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Abstract

In this paper, we show that the multicast problem in trees can be expressed in term of
arranging rows and columns of boolean matrices. Given a p X ¢ matrix M with 0-1 entries, the
shadow of M 1s defined as a boolean vector ¢ of ¢ entries such that #; = 0 if and only if there is
no l-entry in the ith column of M, and #; = 1 otherwise. (The shadow x can also be seen as the
binary expression of the integer x = >.7_, 2;297%. Similarly, every row of M can be seen as the
binary expression of an integer.) According to this formalism, the key for solving a multicast
problem in trees is shown to be the following. Given a p x ¢ matrix M with 0-1 entries, finding
a matrix M* such that:

1. M* has at most one l-entry per column;

2. every row r of M* (viewed as the binary expression of an integer) is larger than the
corresponding row r of M, 1 <r < p; and

3. the shadow of M* (viewed as an integer) is minimum.

We show that there is an O(g(p+ ¢)) algorithm that finds M* for any p x ¢ boolean matrix M.

The application of this result is the following: Given a directed tree T whose arcs are
oriented from the root toward the leaves, and a subset of nodes D, there exists a polynomial-
time algorithm that computes an optimal multicast protocol from the root to all nodes of D.
According to usual communications systems, the resulting communication protocol can be set on
top of either 1-port or all-port send- and receive-instructions, with edge-disjoint long-distance
calls. Such protocols can in turn find applications in the management of large multi-point
applications (e.g., video server, data-bases, etc.) in which a specific node broadcasts information
to a large number of users connected by a tree-network (e.g., Core-Based Tree).
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1 Introduction

1.1 Motivations

Recent advances in telecommunication systems enhanced standard point-to-point communication
protocols to multi-point protocols. These latter protocols are of particular interest for group ap-
plications. Those groups involve more than two users (some may even involve thousands of users)
sharing a common application, as video-conferences, distributed data-bases, media-spaces, games,
etc. Several protocols have been proposed to handle and to control a large group of users. We refer
to [7, 21] for surveys on multi-point applications and protocols. Solutions differ according to the
type of traffic that is induced by the shared application, and according to the quality of service
required by the users. Multi-point architectures are often based on tree-networks [26], either a
single tree connecting all the users (e.g., Core-Based Tree [1]), or several trees (e.g., PIM [6]). The
traffic between the users is then routed along the edges of the tree(s).

One of the major communication problem related to multi-point applications consists to broad-
cast a message from one user to all the users of the application. This operation is called broadcast
at the application level, though it is actually a multicast at the network level. The repetition of
point-to-point connections between the source and the several destinations would significantly in-
crease the traffic in the network, and it makes this solution not applicable in practice [7]. Thence,
the source must require the help of other nodes to relay messages. A broadcast message will then
reach the destinations after having been relayed by several intermediate nodes (each intermediate
node may possibly get one copy of the message if it belongs to the group). In order to preserve
the broadcast application from transmission errors, and to bound the interval between successive
receptions of consecutive packets, the number of hops between the source and each destination
must be as small as possible. The aim of this paper is to provide a polynomial algorithm which
returns, for any tree 7', and for any source u € V(T'), a multicast protocol from u to an arbitrary
subset of nodes of T that minimizes the number of hops.

We consider multicasting from the root to a set of destination nodes of a directed tree T whose
arcs are oriented from the root toward the leaves. When the set of destination nodes is the set of
all nodes, this problem correspond to the broadcast problem. We focus our work on oriented trees
because, although a bidirectional channel can be reserved between members of a group to facilitate
bidirectional exchanges, it happens frequently that the bandwidth reserved in each direction differs
from each other as the application is often not symmetric. For instance, consider members connected
to a video server: the main point is to insure a fast broadcast of the multi-media traffic from the
server, and thus the bandwidth of the connections from or toward the server may differ of a few
order of magnitude.

1.2 Models

We will consider both 1-port and all-port models. In the 1-port model, we assume that, at any
given time, each node of the tree can call at most one other node of the tree. In the all-port model,
a node can call many other nodes simultaneously. Moreover, according to modern communication
facilities (e.g., circuit-switched, wormhole, WDM, or, in some sense, ATM), long-distance calls are
allowed, in the sense that the receiver of a call is not necessarily a neighboring node of the initiator
of the call, and a message crossing a node can cut-through the node if required. As a restriction
though, we want the calls performed at the same time to not share any edge. This latter restriction



Figure 1: A broadcast in the 1-port model (a), and a multicast in the all-port model (b). Destination
nodes are colored in black.

is set to avoid contention on the links. In particular, it means that, in the all-port model, a node =
cannot initiate more than deg®(z) calls, where deg™(z) is the out-degree of node z. For instance,
on Figure 1(b), the source node u cannot inform more than one other node at a time.

The set of all calls performed at the same time is called a round. For instance, on Figure 1(a),
the first round is composed of one call, the second round is composed of two calls, and the third
round is composed of four calls. We will express the cost of our broadcast protocols in terms of
number of rounds. (That is we will be interested in minimizing the latency of the protocol rather
than its throughput. Note that the pipeline technique may then be applied to our protocols in order
to decrease the throughput for broadcasting long messages [10].) The aim of this paper is to show
that there exist polynomial-time algorithms that computes the multicast time of any directed tree
T under both 1-port and all-port edge-disjoint models. Comparing the two protocols on Figure 1(a)
and (b) makes clear that these two constraints give rise to similar types of problems. Actually,
it will be shown that the multicast problem can be solved by using a reduction to a problem on
boolean matrices.

1.3 Previous works.

A huge literature has been devoted to group-communication problems under different hypotheses [7,
10, 13, 14, 21]. The related decision problems are often NP-complete for general networks [20, 25],
and this gave rise to several approximation algorithms [2, 18, 23] and heuristics [11, 24]. Tree-
networks deserved a specific interest in this context. Proskurowski [22] has shown that computing
the broadcast time of a tree is polynomial in the 1-port model when only neighbor-to-neighbor calls
are allowed. Still in this model, Slater, Cockayne and Hedetniemi [25] have derived a polynomial
algorithm to find center nodes of undirected trees, that is nodes having minimal broadcast time
among the nodes of the considered tree. Farley and Proskurowski [9] have studied the broadcasting
problem in undirected trees when, at the beginning of the process, more than one node know the
information to broadcast, whereas Harutuynuan and Labahn independently showed that, for any

n, there exists an undirected tree-network whose broadcast time from any source is at most roughly
1.44[logy n] [12, 19].



When long-distance calls are allowed, Cohen [4] has shown that there exists a polynomial-time
algorithm to compute an optimal broadcast protocol in directed trees under the all-port edge-
disjoint model. However, although this algorithm can be extended to the multicast problem in
which the set of destinations is a subset of the nodes of the tree, it yields an inefficient protocol.
In the 1-port edge-disjoint model, Farley [8] has shown that every undirected n-node network has
a broadcast time of [logyn| (see also [17]). This result has been extended in [5] to the case in
which the routes are chosen according to a shortest path routing function. However, the results
of [5, 8] do not hold in directed networks: take as a counter example the digraph in which a node
u has a unique outgoing arc to a node v which has in turn n — 2 outgoing arcs to n — 2 vertices
Wy, ..., W,_2, each connected by an outgoing arc to node u. Actually, broadcasting in a directed
network gives rise to an NP-complete decision problem in the 1-port edge-disjoint model.

Note that some authors have also considered the vertex-disjoint constraint. In this context, the
broadcasting problem was studied for specific architectures [15, 16], and approximation algorithms
have been derived [18]. Actually, vertex-disjoint hypotheses also yield complex problems, and the
broadcast problem is still open for trees (see [3] for a first attempt in this direction).

1.4 Our results.

First, we will show that the broadcast problem in directed trees under the 1-port edge-disjoint
model gives rise to the following matrix problem (Lemma 2 in Section 2). Given a p X ¢ matrix
M with p rows, ¢ columns, and 0-1 entries, the shadow of M is defined as a 1-dimensional boolean
vector x of ¢ entries such that z; = 0 if and only if there is no 1-entry in the ¢th column of M, and
x; = 1 otherwise. According to this formalism, the key for solving a multicast problem in directed
trees is shown to be the following.

Minimal contention-free matrix problem. Given a p x ¢ matrix M with 0-1 entries, finding
a matrix M* such that!:

1. M™ has at most one l-entry per column;

2. every row r of M™* (viewed as the binary expression of an integer) is larger than the corre-
sponding row r of M, 1 < r < ¢; and

3. the shadow of M* (viewed as an integer) is minimum.

Such matrix M* is called a minimal contention-free version of M. Note that the minimal contention-
free version of a matrix is not necessarily unique, even up to a permutation of the rows. On the
other hand, the shadow of a minimal contention-free version of a matrix is unique.

As an example, let us consider Figure 1(a). The corresponding matrix is

01 0
M={(1 00
0 0 1

!Since the shadow can also be seen as the binary expression of an integer, and since, similarly, every row of M can
be seen as the binary expression of an integer, the comparison of shadows and rows must be understood as comparing
the corresponding integers.



as there are respectively 2, 4, and 1 nodes in the three branches (this correspondence will be
formally established in Section 2). Since M has a single 1-entry per column, a minimal contention-
free version of M is M itself, and the shadow is 7 = (111),. Now, assume that the rightmost branch
of the tree of Figure 1(a) contains three nodes instead of only one. Then the corresponding matrix
is

010
M=|1 0 0], (1)
01 1
and the reader can check that a minimal contention-free version of M is

M* =

o = O

01 0
00 0|. (2)
10 0

M* has a shadow equal to 14 = (1110)3. We will show that the matrix M* determines a broadcast
protocol from the root according to the 1-entries of the matrix. For instance, at round 1, v calls the
second (middle) branch; at round 2, v calls the third (rightmost) branch; and, at round 3, v calls
the first (leftmost) branch. At round 4, v is idle. We will show that there is an O(¢(p + ¢))-time
algorithm that computes a minimal contention-free version of M, for any p X ¢ boolean matrix M
(Theorem 1 in Section 3).

Using the previous result, we will show that multicasting from the root of an arbitrary directed
tree under the several models considered before can be solved in polynomial time (Section 4).

2 Broadcast problems and contention-free boolean matrices

In this section, we consider the 1-port edge-disjoint model only. A broadcast protocol B can be
described by the list of all calls performed by B. The construction of our broadcast algorithms for
trees is based on the so-called shadow of a broadcast protocol. Let T'= (V| F) be any oriented tree,
and let B be a broadcast protocol in T performing in r rounds.

Definition. The shadow of B on an arc e € F is the r-dimensional vector (z1,...,2,), z; € {0, 1},
such that z; = 1 if and only if there is a call passing through e at round ¢. The restriction of B on
a vertex w € V with d outgoing links ey, ..., eg is the d X r matrix with entries in {0, 1} such that
there is a 1 at entry ¢, j if and only if u gives a call through link e; at round j of B. The shadow of
B on u € V is then the r-dimensional vector (z1,...,z,) such that z; = 1 if and only if there is a
l-entry in column ¢ of the restriction of B on u, and 0 otherwise.

The shadow of a broadcast protocol B on an arc e (resp. on a vertex u) is denoted by shad(B, €)
(resp. shad(B,u)). As shadows can be seen as binary representations of integers, we denote by
bin (B, e) (resp. bin(B, u)) the integer whose binary representation is shad (B, e) (resp. shad(B,u)).
Let B be a broadcast protocol in T performing in r rounds. For any vertex u, and for any link e,
we have bin(B,u) < 2" — 1, and bin(B,e) < 2" — 1. The previous inequalities suggest the following
definition.

Definition. Let T'= (V, F') be any directed tree, and let B be a broadcast protocol from the root in
T. Letu € V,and e € E. Bissaid lezicographically optimalin u (resp. in €) if bin (B, u) < bin(B’, u)
(resp. bin(B,e) < bin(B’, €)) for any broadcast protocol B in 7.



2.1 Broadcasting in a path

Let P, be the path of n nodes, and let u be one extremity of the path. An optimal broadcast
protocol B from u performs in d = [log, n]| rounds as follows. Let us label the nodes consecutively
from 0 to n — 1, starting at u labeled 0. If n = 2¢ then u calls node n/2 at the first round, and
we are let with two simultaneous broadcasts from the extremity of a path of length 29!, The
algorithm is then defined by induction. Note that, in the case n = 2%, the source u needs to call

at every round so that the broadcast can complete in [log, n] rounds. In the general case, let us
d—1

decompose n — 1 is base 2, that is n — 1 = 3__) #;2/. The [log, n]-rounds algorithm B performs
as follows. Node u gives a call at round j, j = 1,...,d, if and only if z4_; = 1. Moreover, if u
does give a call at round j, then it calls node v; labeled n — 1 — ;l:_;_j 2;2°. Upon reception of a

call from u at round j, node v; starts a broadcast to the sub-path of P, composed of nodes lying
between node v; and node vy where k =n — 2 — Z?:_;_j_l 2;2¢. This sub-path is of size 2977,

Lemma 1 B is lexicographically optimal in u.

Proof. When an internal node receives a call at round 7, j = 1,...,d, it can inform at most
247 — 1 other nodes during the d — j remaining rounds. Thus, any broadcast algorithm B’ from u
satisfies Zle shad(B',u); 29" > n — 1. Since, by definition, Zle shad (B, u); 247" = n — 1, we get
bin (B, u) < bin(B’, u). |

2.2 Broadcasting in a star

Let T be a star of p branches rooted at u, and let »; be the number of nodes of the ¢th branch,
t1=1,...,p. T has n = Zle n; + 1 nodes in total. Assume w.l.g. that ny > ny > ... > n,. We
denote by v; the neighbor of w in the ¢th branch, and ¢; = (u,v;),i=1,...,p. Let ¢ = [logy(n1+1)].
A broadcast from u to T takes at least ¢ rounds.

Let B; be the lexicographically optimal broadcast protocol from u to the ith branch, ¢ =1,...,p,
as defined in Section 2.1. Let M be the p X ¢ matrix whose ¢th row is shad(B;, €;). As it is defined,
M is a “merging” of shadows, but it cannot be directly recognized as the restriction of a 1-port
broadcast protocol from u to T since there might be contentions between the several shadows. For
instance, if 7" is a star of two branches of one node each, then shad(By,e1) = shad(Bz,e2) = [1],

1
two nodes simultaneously, which is in contradiction with the 1-port hypothesis. However, M can
be transformed in
M — [ 1o ]

01

1]. C .
and M = ] is not a restriction in u of a broadcast protocol since v would then have to call

which is the restriction of the broadcast protocol from w in T which performs as follows: at the
first round w calls the node of the first branch, and, at the second round, u calls the node of the
second branch. A similar example has been considered before when matrix M of Equation 1 was
transformed into the matrix M* of Equation 2.

Lemma 2 Let T be a star of p branches of length at most 29 — 1 nodes each. Let M be the
p X q matriz whose p rows are the p shadows shad(B;, e;) of p broadcast algorithms from u to the
p branches of T. Assume that all B;’s are lexicographically optimal in w. Then any contention-free



version M™ of M determines a broadcast protocol B from u. Moreover, if M* is minimal, then B
is lexicographically optimal in u, and conversely.

Proof. Let M* be a contention-free version of M. To show that M* is the restriction of a
broadcast protocol B from u, we give a broadcast protocol from u as a function of the structure
of M*. For every r, 1 < r < p, the rth row of M™ is larger than the corresponding row in M.
Therefore, consider a particular row L* of M*, and let L be the corresponding row in M. Assume
both rows correspond to the rth branch of the star. If L* = L then L* is indeed the shadow of
a broadcast protocol in the rth branch. Thus assume that L # L*, and let ¢ be the leftmost bit
position for which L and L* differ. Note that, in this case, L7 =1 and L; = 0 because L7 > L;. L*
defines a broadcast protocol in the rth branch of the star as follows. From round 1 to round 7 — 1,
do as in the original broadcast protocol L. At round ¢, u calls its neighbor v, in the rth branch.
During the remaining rounds, u does not call the rth branch anymore. However, v, simulates the
calls of u according to L. That is, if u calls w at round j > ¢in L, then v, calls node w at round j.
Therefore, L* is the shadow of a broadcast protocol in the rth branch of the star. M* has at most
one l-entry per column, thus B satisfies the 1-port model. Also, if the shadow of M™ is minimum,
then B is lexicographically optimal.

Let M* be the restriction in u of a broadcast protocol B from u. Assume that B is lexicograph-
ically optimal in u. To satisfy the 1-port model, there is at most one l-entry in each column of
M*. Moreover, from Lemma 1, since M* allows to broadcast in each branch, the rth row of M* is
larger than the rth row of M. Indeed, each row of M is the shadow of a lexicographically optimal
broadcast protocol from u. Finally, since B is lexicographically optimal in u, the shadow of M™ is
minimum. Therefore, M™ is a minimal contention-free version of M. |

According to the previous lemma, the key to find an optimal broadcast protocol in a star is to
solve the minimal contention-free matrix problem as stated in Section 1.4. Actually, we will see
in Section 4 that solving the minimal contention-free matrix problem is also the key to solve the
broadcast and multicast problems in any arbitrary directed tree. Therefore, the next section is
entirely devoted to solving the minimal contention-free matrix problem.

3 A polynomial algorithm for the minimal contention-free boolean
matrix problem

Let M be a p x g boolean matrix. Our algorithm will transform M in a p X ¢* minimal contention-
free version of M denoted by M™*. The total number of columns of any minimal contention-free
version of M is denoted by C(M). C(M) and M* will be computed by a sequence of elementary
operations of two types: insertion of a zero-column at position 0, and shifting of an existing zero-
column from position t—1 to position ¢ (columns are labeled from left to right). The shift operation
has an important consequence on the l-entries of the matrix. When a zero-column is shifted one
position to the right, from position ¢ — 1 to position ¢, that is when the two columns ¢ — 1 and ¢
are exchanged, the entries of the matrix are modified according to the following rule:

Rule 1. for every i, 1 < i < p, if there is a 1-entry originally at position ¢ of row ¢, then, after the
exchange, all 1-entries of row ¢ at position > ¢ are switched to 0.

This rule comes from the simple fact that, for any k, 2Ff! > ZZ 0a222 for any a; € {0, 1},
¢t = 0,...,k. Therefore, any row modified according to rule 1 is larger than the original row,



whatever are the entries of the row left to position .

Using rule 1, our algorithm is formally described in Algorithm 1, and an example is provided on
Figure 2. Informally, Algorithm 1 performs as follows. The ¢ columns of M are considered from left
to right. Problems occur when there are two or more 1-entries in the current column (Instruction 6).
On Figure 2(a), this occurs at column 4 since there is a single 1-entry in each of the three leftmost
columns of M. Algorithm 1 then tries to increase the number of zero-columns by shifting existing
zero-columns from their current position to the left of the current column, and applying rule 1
(Instruction 13). Possibly, one zero-column is inserted at position 0 (Instruction 18). The goal is
to obtain enough zero-columns on the left of the current column to spread out the contending 1’s
over these zero-columns. On Figure 2(a), there is no zero-column at that time of the algorithm,
and thus a zero-column is inserted at position 0, as shown on Figure 2(b). Then the two first
columns are exchanged. This exchange has a major consequence: according to rule 1, all 1-entries,
but the leading 1, of the first row are switched to 0. This creates a new zero-column, and one
of the two contending 1’s of column 4 vanishes (see Figure 2(c)). The algorithm then considers
position 5 (now the 6th column from the left). Four l-entries are contending at position 5 of the
matrix. The rightmost zero-column is then shifted to the right. It is worth to notice that it is
always the rightmost zero-column not next to the current column that is considered. Choosing this
column instead of any zero-column has a tremendous effect of the shadow of the resulting matrix.
The effect of this shift in the example is to delete one contending l-entry (see Figure 2(d)). The
zero-column is then shifted once more to the right. Again, it deletes one contending l-entry (see
Figure 2(e)). Once there are enough zero-columns to solve all conflicts between 1-entries in the
current column, the contending 1’s are spread out over these columns. Note that if after all possible
shifting, there is still not enough zero-columns to absorb the contenting 1’s, then some zero-columns
are inserted again (Instruction 23). In our example, there are one zero-column and two contending
1’s, so there is no need to insert new zero-column (see Figure 2(e)). Now, the choice of the unique
l-entry of column 5 which is not moved to a zero-column matters. Algorithm 1 keeps in place
the l-entry which corresponds to the row with the minimum lexicographic order, starting from the
current column (Instruction 25). In our example, it means that the l-entry of row 5 will be let
in place, while the l-entry of row 4 will be moved to the zero-column. Indeed, from the current
position, row 4 is 110 whereas row 5 is 100. After that, we are let with the matrix on Figure 2(f)
in which the last 1-entry of row 4 has been switched to 0. The effect of the choice of the smallest
row is to postpone other conflicts with this row as far as possible. In the example, it transforms
the penultimate column into a zero-column. Therefore, the conflict appearing at position 7 can
be easily solved. We claim that the resulting matrix is a minimal contention-free version of the
original matrix. Its shadow is (10111111)s,.

Remark. Note that it is not difficult to approximate C(M) up to an additive factor of 1. Indeed,
let My be the matrix obtained from M by switching all 1-entries, but the leading 1-entry of each row,
to zero. The reader can check that computing C(Mp) and My is easy. For instance, on the example of
Figure 2, C(My) = 6, and M is the identity matrix. Moreover, we have C(My) < C(M) < C(Moy)+1.
Indeed, eventually, we have to solve all contentions induced by leading 1’s, that is C(M) > C(Mp).
Now, let M; be the px (¢+1) matrix obtained from My by adding one zero-column at position g+1.
All rows of M are larger than the corresponding rows of M, therefore a minimal contention-free
version of M; will give a contention-free version of M. Therefore, C(M) < C(M;) = C(My) + 1.
Unfortunately, approximating C(M) up to an additive factor of 1 is not enough to provide a good
approximation algorithm for the broadcast time of a tree. Indeed, we will see in Section 4 that one



Algorithm 1
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For ¢:=1 to ¢ do

/+ We sparse the columns from column 1 to column q */

C; := current column;
if C; is a zero-column then
7 = ZU{C};

/* Z currently denotes the set of zero-columns left to the current column */

if there is more than a single 1-entry in C; then

nby ;= # U’s'in C;;
W := set of consecutive zero-columns immediately to the left of C;;
not_yet_inserted := true;
While nby — 1 > |W| and (7 # W or not_yet_inserted) do
/* while there is still not enough zero-column immediately to the left of C;, */
/* but still some zero-columns that can be pushed immediately to the left of Ci */
7= Z\W;
¢ := rightmost zero-column in 7’;
Shift ¢ one column to the right, and apply rule 1;
7 = set of zero-columns left to C;;
W := set of consecutive zero-columns immediately to the left of C;;
nby ;= # U’s in C;;
if nby — 1> |W] and W = Z and not_yet_inserted then
/* One needs to insert a zero-column */
Insert a zero-column at position 0;
not_yet_inserted := false;
7 = set of zero-columns left to C;;
EndIf
EndWhile
/* Now, either there is enough zero-columns to solve all contentions, */
/* or all zero-columns are immediately to the left of C; */
if nby — 1 > |W]| then insert nb; — |WW| — 1 zero-columns left to C;;
/* The nby 1’s will be spread out over the zero-columns of W */
Truncate each row with a 1 in C; in order to keep only entries to the right of C;;
£ := index of the row of minimum lexicographic order among the truncated rows;
W’ := nby — 1 rightmost columns of W
Spread out the nby 1’s of C; over W’; the l-entry of row £ stays in C;;
7 = set of zero-columns left to the current column;

EndIf
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Figure 2: An example of the execution of Algorithm 1.

often need to solve the minimal contention-free matrix problem at all levels of the tree, and thus
one would cumulate the error at each level.

Theorem 1 Algorithm 1 is an O(q(p+q))-time algorithm that computes a minimal contention-free
version of any p X q boolean matriz.

Lemma 3 Algorithm 1 is an O(q(p+ q))-time algorithm.

Proof. First, let us show that Algorithm 1 performs in O(q(¢+p)) steps. The for-loop is executed
q times, but the part “else” (Instruction 5) is not performed more than p times because there are p
rows, and solving a contention between l-entries creates at least one row whose all entries are 0 after
the current position. Let ¢ be an index of the for-loop for which there is a contention. From what
was said before, there are at most p such indices. Let k; be the number of contending 1-entries:
Yo ki < 2(p—1). All instructions before the while-loop do not require more than O(p 4 ¢) time
units. The while-loop is executed at most ¢ k; times because each execution of the loop corresponds
to a right-shift of a zero-column, and one cannot move a zero-column to the right more than ¢ times,
this for each of the k; 1-entries. Actually, one can slightly modify the algorithm so that there are
no more than ¢ right-shifts in total, for all conflicts. Indeed, when shifting the zero-columns to
the right, one can jump columns that were already exchanged with a zero-column since rule 1 was
already applied. Altogether, rule 1 cannot be applied more than ¢ times. Application of rule 1 has
a cost of O(g) since at most one row is updated after a right-shift. All other instructions inside the
while-loop have a cost of O(p+ ¢). Instruction 25 has a cost of O(q k;), same as Instruction 27.
Therefore, in total, the complexity is O(q(q+ p) + >, ¢ ki) that is O(q(¢ + p)). |

The fact that Algorithm 1 computes a minimal contention-free version of any p X ¢ boolean
matrix M is based on the following lemmas.

Lemma 4 If every rows A; and B; of two matrices A and B satisfy A; < By, then shad(A*) <
shad(B~*).

Proof. Straightforward. |



Notation. Given two matrices A and B of the same number of rows p, and of respectively ¢ and
¢’ columns, AB denotes the p x (¢ 4 ¢') matrix obtained by putting A and B next to each other.

0 B

A 0N (X 0
0 B S \Y Z )/
For any row i, we have X; > A;. Also, for any row j, we have Y;Z; > B;. X' = X +Y has at most

one l-entry per column, that is X’Z has at most one l-entry per column. Moreover, X'Z satisfies

that, for any row i, (X'Z); > (AB);. Since shad(X'7) = shad(( X0 )), the lemma holds. W

Lemma 5 shad((AB)*) < shad(( A0 )*).

Proof. Let

Y Z

Note that the inequality in Lemma 5 can be strict. For instance
1 1Y\
shad(( 01 ) ) =101
whereas

shad( )=111.

oo O =
__ o O

Lemma 6 If (AB)* = AB' where B' has the same number of columns as B, then shad((AB)*) =
A 0N
shad(( 0 B ) ).

Proof. By lemma 5, we just have to show that shad((AB)*) > shad(( 1(4)1 g ) ). Let

(A0 , (A0
C—(O B)andC_(O B’)'

We have, for any row ¢, C! > C;, and there is at most one l-entry per column of C’. Since

shad(C’) = shad((AB)*), the lemma holds. ]

Lemma 7 Let X, X' Y,Y’ be I-dimensional vectors, and let A and A’ be multi-dimensional ma-
trices. Let

X 01 X X 01 X X1 0 0
M=|Y 01Y |, Mx=|Y 10 0 and My = | Y 0 1 Y
A0 0 A A0 0 A A0 0 A
X/
where there is at most one 1-entry per column in | Y’ |. Then
Al

shad(M™) = min(shad(M¥),shad(My)).
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Proof. From Lemmad, shad(M*) < min(shad(M%),shad(AMy)). The equality holds because at
X" 0 1

least one l-entry in the block ( Voo o]

) must be moved to the left. [ |

Lemma 8 With the same notations as in lemma 7, if Y < X then shad(My) < shad(M¥%).

Proof. Assume for the purpose of contradiction that shad(Ms) > shad(M%) = shad(AM*). We
get

X' 01 X"
Miy=| Z 20 0
B b0 B

where Zz > Y'1, (B'b0B); > (A'00A); for every row i of these matrices, and X” > X. The first
row of M% is necessarily of the form X'01X" because if this row is > X’100, then shad(My) <
shad(M%).

By Lemma 6, we get

X 00 0
* 0 01 X'
shad (M%) = shad( v 1 0 0 ) (3)
A0 0 A
On the other hand, by Lemma 5, shad(Mj) > shad(M¥%) implies that
X 10 0\
N Y0 0 0
shad(M¥%) < shad( 000 1YV )
A0 0 A
That is, by Lemma 4,
X' 10 0\
* Y0 0 0
shad(M¥%) < shad( 000 1 X ) (4)
A0 0 A
Equations 3 and 4 give
X 00 0\ X 00 0 X 10 0\"
0 0 1 X' 01 X” Y0 0 0
shad( Vi1 o0 0 ) = shad( 7 -0 o0 ) < shad( 000 1 X )
A0 0 A B b 0 B A0 0 A

Assume b = 0 and z = 0. Thus Z > Y, and therefore B! > A! for at least one row of A" and B’.
Let us consider the row 7 such that B > A’ and such that the rightmost bit position for which
there is a l-entry in B! is minimum. Let k and k' be the rightmost bit positions for which there
is a l-entry in Z and B! respectively. If k > k' then replacing the row (B’000); by (A’100); would
decrease the shadow. If & < &’ then replacing the Z000 by Y’100 would also decrease the shadow.
Therefore z # 0. However, z = 1 implies that the matrix

X1 0 0
Z 0 0 0
0o 0 1 X”
B 0 0 B

11



is a contention-free version of

X" 1 0 0
Y0 0 0
0 01 X
A0 0 A

yielding a contradiction. Thus b = 1, but then the same argument as for z = 1 yields another
contradiction. Therefore shad (M5 ) < shad(M5y). |

Lemma 9 Let M = AzByC where A is a matriz with at most one 1-entry per column, x is a
zero-column, B is a matriz with exactly one 1-entry per column, y is a column with two contending
1-entries, and C' is an unspecified boolean matriz. Let M’ be the matrixz resulting from M after an
exchange between x and the first column of B. We have shad(M*) = shad(M").

Proof. We already know that shad(M*) < shad(M"*). The proof of the other inequality is by
induction on the number of columns ¢ of B. Assume ¢ = 1, that is

A 01 0 Oy
[ A 00 1 G
M= As 0 0 1 (3
Ay 0 0 0 Cy
Let
All ay dg das C{
e | A b b b Oy

Aé c1 €y C3 C:l))
AL dy dy ds C

with A’lalagag Z 1410107 Alzblbzbg Z AQOOL and A501€203 Z A3001 If ajdgas Z 1007 then, by
Lemma 4, shad(M*) = shad(M"™). If 010 < ajazas < 100, then we can assume w.lLg. that
b1bobs > 100. Actually, we can assume that

A0 1 0
A1 0 0 0
M=1 4 0 0 1 ¢
AL dy dy dy O
Let
A1 0 0 0
A, 0 1 0 0
"o 2
ME=1 4 0 0 1 o
AL dy dy ds O
We have shad(M"*) < shad(M*). Now,
A1 0 0 0
A, 0 0 1 Cf
" 2 2
M=l 0 0 1 ¢ |’

AL dy dy ds C

and we get shad(M"™) < shad(M"*) < shad(M™*), that is the lemma holds for ¢ = 1.

12



Assume the lemma holds for every ¢, 1 < ¢ < qg, and let us show that it holds for gg. A l-entry
in AzBy must be moved to the left. For any move of a l-entry in A, one can find a move of a
l-entry in B that preserves the shadow. Therefore, one can assume that it is a l-entry in B that
is moved to the left. Moreover, we can assume that this 1-entry, denoted by 1, is moved in zB.

e If 1 is moved in B at least one column to the right of the first column of B, then one can
apply the induction hypothesis, that is exchanging the first column of B with z, and then
putting back 1 to its original position, without changing the shadow.

e If 1 is moved to the first column of B, then we apply Lemma 7, and then putting back 1
to its original position. The result of these operations is just as exchanging z with the first
column of B. The shadow is preserved.

e If 1 is moved in z, then we can exchange 1 with the l-entry on the first column of B, and
then put back 1 to its original position, without changing the shadow.

Thus the result hold for ¢, too. |

We have now enough material to prove Theorem 1.

Proof of Theorem 1. Algorithm 1 constructs a finite sequence of matrices My = M, My, ..., My,
such that M, is obtained from M;_; either by shifting a zero-column to the right, or by distributing
l-entries over zero-columns. Lemmas 8 and 9 (generalized to an arbitrary number of contending
l-entries) insure that shad (M) = shad(M;_,), that is shad(M*) = shad(M;). Since My is a
contention-free version of M, we get that shad(M™*) = shad(Mj). |

4 Application to the broadcasting problem in tree-networks

4.1 All-port model

As an example of application of Theorem 1 to the multicast problem in trees, let us consider the
following problem. We are given a directed tree whose arcs are oriented from the root u toward
the leaves, and a set D of nodes of the tree. We want to compute the minimum number of rounds
that are required to multicast an information from w to all nodes in ). We are considering the
all-port edge-disjoint communication model. In this context, Cohen [4] has shown that there exists
a polynomial-time algorithm that computes an optimal broadcast protocol from u to all nodes of
T. To directly extend this algorithm to the multicast problem, we would make use of intermediate
nodes that are not destination nodes, and this is not desirable in general. Combining Theorem 1
and the protocol in [4] allows to overcome that problem.

Corollary 1 There exists a polynomial-time algorithm that computes an optimal multicast protocol
from any source u to any destination set D in any directed tree under the all-port edge-disjoint
model, and such that only the source and the destination nodes participate to the protocol.

Sketch of the proof. The algorithm in [4] proceeds bottom-up from the leaves to the source.
Each node z has a list of calls stating when and to whom z gives a call in its subtree, and when
and by who z is informed. This list is constructed from the lists of all the children of z in the tree.

13



When the multicast problem is considered, the algorithm fails in the following case: assume a node
x € D has one of its children y not in D, and that y has k children z1,..., z; in D. The algorithm
in [4] requires the help of y ¢ D. If we do not want y to be involved in the protocol, then x can be
required to successively call z1, z9 up to zx. More importantly,  cannot give a call simultaneously
in the subtrees of the z;’s, whereas y is able to do so in the all-port model. Therefore, giving the
set of calls of y, one must schedule these calls so that & can simulate the behavior of y. One can
represent the set of calls from y to the subtrees of the z;’s by a matrix M such that M; ; = 1if and
only if y gives a call to the subtree of z; at round j. Theorem 1 gives a polynomial-time algorithm
to schedule optimally these calls. Note that since this procedure must be applied at all the levels
of the tree, one does not only need to compute a contention-free version of M with the minimum
number of columns (i.e., number of rounds), but one also need to minimize the shadow. [ |

4.2 1-port model

We are currently working on an extension of Theorem 1 to make use of this result in the 1-port
model. Again, the idea is to construct the protocol bottom-up from the leaves to the root. To
make clear why Theorem 1 needs to be slightly adapted, let us consider the simple case of a fork,
that is a particular type of directed tree in which the root u has a single child v which is the root
of a star of p branches. Let X; be the shadow on v of an optimal broadcasting algorithm applied
to the ith branch, i =1,...,p, and let M be the p x ¢ array whose ¢th row is X;.

A non necessarily optimal broadcast protocol in the 1-port edge-disjoint model consists in two
phases: first w informs v, then v informs the p branches according to a minimal contention-free
version of M. This protocol may be suboptimal because it can be more efficient to have both u
and v informing the p branches (in the 1-port edge-disjoint model, u and v can call two distinct
branches simultaneously). So the question is when to inform v? Before v is informed, u only can
inform the branches, and there is a contention in M when there is more than a single l-entry on
a column. After v has been informed, there is a contention in M when there is more than two
l-entries in a column. For instance, consider the following fork: w is connected to v, and v has
two branches, composed of two nodes wy, wy, and four nodes w}, wh, wh, w), respectively. One can
broadcast from u in three rounds in this fork under the 1-port edge-disjoint model: (1) u calls w},
(2) u calls wq, and wi calls wi, and (3) w calls v, w] calls w}, w} calls w}, and wy calls wy. If u
calls v before the third round, then one more round in required.

The adaptation of Algorithm 1 to this situation is very specific to the multicast problem. This
is why we do not provide more details about it in this paper.
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