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Abstract

This paper is an extended abstract of the technical report [2].
In this report, we have shown that the multicast problem
in trees can be expressed in term of arranging rows and
columns of boolean matrices. The application of this result
is that, given a directed tree T' whose arcs are oriented from
the root toward the leaves, and given a subset of nodes D,
there exists a polynomial-time algorithm that computes an
optimal multicast protocol from the root to all nodes of D.

1 Motivations

Multi-point protocols are of particular interest for group
applications. Those groups involve more than two users
(some may even involve thousands of users) sharing a
common application, as video-conferences, distributed
data-bases, media-spaces, games, etc. Several protocols
have been proposed to handle and to control a large
group of users. All of them are based on tree-networks,
either a single tree connecting all the users (e.g., Core-
Based Tree), or several trees (e.g., PIM). The traffic
between the users is then routed along the edges of the
tree(s).

One of the major communication problem related to
multi-point applications consists to broadcast a message
from one user to all the users of the application.
This operation is called broadcast at the application
level, though it is actually a multicast at the network
level. The repetition of point-to-point connections
between the source and the several destinations would
significantly increase the traffic in the network, and it
makes this solution not applicable in practice. Thence,
the source must require the help of other nodes to
relay messages. A broadcast message will then reach
the destinations after having been relayed by several
intermediate nodes. As the number of hops between the
source and each destination is required to be as small as
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possible, we have derived a polynomial-time algorithm
which returns, for any tree T, and for any source
u € V(T'), a multicast protocol from u to any arbitrary
subset of nodes of T' that minimizes the number of hops.

2 Models

We considered multicasting from the root to a set of
destination nodes of a directed tree 7" whose arcs are
oriented from the root toward the leaves. We have
considered both 1-port and all-port models. In the 1-
port model, we assume that, at any given time, each
node of the tree can call at most one other node of
the tree. In the all-port model, a node can call many
other nodes simultaneously. Moreover, according to
modern communication facilities (e.g., circuit-switched,
wormhole, WDM, etc.), long-distance calls are allowed,
in the sense that the receiver of a call is not necessarily
a neighboring node of the initiator of the call, and a
message crossing a node can cut-through the node if
required. As a restriction though, we want the calls
performed at the same time to not share any edge. This
model is called the line model.

The set of all calls performed at the same time is
called a round. The costs of our broadcast protocols are
expressed in terms of number of rounds.

3 The contention-free matrix problem.

We have shown that the broadcast problem in directed
trees under the 1-port line model gives rise to a matrix
problem. Given a p X ¢ matrix M with 0-1 entries, the
shadow of M is the 1-dimensional boolean vector x of ¢
entries such that z; = 0 if and only if there is no 1-entry
in the ith column of M, and z; = 0 otherwise.

DEFINITION 3.1. Given a p X q malrix M with 0-1
entries, ¢ minimal contention-free version of M is a
matriz M* such that:

1. M* has at most one 1-entry per column;

2. every row r of M* (viewed as the binary expres-
sion of an integer) is larger than the corresponding
rowr of M, 1<r <gq; and

3. the shadow of M* (viewed as the binary expres-
sion of an integer) is minimum.



Note that the minimal contention-free version of a
matrix is not necessarily unique, even up to a permu-
tation of the rows. On the other hand, the shadow of
a minimal contention-free version of a matrix is unique.
As an example, let us consider

010
(3.1) M=|1100
01 1

The reader can check that a minimal contention-free
version of M is
M* =

0010
(3.2) 1000
0100

We have

M* has a shadow equal to 14 = (1110),.
shown:

THEOREM 3.1. There is an O(q(p + q))-time algorithm
that computes a minimal contention-free version of any
p X q boolean matriz.

4 Multicasting.

Given a broadcast protocol B from one extremity u of
a path of length g, the shadow of B is the 1-dimensional
boolean vector z of ¢ entries such that xz; = 1 if
and only if there is a call from w at round i of B,
and z; = 1 otherwise. B is lexicographically optimal
if its shadow, considered as the binary expression of
an integer, is minimum. We have established the
following correspondence between multicast protocols
and contention-free matrices.

LeMMA 4.1. Let T be a star of p branches, each of
length at most 29 — 1. Let M be the p X q matrizc
whose p rows are the p shadows of p broadcast algorithms
B;’s from the root to the p branches of T. Assume
that all B;’s are lexicographically optimal. Then any
contention-free version M* of M determines a broadcast
protocol B from the root in the star under the 1-port
line model. Moreover, if M* is minimal, then B is
lexicographically optimal, and conversely.

Let us give an example of such correspondence. Let
us consider a star of center v, and of three branches of
2, 4, and 3 nodes, respectively. The matrix M of the
lemma is given in Equation 3.1. The matrix M™* given
in Equation 3.2 is a minimal contention-free version of
M of shadow 14 = (1110)5. M™* determines a broadcast
protocol according to its l-entries: at round 1, v calls
the second branch; at round 2, v calls the third branch;
and, at round 3, v calls the first branch. At round 4, v
is idle.

The following result is a simple application of
Lemma 4.1 and Theorem 3.1.

COROLLARY 4.1. There exists a polynomial-time algo-
rithm that computes an optimal multicast protocol from
any source u to any destination set D in any star under
the 1-port line model.

More interestingly, using Lemma 4.1, Theorem 3.1,
and the results in [1], we have shown that multicasting
from the root of an arbitrary directed tree under the
all-port line model can be solved in polynomial time.

COROLLARY 4.2. There exists a polynomial-time algo-
rithm that computes an optimal multicast protocol from
any source u to any destination set D in any directed
tree under the all-port line model.

5 Further research.

We are currently working on an extension of Theo-
rem 3.1 to make use of this result in the 1-port line
model in arbitrary tree. The idea is to construct the
protocol bottom-up from the leaves to the root. To
make clear why Theorem 3.1 needs to be slightly adapt-
ed, let us consider the simple case of a fork, that is a
particular type of directed tree in which the root u has
a single child v which is the root of a star of p branches.
Let X; be the shadow of a broadcast algorithm from v
to the ith branch, i = 1,...,p, and let M be the p X ¢
array whose ith row is X;.

A non necessarily optimal broadcast protocol in
the 1-port line model consists in two phases: first u
informs v, then v informs the p branches according to
a minimal contention-free version of M. This protocol
may be suboptimal because it can be more efficient to
have both v and v informing the p branches (in the 1-
port line model, v and v can call two distinct branches
simultaneously). The main question in this context is
therefore to figure out how to make use optimaly of
u. For a fork, this question can be easily solved. The
generalization to an arbitrary tree still requires some
work.
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