a pseudo-matching P in U as the sum of the lengths of all the paths

in P. We are interested in minimizing the weights of the several pseudo-matchings generated at

any round of a multicasting or a broadcasting protocol. A pseudo-matching of low weight requires

low use of the bandwidth to perform exchanges between the extremities of its paths. The following

theorem shows that this minimization is possible in polynomial time. It improves Farley’s theorem.

Theorem 1 For any network G = (V, F) of n nodes, and for any node u of G, one can compute in
polynomial time a multicast protocol from u to any set D in G, u € D, which performs in [logy | D|]
rounds in the line model, and such that:

(1) all the calls are performed along shortest paths;

(i1) at any of the [logy | D|] rounds, the weight of the corresponding pseudo-matching is minimum.

Proof. The [log,|D|] pseudo-matchings are constructed backwards. Start with Uy = D, and, by
Lemma 1, compute a pseudo-matching P in Uy of minimum weight, and containing shortest paths
only. Then choose one of the two extremities of each path in P;. This choice can be random or
arbitrary, that is, for any path of P;, one extremity is selected arbitrarily. There is one exception
for the path containing the source u because the source u must be selected. Keep also the unique
isolated unmatched vertex in Uy if exists. All these nodes form a set U;. Then compute a pseudo-
matching Py in Us of minimum weight and containing shortest paths only. Again, this is possible
by Lemma 1. Then, we extract a set Us from Uy as U; was extracted from Uy, and we repeat
the process until a set U; is reduced to u. Clearly ¢ satisfies ¢ = [log, |D|]. This protocol can be
computed in polynomial time because one can compute a perfect matching of minimum weight in
the complete graph in polynomial time [3].
O
This result also holds in the cut-through model because the way the shortest paths are selected
in the proof of Lemma 1 does not matter. In particular, they can be constructed by using any
minimal (and possibly adaptive) routing function. Therefore, we get the following result which

strongly improves Property 1:



Theorem 2 For any network G = (V, E) of n nodes, for any subset D CV, for any node u

inD, and for any minimal (and possibly adaptive) routing function on G, one can compute in
polynomial time a multicast protocol from u to D which performs in [log, |D|] rounds in the cut-
through model, and such that, at any of the [log, |D|| rounds, the weight of the corresponding

pseudo-matching is minimum.

Theorem 2 says that, whatever are the network and the (possibly adaptive) routing function
on this network, if this routing function routes messages along shortest paths, it is possible to
broadcast and multicast optimally in terms of rounds. Most of the routing functions used in the
usual topologies (meshes, multi-dimensional tori,...) routes on shortest paths (XY-routing, e-cube
routing,...). If wormhole routing is used, it is interesting to notice that there is no contradiction
between the search for a deadlock free routing function, and the search for a routing function that
insures fast broadcasting and multicasting. Indeed, most of the classical deadlock free routing
functions generate shortest paths only.

Theorems 1 and 2 both say that one can easily minimize the interference of each round of
any multicast protocol (the number of involved communication channels can be minimized at each
round). Unfortunately, they do not say that the sum of the lengths of all the paths used during the
whole multicast is minimum. As a counter example, consider the path Py = (xq, 21, 22, 3), and as-
sume that ¢ is the source. In the protocol given in the proof of Theorem 1, Py = {(20, z1), (z2, 23) }.
So, if zg and z3 are then selected (recall that the selection is arbitrary but for the source), then
Py = {(x0, 21, 22,23)}. At each round, the number of involved communication channels is mini-
mum (given as inputs the sets U; = {xo, 21, x2, 23}, and Uy = {z¢, x3}). However, the sum of all
the lengths of the paths is 1 + 14+ 3 = 5 whereas the minimum is 4.

The following result shows that minimizing globally the sum of the path lengths is NP-complete.

Theorem 3 The following problem is NP-complete:

MiNniMum ToTaL PatH LENGTH (MTPL):

Instance: A graph G = (V| F), a vertex u of G, a subset D CV, uw € D, and an integer k.
Question: Does there exist a multicast protocol from u to D in G performing in [logy | D|] rounds
in the line model, and such that the sum of all the lengths of all the communication paths

generated by this protocol is at most k?

10



The proof of Theorem 3 is based on the following lemma (recall that the telephone model allows

neighbor-to-neighbor communications only):

Lemma 2 The following problem is NP-complete:
Loc Broapcast (LoGgB):
Instance: A graph G = (V| F) of n vertices, and a vertex u of .
Question: Does there exist a broadcast protocol from w in G performing in at most [log, n]

rounds in the telephone model?

Proof. It is well known that the following problem has been shown to be NP-complete by Johnson
(see [31] for his proof):

BroaDpcCAsT:

Instance: A graph G = (V| F), a vertex u of GG, and an integer k.

Question: Does there exist a broadcast protocol from u in G performing in at most k rounds in

the telephone model?

Lemma 2 can be proved using nearly the same technique as the one used in [31] to show that

the problem LoGB is NP-complete.
O

Proof of Theorem 3. MTPL is clearly in NP. MTPL is NP-complete by transformation from
Problem LoGB. Let GG, u be an instance of the LoGB problem. We transform this instance in an
instance G, D, u, k of the MTPL problem by setting D =V and k = n — 1. Clearly, if there exists
a broadcast protocol from w in G performing in at most [log, n] rounds in the telephone model,
then there exists a broadcast protocol from w in G in [log, n] rounds in the line model and such
that the sum of all the lengths of the communication paths is at most n — 1. Reciprocally, if there
exists a broadcast protocol from u in GG performing in [log, 7] rounds in the line model, and such
that the sum of all the lengths of the communication paths is at most n — 1, then all calls are
performed between neighboring vertices, and therefore there exists a broadcast protocol from » in
G performing in at most [log, n| rounds in the telephone model. O

Theorem 3 implies that it is difficult to minimize the total load of the edges during a multicast

or a broadcast protocol. However, one can approximate this value up to a logarithmic factor.

11



Notation. Forany network G = (V, ), any node v € V', and any set D C V', u € D, let us denote

by S(G, D, u) the minimum, taken over all the multicast protocols from u to D in G performing in

[log, |D|] rounds, of the sum of all the lengths of all the paths generated by the protocol.
Theorem 3 shows that minimizing S(G, D,u) is an NP-complete problem. Nevertheless, we

have:

Theorem 4 Let G = (V, E) be any graph, let D CV, and let w € D. The total sum of the lengths

of all the paths generated by the multicast protocol of Theorem 1 is at most [logy |D||S(G, D, u).

Proof. Since every node of D must receive the message, S(G, D, u) is at least the number of edges
ns of a Steiner tree T [32] spanning D. On the other hand, for every i, 1 < i < [log, |D|], the
number of edges of the pseudo-matching of U; constructed in the algorithm given in the proof of
Theorem 1 contains at most the number of edges of T'. Indeed, one can find a pseudo-matching of
U; by using only edges of T, and thus the pseudo-matching of U; in G uses less edges. Therefore,
for every 7, 1 < ¢ < [log, |D]|], the number of edges of the pseudo-matching of U; is at most the
number of edges ng of a Steiner tree spanning D). Thus the protocol of Theorem 1 generates paths
of total length at most [log, |D||n, < [logy |D|]S(G, V,u).

We conclude the section by a property of pseudo-matchings.
Property 2 A pseudo-matching of minimum weight is a forest (i.e. a set of disjoint trees).

Proof. Let P be a pseudo-matching of minimum weight. If P is not a forest, then let us show
that we can construct another pseudo-matching P’ with fewer edges. Assume that there is a cycle
in P, and let C' = {xg,21,...,25_1}, k > 3, be this cycle. C' is actually composed as a union of
sub-paths of p paths of P. We identify particular vertices of C' called doors. A door is a vertex z;
of C such that (2;-1 mod k, i) and (&4, ;41 mod k) do not belong to the same path of P.

Clearly the number of doors is strictly larger than 1. If the number of doors is 2, then C'is

composed of parts of two paths:

Pl = {9173/27---vyr790079017---79057%4-17---794}7

12



and
P2 = {217227 sy Bply sy Tsqly e ooy L1y TOy Zpig1y '725'}'

These paths could be easily replaced by

/ /
Pl = {y17y27"'7y7’7x07zr’—|—17"'725'}7 and P2 = {217227"'7Zr’7$57y7’—|—17-"7y€}-

This would yield a pseudo-matching of lower weight, that is a contradiction.

If the number of doors is strictly larger than 2, let P be a path of P using some edges of
C. P =A{y,y2,-.-,y¢}. Let i be the smallest index such that (y;,yi+1) € C. There exists
7.0 <j <k—1,such that (y;,yi+1) = (2,241 mod k), and z; is a door. There is another path of
P,say P' = {z,29,..., 2y}, such that (2;_1 mod k, ¢;) € P'. Assume w.l.g., that (2;_1 mod s, ¢;) =
(zr, Zr41), ¥ < m. We replace the two pairs of matched vertices y1,ys, and 21, 2z, by z1,ys, and
Y1, Zm. The number of edges used by the new pseudo-matching is the same, but the number of
doors of C' has been decreased by one. We iterate this process until the number of doors is 2,

yielding a contradiction.

In the next section, we will show how to improve Theorem 4 for trees.

4 Broadcasting and multicasting in tree-networks

We will derive upper and lower bounds on S(G, D, u) for trees that are tighter than the bound
of Theorem 4. Many applications of networking make use of trees as the underlying topology for
exchanging data or control messages. This is why it is interesting to treat tree-networks as a special
case.

Let us start with a few definitions.

Notation. Let o be any non-negative integer. If 28=1 < o < 2%, then the binary representation
of & is denoted by ay, ..., a9, aq such that o = Zle @;2=1. We denote by g(a) the number of
1’s in the binary representation of «, that is ¢g(a) = Zle ;. We also define the function f by
induction: f(0) =0, f(1) =1, and,

for a > 1, f(a) = min (f([%}),f({oq)) + (o mod 2).

2
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In terms of binary expression, the reader can check that, for any non-empty binary string M,
f(M0) = f(M), f(MO01) = f(M) + 1, and, for any string N = 11...11 of length at least 2,
f(N)=2,and f(MON) = f(M1)+ 1. For instance,

£(110011101011) = f(1100111011) + 1 = f(11001111) 42 = f(1101) 4+ 3 = f(11) 4+ 4 = 6.

Let T'= (V, E) be a tree with n vertices. Let u be the source of a multicast of destination set D,
u € D. We consider T as rooted in u. Any set U, u € U, induces a weight function wy; on the edges
of T as follows. For any edge e = {z,y} € E, the removing of ¢ from T decomposes T is two trees
T, and T},. We denote by T, the tree which does not contain u. We define wyr(e) = |V (T.) N UJ.

Consider what happen to an edge e of weight wp(e). Let K. = V(1) N U. Intuitively, if | K|
is even, then e will not be used in a pseudo-matching of D. However, if |K.| is odd, then e will
be used, and, depending on the choice of one of the two extremities of the path passing through e
(see the proof of Theorem 1), we will be let with [@] or L'I‘z—e'J destinations on the same side of
u relatively to e. Thus, intuitively, > . f(wp(e)) is a lower bound for S(T, D, u).

To get the intuition of an upper bound, let S; = > _p(wp(e));, 1 < i < [logy | D[], that is the
sum of the ¢th bits of the binary expressions of all the weights wp(e), e € F. If the least significant
bit of wp(e) is 1, then e will be used in the pseudo-matching of D. On the contrary, if this bit is 0,
then the edge will not be used. However, this property does not hold at the second round, that
is it is not necessarily true that only edges with the second least significant bit equal to 1, will be
used. Indeed, this property is strongly related to the choice of one of the two extremities of the
path passing through e (see the proof of Theorem 1). We will show further that there is a way of
performing the choice so that at most S;1q + % edges are used at round ¢+ 1 where T; denotes the
number of edges used at round 4. Since »,T; < 23,5, and ) _pg(wp(e)) = 22[51&) "] S;, we
will get an upper bound of 23 _ . g(wp(e)) for S(T, D, u).

More formally, we have the following result:

Theorem 5 Let T = (V, F) be a tree, let D C 'V be any set of vertices, and let w € D. We have

Yocer flwn(€)) < S(T,Dsu) <237 cpg(wp(e)).

Proof. We construct the multicast protocol backward, providing an accumulation protocol (re-

versing the communication scheme for accumulation results in a communication scheme for mul-
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ticasting). In the accumulation problem, each node of D has a piece of information that must be
collected by u. An accumulation protocol will be described by a sequence Up, Uy, ..., Ufog, D1 ©f
subsets of nodes with Uy = D, Upog, |pj] = ¢, and Uy C Uy For 0 <t < [log, | D], U; actually
denotes a set of nodes such that the union of all the pieces of information known by them at round
t is exactly the union of all the pieces of information originally known by all the vertices of D. The
set U;4q is constructed by using the information of U, only. Uy is called the active set at time t. A
vertex belonging to an active set is called an active node.

In the considered tree T, given a set U of active vertices, an edge e is said to be even relatively
to U if the removal of this edge decomposes the tree into two subtrees, each rooted at one extremity
of e, which have both an even number of active vertices of U. The edge € is said to be odd relatively

to U otherwise.

Upper bound. Let us introduce another notation. Given two vertices z and y of the tree, we
denote by s¢(x,y) the number of the penultimate zero-bits in the binary expressions of the weights
wy, (e) of the edges e belonging to the shortest path from z to y in T (the sets Uy are defined in the
lower bound part of the proof). In other words, if there are ¢ edges on the shortest path from z to y
in T', and if the weights of these ¢ edges are denoted by w(V), ... w(®, then s;(z,y) = ¢— i wgi).
Finally, for the sake of simplicity, let us first assume that |D| = 2F.

Our accumulation protocol proceeds as in the proof of Theorem 1 by a successive construction
of pseudo-matchings of the active sets Uy, t = 0,...,[logy|D|]. The only thing that we have to

specify carefully is the way to choose which extremity of each path of the pseudo-matching we keep

for the next round. More precisely, round ¢ of our protocol can be decomposed in two phases:
1. Construct a pseudo-matching in U using only odd edges relatively to U; (see [16]).

2. For each pair of vertices z and y matched in the pseudo-matching in Uy, let z be the first
common ancestor of  and y. If s;(z,2) = si(z,y), then choose the vertex which is the
closest to the root u, and put it in the set U;1; (choose arbitrarily any of these two vertices
if d(z,u) = d(y,u)). If s;(z,2) < s¢(2,y) then put z in Upyq, and if si(2z,2) > s¢(z,y) then

put yin Ugyg.
We refer the reader to [16, 21, 22] to figure out how phase 1 can be performed in polynomial time.
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Let us show that this [log, |D||-time multicast protocol satisfies that the sum over its [log, |D]]
rounds of the number of edges used at each round is upper bounded by 23 . g(wp(e)). For this

purpose, let us prove the following;:

Claim 1. If there are a odd edges before round ¢ (that is relatively to Uy), then there are at most
B+ a/2 odd edges after round ¢ (that is relatively to U;11), where [ is the sum of the penultimate
bits of the weights wys, (e) of all the edges e € F.

Indeed, since |D| is a power of 2, the number of active nodes is divided by 2 after each round.

wy, (e)
2

Clearly, for any even edge e at round ¢, wy,,, (€) = , and its parity at round ¢ + 1 depends on
the penultimate bit of wys, (e): an even edge turns odd if the penultimate bit of its previous weight
was a 1. The case of odd edges is more complicated. Any odd edge e relatively to U; will be used
during round ¢, say for a communication between z and y. Let z be the first common ancestor of
and y, and let wy, (€) = 2k + 1. Let us consider the several possibilities for the choice of the node
v € {z,y} put in Upyq.
—If v e V\V(T.), then wy,,, (e) = k, and hence e stays odd if and only if the penultimate bit of
its previous weight was a 1. This case is therefore taken into account in the term 3 of Claim 1.
—If v e V(T¢), then wy,,,(e) = k + 1, and hence e stays odd if and only if the penultimate bit of
its previous weight was a 0. Since v minimizes the number of zeros at the penultimate position of
the weights of the edges between z, y, and their common ancestor z, this case is therefore taken
into account in the term a/2 of Claim 1.

Therefore, as claimed, if there are o odd edges before the round ¢, then there are at most f+a/2
odd edges after round ¢, where § is the sum of the penultimate bits of the weights wy, (e) of all

the edges e € E/. Now, let (wp(e)); be the ith bit of the binary representation of wp(e), and let

Si = Y .ep(wple))i, for 1 <i < [logy | D]]. By definition, we have

[log, | D1
Y glwp(e) = > S (1)
ecl =1

At the first round, at most S; edges are used since there are only 57 odd edges. Following

Claim 1, at most So + 51 /2 edges are used at the second round. More generally, we have:
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Claim 2. At any round ¢, 1 < ¢ < [log,|D|], at most > i_, 2‘?@ edges are used in the pseudo-

matching.
We prove this claim using Claim 1 by showing that the sum of the penultimate bits of the
weights wy, (€) of all the edges e € F is equal to S;. We have seen that if wy,(e) is even, then

wy,,, (e) = wUé(e), and therefore the most significant bits are not modified. If wy,(e) = 2k + 1, two

cases can be considered: wy,,,(e) =k or wy,,, (¢) = k+ 1. In the former case, the most significant
bits are not modified. The latter case occurs only when the penultimate bits of wy, () is a 0, and
therefore the most significant bits are not modified. This shows that the sum of the penultimate
bits of the weights wy, (e) of all the edges e € F' is equal to S;.

Now, it is easy to check that

oy DI ¢ Mhogy D]
Z Z ot—i <2 Z iy
t=1 =1 =1

that is, using Equation 1,

> Y <o glun(e)),

[log, |D|
t=1

1 ¢
This completes the poof of the upper bound when |D| = 2*.

If | D| is not a power of two, that is |D| = 2% —a where 0 < a < 2*, one can consider multicasting
in a tree T’ of n + a vertices consisting of T plus a “new” vertices directly connected to the root
u, and forming a stable set S. (Recall that a stable set is a set of nodes with no edge between
them.) Let D' = DUS. D’ has a power of two number of vertices. Thus, we can apply the
previously described algorithm to 77 and D’, so that any vertex of S communicates either with
another vertex in .9, or with u. Indeed, any pseudo-matching which does not satisfy that any vertex
of S communicates either with another vertex in 5, or with « can be transformed into another one
which does satisfy this property without increasing the number of edges. Assume for instance that
s € S is matched with v ¢ S U {u}. Two cases must be considered: either there exists another
vertex s’ € S which is matched with v’ ¢ S, or not. In the former case, we can just replace the
matchings {s, v} and {s’,v'} by {s, s’} and {v,v'}. In the latter case, we can replace the matchings
{s,v} and {u,w} by {s,u} and {v,w} where w denotes the vertex originally matched with u. Let
us call A" this algorithm.

If one does not consider communications involving vertices in S, A’ induces an algorithm A
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which accumulates the information of D in the root u of the tree T'. Note that u is the only possible
idle vertex of any active set during the execution of A by construction of the algorithm A’. Let
us denote by S (respectively Sa/) the global sum of the lengths of the paths generated by the
execution of A (respectively .A’). Since [D'] is a power of 2, we have Sy < 23 vy 9(wpi(€)).
Actually, we can strengthen a bit this upper bound: S 4 < 2 ZSGE(T)g(wD/(e)) + S(KLG, Ky 4, u)
where K , is the star of a4 1 vertices rooted in u, and where the function S is defined as S except
that the minimization is taken over all the multicast protocols in which the only possible unmatched
active vertex is the source of the multicast. Now, since, in A’, no vertex in S communicates with

a vertex in T different from the root, we have Sy < S — S(Ky 4, K14, u). Therefore S(T, D, u) <

2 ZeeE(T)g(wD/(e)). Finally, since g(wpr(e)) = g(wp(e)), we get S(T, D, u) < 2 ZeeE(T)g(wD(e))

which concludes the proof of the upper bound.

Lower bound. Assume first that |D| = 2¥. We prove, by induction on k, that any edge e is used
at least f(wp(e)) times during any multicasting protocol from u to D. This result clearly holds for
k =10. Let k > 0, and assume that any edge e is used at least f(wp(e)) times during any multicast
protocol from u to any set D such that |D| = 2%, 0 < i < k.

At any round of any multicast protocol performing in an optimal number of rounds, all the
active nodes take part in the communications, and, as proved in [16, 21, 22], only the odd edges
can be used in the pseudo-matching. Let D’ be the set of active nodes after the first round of an
arbitrary accumulation protocol. |D’| = 2F-1,

— If the edge e is even before the first round, then no call uses this edge, and the weight of e is
simply divided by 2. By induction hypothesis, the edge e will be used at least f(wp/(e)) times
during any multicast protocol, that is at least f(wp(e)) times by definition of f since wp(e) is
even.

—If the edge e is odd before the first round, then a call between two vertices uses this edge at the first
round of any accumulation protocol because there is an odd number of destinations on each side of
e. According to the choice of the active node for the next round, the weight of edge e will be equal to
[wp(e)/2] or |[wp(e)/2]|. Therefore the edge e is used at least 1+min(f([wp(e)/2]), f(|wp(e)/2])),
that is at least f((wp(e)) by definition of the function f.

The case where |D| is not a power of 2 can be solved using the same argument as in the proof
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of the upper bound. This concludes the proof.

Remark. Although we think that the two bounds of Theorem 5 differ on the average by a small
factor (possibly a constant), we did not succeed to prove this fact. It was confirmed by many
experiments. There are trees however for which the two bounds differ by more than a constant.
Nevertheless, in many examples like the path, the star, the complete binary tree, and the binomial
tree, these two bounds differ by at most a factor of 3. Also, it can be easily shown that the expected

value of the ratio % is bounded by a constant when « is uniformly randomly chosen.

5 Minimization of the load and of the number of involved routers

In this section, we address the ability of a multicasting protocol not to disturb other applications by
traversing nodes which are not directly concerned by the multicasted message. Moreover, we also
study the load of the routers during a multicasting or a broadcasting protocol. Indeed, a router is
usually able to route any permutation of its input ports to its output ports. However, the output
channel allocation process is sequential in general, and thus could be time-consuming when many
messages traverse the same router at the same time. Therefore, it could be an issue to minimize
the load of the routers. Note that proofs of theorems are rather technical, and can be omitted at

a first reading of this section.

5.1 Minimization of the number of transmitters

We show below that minimizing the number of routers involved in a time-optimal multicast protocol
is NP-complete. This result hold in both cases: either when we consider the protocol round after

round, or globally. We will see that the problem is polynomial for trees however.

Definition 2 lLet P be a pseudo-matching in a subset of vertices U of a graph G. A transmitter

is a vertex of G which is traversed by a path of P (that is an inner node of a path of P).

Theorem 6 The following problem is NP-complete:

MiNniMuM NUMBER OF TRANSMITTERS (MNOT):

Instance: A graph G = (V| F), a subset U C V' of vertices, and an integer k.
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Figure 2: Construction in the proof of Theorem 6. The clause ¢; satisfies ¢;[1] = b;, ¢;[2] = b;n,
and ¢;[3] = b;s. Thus nodes ¢; ; and 0271 are both connected to node Ej, whereas nodes ¢; o and 0272

are both connected to node b;s, and nodes ¢; 3 and ¢ , are both connected to node Ej//.

Question: Does there exist a pseudo-matching in U which has at most k transmitters?

Proof. MNOT is clearly in NP. MNOT is NP-complete by transformation from 3SAT. Let C' =
{c1,¢2,...,cn} be an instance of 3SAT (where each clause ¢; has exactly three literals ¢;[1], ¢;[2],
and ¢;[3]) on the boolean variables B = {by,bs,...,b,}. We construct an instance of MNOT as
follows. We associate two copies of K3 to each clause ¢; of C'. In each K3, there is a vertex for each
literal. They are denoted by ¢;1,¢; 2, and ¢; 3 in one K3, and 0271, 0272, and 0273 in the other K5. We
also associate one copy of K3 to each boolean variable b; in B: the first partition of the bipartite
graph K 5 is composed of two vertices denoted b; and b;, and the second partition is composed of
two vertices denoted z; and y;. We connect the literals of each clause to the corresponding boolean
vertices as follows (see Figure 2): if ¢;[(] = b; (resp. ¢;[f] = bj) then we add the edges {c;;,b;}
and {c} ;,b;} (resp. {¢; j,b;} and {c§7j713j}). We obtain a graph G with 6m + 4n vertices. Let U be
the subset of vertices composed of the 6m vertices of the complete graphs K3, plus the 2n vertices
zi,Yi, = 1,...,n. Set k = n (note that there are at least n transmitters in any pseudo-matching
in U because of the vertices z; and y; in each Kj33). We claim that C'is satisfiable if and only if
there exists a pseudo-matching in U with at most n transmitters (i.e. with exactly n transmitters).

Assume (' is satisfiable. We construct a pseudo-matching in U with exactly n transmitters as
follows. For ¢ = 1,...,n, connect z; to y; with a path traversing the vertex b; if the solution assigns
b; to true, or traversing the vertex b; if the solution assigns b; to false. For i = 1,...,m, at least
one of the 3 literals in ¢; is true, say ¢;[(]. if ¢;[(] = b; (resp. ¢;[¢] = b;) then connect the two vertices

¢;0 and ¢, by a path traversing the vertex b; (resp. Bj). Then, in each copy of K3 corresponding
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to the clause ¢;, connect ¢; ¢ with ¢; ¢, and ¢, with ¢} ju, £/ # € # (", by a path of length 1. We
get a pseudo-matching in U with exactly n transmitters.

Conversely, assume there exists a pseudo-matching in U with exactly n transmitters. Due to
the structure of U and &, there is a transmitter in each copy of K3 because the z’s and the y’s
must be matched. In the K5 corresponding to the jth variable, j =1,...,n, if the transmitter is
node b;, then we assign b; = true, else we assign b; = false. In each K3, at least one vertex must
be connected by a path of length at least 2 to a vertex of another Ks. This path traverses one of
the transmitters. It means that, in each K3, there is an edge connected to a node corresponding to
a literal which is true. Therefore there is at least a true literal in each clause, and C' is satisfiable.

O
Remark. From the proof of Theorem 5, one can check that the problem MNOT is solvable in
polynomial time for trees. Indeed, in the terminology of this proof, only odd edges take part in the
pseudo-matching, and, therefore, one can check in polynomial time whether a vertex is or is not a
transmitter according to the number of its incident odd edges.

The following result shows that minimizing the number of involved routers is not only difficult

when one considers a single round, but also when one considers the whole protocol.

Property 3 The following problem is NP-complete:
MiNnimuM ToTAL NUMBER OF TRANSMITTERS (MTNOT):
Instance: A graph GG, a vertex u of GG, and an integer k.
Question: Does there exist a time-optimal broadcast protocol from w in the line model which

involves at most k transmitters during its whole execution?

Proof. The problem MTNOT with & = 0 is equivalent to the NP-complete problem LoGB.
Indeed, if there exists a [log, n]-time broadcast protocol B such that no vertex is a transmitter,
then all the communications are neighbor-to-neighbor, and therefore only use one edge. So the
protocol B satisfies the telephone model constraints. Conversely, if B is a [log, n]-time broadcast
protocol in the telephone model, then the corresponding number of transmitters is reduced to zero.

a
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5.2 Matching index, and load of the routers

Let P be a pseudo-matching of a subset of vertices U of a graph (. Let us define the load of a
given transmitter z to be the number of paths which are traversing  (z is not an end vertex).
This parameter is denoted by (U, P, z). The load of the pseudo-matching P in U is denoted by
p(U,P), and is defined by p(U, P) = max, p(U, P, z).

Definition 3 The matching index of a subset of vertices U of a graph G = (V, E) is the minimum
of W(U, P) over all the pseudo-matchings P in U. It is denoted by p(U). The matching index of
a graph G is defined as p(V'). When the minimization is restricted to pseudo-matching containing

shortest paths only, these parameters are denoted by ., (U), and p, (V) respectively.

Clearly, if we want to minimize the load of the routers, we have to find pseudo matchings P for
which p(U,P) = p(U) at every round of the multicast or the broadcast protocol. Unfortunately,

we have the following result:

Theorem 7 The following problem is NP-complete:
MATCHING INDEX OF SHORTEST PaTHs (MISP):
Instance: A graph G = (V| F), a subset U C V', and an integer k.

Question: i, (U) < k7

Proof. Clearly, MISP € NP because one can check in polynomial time whether a pseudo
matching P in U contains shortest path only, and satisfies u(U, P) < k. To show that MISP is
NP-complete, let consider the following problem:

MATCHING INDEX OF SHORTEST PaTH(1) (MISP(1)):

Instance: A graph (G, and a subset U C V.

Question: i, (U) < 17

Let us prove that M 1.SP(1)is NP-complete by transformation from the Vertex Cover problem:

VERTEX CoVER (VC):

Instance: A graph G = (V| F), and a positive integer b.
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Figure 3: The gadget of an edge e = (u,v), as described in the proof of Theorem 7 (dotted lines

represent a cross of five vertices). Vertices in U are marked in grey.

Question: Is there a vertex cover of size b or less, i.e, a subset S C V such that |S| < b and, for

each edge (u,v) € E, at least one of u and v belongs to S7

Let an arbitrary instance of VC be given by the graph G = (V| F), and the positive integer b.
We construct a graph G' = (V' E’), and a subset of vertices U such that, in the graph G’, the
subset U satisfies i, (U) < 1if and only if G has a vertex cover of size b or less.

The graph G’ consists of 2b paths P;, i = 1, ..., 2b, of three vertices (z;, y;, z;) plus other vertices.
Connections between these other vertices are functions of the connections of the vertices of GG: each
edge e of GG corresponds to a subgraph G, = (V,, F.) of G'. Such a subgraph is called the gadget
of e. The gadget of an edge e = (u,v) € F is illustrated on Figure 3. It is composed of 44 vertices.
Only 20 of them are explicitly drawn in Figure 3. The 24 others are virtually presented in the form
of dotted lines: each dotted line C' = ¢; — ¢y represents a cross of five vertices. The five vertices
at the top (resp. bottom) of the gadget of the edge e = (u,v) drawn on Figure 3 are denoted by
(e,u;), 1 = 1,...,5 (resp. (e,v;), ¢ = 1,...,5). We also identify two particular vertices denoted
by M), and ¢ on Figure 3. For each vertex v € V, let eq, ..., €4 be its d incident edges (d is the
degree of v). For ¢ = 1,...,d — 1, the gadget of the edge ¢; is linked to the gadget of edge €;41 by

an edge ((e;, vs), (€i41,v1)) (see Figure 4). All these connections form a path

Qv = {(e1,v1), (e1,v2) ..., (e1,v5), (e2,v1), ..., (€2,V5), ..., (€, V1), ..., (€d,V5) }.
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Figure 4: An example of the construction described in the proof of Theorem 7 when b = 1.

Diamonds are symbols of the gadgets drawn on Figure 3.

Finally, the first and last vertices of Q,, (e1,v1) and (eq,vs) are connected to the vertices

Y1, ..., Y2» by a complete bipartite graph K o (see Figure 4). The set U is then defined by

U = {(e,u), (e,us), (e, 1), (e,v5) / e, e, e € E}
U {es, cs5, for each cross C'}
U Ay, 2, t=1,...,2b}.
All these nodes are marked in grey on Figures 3 and 4. Of course, G’ and U can be constructed in
polynomial time from G and b. Let us list some simple properties which are satisfied by the gadget
of an edge € = (u,v). For any shortest path pseudo-matching P in U satisfying p(U, P) < 1, we

have the following properties:

1. In any cross C, vertices cs and ¢5 must be connected together, otherwise u(U, P,cqs) > 1.

Moreover, no other matching can pass through cross C', otherwise the load of ¢4 would increase.

2. Vertices e and e(2) must be connected together. Indeed, connecting V) by a shortest path
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to any node of U distinct from e(?) requires to pass through a cross, and we have seen that

this is not possible.

3. Vertex (e,uy) can only be connected to vertex (e, us), or to a vertex which does not belong

to the same gadget, otherwise the matching would require to pass through a cross.

4. If vertex (e,up) is matched to vertex (e, us), then vertex (e,v1) is not matched to vertex
(e,v5), otherwise the load of (e, us) or (e, vs) would be greater than 1 because of the matching
e — ¢(), In other words, at least two of the four vertices of the form (e, u), (e, us), (e, v1)

or (e,vs5) must be matched to vertices which do not belong to the same gadget.

Let us show that there exists a pseudo-matching in U of maximum load 1 and with shortest

paths only, if and only if G has a vertex cover of size b or less.

¢ Suppose that there exists a shortest path pseudo-matching P in U such that p(U, P) < 1. From
properties 1 to 4 stated before, we already know what is the form of matchings involving nodes
inside a gadget. For each path F;, only one vertex of P, can be matched to a vertex not in P,
otherwise the load of y; would be strictly greater than 1. For the same reason, no path connecting
two vertices not belonging to P; can pass through the vertex y;. Without loss of generality, we can
assume that vertex y; is the vertex which must be matched to a vertex not in the path F,. Let u
be a vertex of (G, and let ey, eg, ..., €4 be its incident edges. If the vertex (e, u1) is matched to a
vertex y;, then, from Property 3, vertex (e1,us) will be matched to vertex (ez, ui). Then (eg,us)
will be matched to (es, u1), and so on until vertex (eq, us) is matched to some vertex y;.

Let S be the set of vertices of G such that v € S if and only if (e, %) and (eq, us) are both
matched to vertices of type y;, 7 € {1,...,2b}, in the pseudo-matching. Note that |S| < b. Assume
that S is not a vertex cover of G. Then let e be an edge of G such that none of its two endpoints
belong to S. From Property 4, at least two vertices of the gadget corresponding to e must be
connected to a vertex not in this gadget. Let u be an extremity of e such that (e, uq) and (e, us)
are both matched to vertices not in the gadget of e. Vertex (e, us) is matched to a vertex (€', uy),

"

vertex (e’,us) is matched to a vertex (e”,u1), and so on. Finally, if the degree of u is d, and if

€1, €2, ..., €4 denote the d incident edges of u, then vertex (e4_1, us) is matched to vertex (eq, uy) of
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path ., and vertex (eq, us) must be matched to a vertex belonging to {y;, ¢ = 1, ..., 2b} (otherwise,
the load of a vertex in {y;,¢=1,...,2b} would be larger than 1). For the same reason, (e, 1) must
be matched to a vertex belonging to {y;,i = 1,...,2b}. Thus v € S, and this is a contradiction.

Therefore, S is a vertex cover of G size b or less.

o Conversely, suppose that S C V is a vertex cover of GG of size b or less. If |S| < b, then we
can add some vertices to S in order to obtain a vertex cover S’ of exactly b vertices. So, we can
assume without loss of generality that |S| = b. For any vertex s of G, let d be its degree, and
let e1,eq,...,eq be its d incident edges. Vertices of .S are labeled from 1 to b. We construct the

pseudo-matching P in U as follows:

e if s € S, then let ¢ be its label in 5. We set the following: yo; is matched to (e1, s1), (e1, S5)

is matched to (eg,s1), ..., (eq, s5) is matched to yg41;

o if s ¢ S, then forany i € {1,...,d}, we set the following: vertex (e;, s1) is matched to (e;, s5),
(1 (2)

and the path from e;"’ to e;

passes through the vertex (e;, v3) where ¢; = (s,v).

One can check that this pseudo-matching P is such that p(U,P) < 1, and that all paths in P are
shortest paths.

O

Theorem 7 shows that it is difficult to minimize the load of the routers at each round. Unfortu-

nately, this is also true for the whole protocol. Given a graph G, and a vertex u of GG, we denote by

M (G, u) the minimum of max;—y _ fiog, n] #(Us, P;) over all the broadcast protocols B from u in &

which perform in [log, 7] rounds in the line model, and where P; is the set of paths corresponding

to the pseudo-matching in U; generated at round 7 of the broadcasting protocol B. We have:

Property 4 The following problem is NP-complete:
MiNnmMum Broapcast Loap (MBL):
Instance: A graph GG, a vertex u of GG, and an integer k.
Question: M(G,u) < k7

Proof. If there exists a broadcasting protocol B such that M (G, u) = 0, then, no vertex is a

transmitter at any round. So, protocol B is a broadcasting protocol from u in [log, n] rounds in
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the telephone model. Clearly, the reciprocal holds. Therefore, the problem MBL with & = 0 is

equivalent to the NP-complete problem LOGB.

6 Minimization of the switching time

In this section, we focus on the switching times induced by long paths between two vertices. Even
if cut-through routed networks are not too much sensitive to path length, one may require that
a call does not exceed a reasonable distance between the source and the destination. Given a
pseudo-matching P of a subset U of vertices of a graph G, we denote by L(U,P) the maximum
length of the paths of P. Let L(U) = minp L(U,P), where P is a pseudo-matching of U. If the
switching time of the routers cannot be neglected, L(U) is an important parameter to minimize at

each round of a multicast protocol. Unfortunately, we have:

Theorem 8 The following problem is NP-complete:
MAXIMUM LENGTH OF A Pseupo MarcHING (MLPM):
Instance: A graph G = (V| F), a subset U C V', and an integer k.
Question: L(U) < k7

Proof. MLPM is clearly in NP. To prove that it is NP-complete, we transform the Vertex Cover
problem to M LPM with k = 7. Let an arbitrary instance of VC be given by a graph G = (V| F),
and a positive integer b. We construct an instance of MLPM, that is a graph G' = (V' E’) and
a subset U of vertices of G such that U has a pseudo-matching P satisfying L(U,P)) < 7 if and
only if G has a vertex cover of size b or less. The construction of G’ is quite similar to the one of

the proof of Theorem 7. The only differences are:
1. each of the 2b paths P; of length 3 is transformed into a single vertex y;, ¢t = 1,..., 2b;
2. the gadgets of the edges of G are as shown on Figure 5;

3. each bipartite graph K395 connecting the two endpoints of a path ¢, to the vertices y;,

1 =1,...,20b, is slightly transformed by replacing each edge by a path of length 7.
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Figure 5: The gadget of an edge e = (u,v) used in the proof of the Theorem 8. Vertices in U are

marked in grey.

The set U is defined exactly as in the proof of Theorem 7. The reader can check that the gadgets
presently defined have the same properties as the gadgets defined in the proof of Theorem 7.
Actually, the remainder of the proof is similar to the proof of Theorem 7.
O
Concerning the whole protocol, we have a similar bad news for both the maximum and the
sum of the maximum lengths of the paths. Given a graph G and a vertex u of G, we denote by
L gy (G, ) the minimum of the sum of all the maximum lengths of the [log, n] pseudo-matchings
generated by a broadcast protocol, over all the broadcast protocols from u performing in [log, n]
rounds in the line model. More formally: L., (G, u) = ming ZZ[:lg? "] L(U;,P;) where P; is the

pseudo-matching in U; at round ¢ of the broadcast protocol, i = 1,..., [log, n]. We have:

Property 5 The following problem is NP-complete:
SuM Max:
Instance: A graph GG, a vertex u of GG, and an integer k.

Question: Lgym (G u) < k7

Proof. If there exists a broadcasting protocol B such that L., (G, u) < [log, n|, then every call
satisfies the telephone model constraints. Thus protocol B is a broadcasting protocol from u in
[log, n] rounds in telephone model. The reciprocal clearly holds. So the SuM-MAX problem with

k = [logy n] is equivalent to the NP-complete problem LocB.
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Given a graph G and a vertex u of GG, we denote by L., (G, u) the minimum of the maximum
length of all the paths of the [log, n] pseudo-matchings generated at each round by a broadcast
protocol over all the broadcast protocols from u performing in [log, n] rounds in the line model.
More formally: L4, (G, ) = ming MaX;=1...[log, n] L(U;, P;) where P; is the pseudo matching in U;

at round 7 of the broadcast protocol, i = 1,..., [log, n]. We have:

Property 6 The following problem is NP-complete:
Max Max:
Instance: A graph GG, a vertex u of GG, and an integer k.

Question: L. (G u) < k7

Proof. Similar to Property 5: the MAX-MaX problem with & = 1 is equivalent to the NP-complete

problem LoGB.

7 Conclusion and open problems

Table 1 summarizes the complexities of the minimization problems related to the multicast and the

broadcast problems in both line model, and cut-through model.

Broadcasting/multicasting Pseudo-matching
Sum of the paths lengths NP-complete (Theorem 3) P (Lemma 1)
Number of transmitters NP-complete (Property 3) | NP-complete (Theorem 6)
Load of the transmitters NP-complete (Property 4) | NP-complete (Theorem 7)
Maximum path length NP-complete (Property 5) | NP-complete (Theorem 8)
Sum of the maximum paths lengths || NP-complete (Property 6)

Table 1: Complexities of minimization problems related to the pseudo-matching problem, and to

the broadcast and multicast problems

Even if the situation seems “despairing” at the first glance (most of the problems are NP-

complete), the reader must keep in mind that the main parameter to optimize in cut-through
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networks is the use of the bandwidth. Indeed, the first property that a communication protocol in
line or cut-though models must satisfy is to be free of link contention. From these points of view,

we have derived important results:

1. We have derived a polynomial algorithm that returns, for any network, and any minimal
possibly adaptive routing function, a broadcast or a multicast protocol that performs in the

minimal number of rounds.

2. Moreover, such broadcast or multicast protocols satisfy that the sum of the path-lengths
at any round is minimum. In other words, the total bandwidth required at each round is

minimum.

3. Even if minimizing the use of the bandwidth for the whole protocol is NP-complete, our

algorithm approaches the lower bound up to a logarithmic multiplicative factor.

4. We have derived a specific strategy for tree-networks which approaches the lower bound up

to a small multiplicative factor that is conjectured to be a constant on the average.

The minimization of several second order parameters as the number of transmitters, the load
of the transmitters, the maximum length of the paths, and the sum of the maximum length of the
paths used at each round yield NP-complete decision problems. Since these problems might be
not so critical for cut-through routing, we did not try to derive approximated solutions. However,
if minimizing these parameters turns to be a major issue for some specific technical reasons, such
algorithms should be derived. This is therefore an important direction for further research on this
topic.

Other problems seem to be more important to solve however. We indicate below two directions

that we are currently investigating;:

The all-port model. As we pointed out in the introduction, one can consider a model in which
any node u of degree A, is able to generate A, messages that can be simultaneously sent by
the router to different destinations. If the network is regular of degree A, we have b(G) >
[logayq n]. It has been recently shown that knowing whether 6(G) < k for an arbitrary
network G, and an arbitrary constant k, is NP-complete [2]. Thus this problem requires

polynomial approximation algorithms.
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The gossiping problem. This problem is also called all-to-all broadcasting. It consists of a
simultaneous broadcasting from all the nodes of the network. In the 1-port line model, we
have b(G) > ¢(G) > 2mingey b(G,u) — 1 by performing first an accumulation of all the
messages at a given vertex, and then performing a broadcasting from this vertex. Although
such an protocol is quite efficient in term of rounds, it does not balance the traffic and create

contention at the accumulation node [22]. Therefore, more efficient protocols are required.
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