Shuffling Biological Sequences
with Motif Constraints

Romain Riviere', Dominique Barth?, Johanne Cohen®, Alain Denise'*

L LRI, UMR CNRS 8623. Université Paris-Sud XI. Orsay, France.
{Alain.Denise,Romain.Riviere}@Qlri.fr
2 PRiSM, UMR CNRS 8144. Université de Versailles-St-Quentin. Versailles, France.
Dominique.Barth@prism.uvsq.fr
3 LORIA, UMR CNRS 7503. Université de Nancy. Nancy, France.
Johanne.Cohen@loria.fr

Abstract. We study the following problem : given a biological sequence
S, a multiset M of motifs and an integer k, generate uniformly random
sequences which contain the given motifs and have exactly the same
frequencies of occurrence of k-lets (i.e. factors of length k) of S. This
is a particularly difficult problem. We notably prove that the problem
of deciding whether a sequence respects given motif constraints is NP-
complete. We give a random generation algorithm which turns out to be
experimentally efficient.

1 Introduction.

The amount of data coming from sequenced genomes is increasing rapidly. There-
fore, there is a need for efficient computer-based methods for extracting biological
information from sequences. A widely used method for extracting information
involves comparing biological sequences with random sequences, which represent
the “background noise” from which any relevant biological information should
stand out. This powerful method has been implemented in several areas of se-
quence analysis [19,20]. A key example of this method is the search for excep-
tional motifs in biological sequences. In this approach, an exceptional motif is a
pattern that is over- or underrepresented in a biological sequence compared to
the expected number of occurrences of that pattern in random sequences. Any
overrepresented or underrepresented motifs may indicate important biological
functions. Random sequences are also used for sequence comparison. Pairwise
sequence comparison algorithms give a score that measures their similarity. After
obtaining the score of an alignment, the main problem is to decide whether the
two sequences are homologous (i.e. derive from a common ancestral sequence) or
not. This is done by comparing the given score with scores from the comparison
of the biological sequences with random sequences [4, 13].

For the results to be relevant, the random sequences must model some well-
chosen characteristics of biological sequences. The two most widely accepted

* Corresponding author.

II

random sequence models are based on the number of occurrences of all k-lets,
i.e. all motifs of given fixed length k, in one or several reference biological se-
quences [9]. In the first model, the random sequences respect on average the given
numbers of occurrences. In other words, they obey a stationary Markov chain.
In the second model, any random sequence contains ezactly the same number
of occurrences of k-lets as the reference sequence. The first model is well suited
to long sequences or large sets of sequences, and is widely used for searching for
exceptional motifs. For one or several rather short sequences, the second model
is better adapted, notably because Markov chains may not be irreducible in this
case. Therefore, this model is used for comparing genes, which are rather short
sequences [3]. Random sequences can be studied from both an analytical and
algorithmic point of view. Indeed, various analytical methods have been devel-
oped for studying the probability distribution of motifs in random sequences to
search for exceptional motifs (see e.g. [14,16,17].) However, in many cases an
experimental approach is needed, by generating sets of random sequences. This
is particularly necessary for sequence comparison, where there are still very few
theoretical results. For the Markovian model, it is straightforward to generate
random sequences. However, for the second model (ezact model), the problem
is much more difficult. The first efficient algorithm was developed by Kandel,
Matias, Unger and Winkler in 1996 [12].

Recent studies in biological sequence analysis have shown that it is necessary
to consider models of random sequences that contain more information than
previously thought. For example, Beaudoing et al. [6], looked for variants of a
polyadenylation signal. They gave a set of sequences where one known motif
was strongly overrepresented, and aimed to find other weaker overrepresented
motifs. This is a typical case in which some motifs that contain the strong one, or
that partially overlap it, can appear overrepresented. These “wrong signals” are
called artefacts. In this study [6], the known strong signal was the motif AAUAAA.
The motifs AAAUAA and AUAAAA, among others, were also overrepresented using
a classical model of random sequences. Clearly, these too were artefacts. An ad
hoc method was then applied to remove these artefacts. However, it has been
shown [8] that these artefacts can be removed analytically in general manner by
conditioning the occurrence probabilities by the strong signal. In other words,
the strong signal is taken into account in the model of random sequences. Van
Helden et al. [18] classified genes according to the number of occurrences of a
set of overrepresented motifs. Although some motifs were related to others, for
practical reasons, all motifs were considered independent from each other. The
resulting classification could be improved if these dependencies could be taken
into account. Therefore, a model of random sequences needs to account for the
presence or the overrepresentation of a set of motifs in biological sequences.
Unfortunately, at the present, an analytical approach to this problem can only be
applied in the simplest cases, in which only one strong motif is to be considered.

Here, we address the problem of generating sequences according to the exact
model, but with additional motif constraints. A set of motifs of length greater

III

than £ is given, and, as well as the k-lets, the sequences must contain a given
number of occurrences of each motif from the set.

In Section 2, we reconsider the algorithm of Kandel et al., which generates
sequences without additional constraints. We take this as the starting point of
our work and then, in Section 3, we develop our approach. The addition of
motif constraints in the model results in difficult problems. We notably prove
that the general problem of deciding whether a sequence respects the given
motif constraints is NP-complete. In Section 5, we give an algorithm which is
experimentally efficient, and present experimental results. For readability, the
proofs of our principal results are given in Section 4.

2 The shuffling problem.

Let S = s183...5, be asequence of length n over an alphabet L, and k an integer
such that 2 <k <n. A factor of S is a word s, 1 such that sy, = s, ... s, for
some 1 < p < ¢ < n. Consider the number of occurrences in S of all possible
k-lets, i.e. factors of length k. We call a shuffled sequence any sequence which
has exactly the same numbers of occurrences of k-lets as S. For example, let
S =ACTACTCACG and k = 3. The sequence S contains two occurrences of the
3-let ACT, and one of each of the following 3-lets: CTA, TAC, CTC, TCA, CAC,
ACG. The sequence S' =ACTCACTACG is a shuffled sequence of S, because it
has exactly the same numbers of occurrences of 3-lets as S. The shuffling problem
is the problem of generating, uniformly at random (u.a.r.), a sequence among all
shuffled sequences. Uniformly at random means that all shuffled sequences must
have the same probability of being generated.

We first recall a correspondence between the set of shuffled sequences and
the set of Eulerian trails of a particular multigraph, which is somewhat similar
to the de Bruijn graph. We call this the sequence graph of order k of S.

Definition 1. The sequence graph of order k of S, denoted Gr(S, k), is a di-
rected multigraph G = (V, E), with

n—k+2

V= U {S[i,i+kf2]}
i=1

n—k+1
E= U [(S[i,i+k72]a5[i+1,i+k71])]
i=1
Note that V' is a set, while E is a multiset (hence the brackets in the definition
of E. An example of sequence graph is given in Figure 1.

The nodes of the sequence graph are the factors of size k — 1 of S, and there
are as many arcs between two given nodes v = s[; ;1) and v = S[2,k—1]Sk as the
number of occurrences of the word s(; ;) in S. It follows that any sequence graph
is path-Eulerian, i.e it contains at least one path that covers all arcs exactly once

Cn W

Fig. 1. The Sequence Graph of S=EATGTTCATGCATGGATGGATAG with k=3.

- the sequence of nodes (s[i’Hk,Z])E?_kH. Such a path is called an FEulerian

trail. In the following, we note vy (resp. ve) as the vertex which begins (resp.
ends) the Eulerian trail. In some particular cases the sequence graph may be
Eulerian (i.e. cycle-Eulerian), as well as path-Eulerian. In this case, v, can be
any vertex, and v, = vp. In all other cases, v, and v, are fixed and distinct.

The following definition will help us to formalize the correspondence between
shuffled sequences and Eulerian trails.

Definition 2. The trace of a path in a sequence graph is the word produced by
concatenation of the k — 1 letters of the first node and the sequence composed of
the last letter of every other node in the path.

For example, in Figure 1, the word ATGGAGTTC is the trace of the path
(AT, TG,GG,GA,AT, TG,GT, TT, TC).
Now we can state the claimed correspondence.

Proposition 1. Any trace corresponds to exactly one shuffled sequence. The
number of Eulerian trails which correspond to any given trace does not depend
on the trace, and is equal to [],.\ d* (v), where d*(v) stands for the outdegree
of vertex v.

This correspondence was first noticed by Fitch [9] in 1983, and was the basis
of further works by Altschul and Erickson [3] and then Kandel, Matias, Unger
and Winkler [12]. Thus, the problem of generating uniformly at random shuffled
sequences is reduced to generating uniformly at random Eulerian trails in a
(particular) directed multigraph. The next step uses the BEST Theorem [1],
which links Fulerian trails and spanning trees of a graph. Here, this theorem
can be stated as follows.

A%

Theorem 1 (Aardenne-Ehrenfest and de Bruijn, 1951.). The number of
Eulerian trails in G that begin at vy, and end at v, is equal to

T(@) @ @) [@ @-1)!

veV\{ve}

where T(G) is the number of inbound spanning trees, or arborescences, whose
root is v, and d¥ (v) stands for the outdegree of vertex v.

The proof is constructive and leads to a straightforward algorithm for the random
generation of Eulerian trails, but only if an arborescence in G can be generated
uniformly at random. Starting at the beginning vertex we choose uniformly at
random, at each step, an arc from among all the arcs from the current vertex
which have not yet been crossed ezxcept the arc which belongs to the arborescence.
This arc can be chosen only if no other arc is available. Then follow the arc to
the next vertex, which becomes the new current vertex. The process stops at vy
when all arcs have been crossed.

The problem of generating uniformly at random FEulerian trails is now re-
duced to the problem of generating uniformly at random arborescences. G. Kan-
del et al. [12] give an algorithm which is a variant of a very elegant algorithm
found independently by Aldous [2] and by Broder [7] for undirected graphs. The
algorithm is as follows: if G is only path-Eulerian, then it is first made cycle-
Eulerian by adding a virtual arc between v, and v,. Then proceed by a free
random walk in G, and each time an arc is crossed add it to the arborescence
only if it is not the virtual one and no cycle occurs in the resulting arborescence.
The expected time complexity of this algorithm is O(g?n), where ¢ is the number
of vertices, i.e. the number of distinct k-lets in the sequence S. Recently, Propp
and Wilson [15,21] have developed new algorithms, based on similar principles,
which improve the time complexity.

3 Shuffling sequences with motif constraints.

3.1 Preliminaries

In this section, we address the problem of generating shuffled sequences that
are subject to additional constraints. SWe consider a reference sequence S of
length n on an alphabet L and an integer k£ such that 2 < k& < n. Now, let
M = [M,..., Mp] be a multiset of words over L with |M;| > k Vi € [1,p], such
that each M; is a factor of S, and there are, at most, as many occurrences of
M; in M as in S. Overlapping occurrences are not taken into account, i.e. if
the occurrence of two motifs overlap in the sequence, in which case, only one is
counted. In the following, we call the words of M motifs.

The problem consists of generating sequences that have exactly the same
k-lets count as S, and contain at least as many occurrences of each motif of
M as its number of occurrences in M. verlapping occurrences are again not
taken into account. Acceptable sequences are any sequence that respects these

VI

conditions. As motifs are taken (without overlap) for the reference sequence S,
we are guaranteed at least one acceptable sequence.

Our approach consists of two principal steps. These are developed in Sec-
tions 3.2 and 3.3. In the first step, we define a new multi-digraph from Gr(S, k)
in which each acceptable sequence is the trace of an Eulerian trail. We then gen-
erate uniformly at random an Eulerian trail, and verify that the corresponding
trace gives rise to an acceptable sequence - this is not always the case. This
step involves an NP-complete problem. However, we propose a simple efficient
heuristic algorithm for solving this problem (Section 5). The second step aims to
ensure the uniformity of the random generation. For this, we need to compute
the number of Eulerian trails that correspond to any generated trace. Unlike
the original shuffling problem (see Proposition 1), this number strongly depends
on the given trace. This counting problem is #P-complete, but we propose a
method to solve it in practice.

We present three major definitions involving acceptable sequences.

Definition 3. A configuration of a sequence S according to a multiset of words
M =[My,..., M, is a p-uplet (i1, ... ,ip) of integers, where i; is the position of
one occurrence of the word My in S.

Definition 4. Let C = (i1,...,ip) and C' = (iy,...,i,) be two configurations

of a sequence S according to the multiset M = [My, ..., M,]. For any word w in
M = [M,...,Mp), let J,, be the set of integers such that J, = {j : M; = w}.
Configurations C and C' are said to be equivalent if, and only if, for any word
w in M = [Mi, ..., Mp], the two sets {ij : j € Jm} and {i; : j € Jy} are equal.

Definition 5. A configuration C' of a sequence S according to a multiset of
words M = [My, ..., Mp] is perfect if, and only if, for any i and j, there is no
overlap between any two occurrences of M; and M;.

Clearly, a sequence is acceptable if, and only if, it has a perfect configuration

over M.

3.2 Generating acceptable sequences
Constrained sequence graphs

Definition 6. The sequence cluster of order k of a word M; =my ...m,, € M,
denoted Ch;(M;, k), is a directed multigraph C = (CV,CE) composed of three
nodes:

CV = {mp k-11, (M[2,r; =115 1) Mr; — k42,71 }
and two arcs:

CE = [(m1 x-1), (M2,r,—1],8)), ((M2,r, =175), Mp; —kt-2,r,])]

The special node (mjz,,;_1,1) is called a cluster node.

VII

GCD\ (CATGGATG,1)

Fig. 2. Sequence Cluster of M1 =GCATGGATGG, with k =3

An example of sequence cluster is given in Figure 2.

Definition 7. Let S be an acceptable sequence. Let G = Gr(S, k) = (V, E), the
sequence graph associated with S and k. For all i € [1,p], let G; = Gr(M;, k) =
(Vi, E;) and C; = Chy(M;, k) = (CV;,CE;) be the sequence graphs and the
sequence clusters associated with each M;. The constrained sequence graph G',
denoted GrC(S,k, M) = (V', E'), is defined by G' = (V', E'), with

p p
E'=EU|JCE - |JE
=1 =1

and
V' ={v e V"|degg (v) # 0}

where G" = (V" E") with

p
v'=vulJovi.

i=1

We have replaced the subgraphs representing each M; in Gr(S,k) by the se-
quence cluster of M;. There are as many cluster nodes in GrC(S, k, M) as there
are motifs in M. An example of a constrained sequence graph is given in Fig-
ure 3.

The notion of a trace of a sequence graph can be extended to the constrained
sequence graphs, by making the following change: on crossing a cluster node
(w, i), its |w| —k last letters have to be concatenated. As in Section 2, the follow-
ing simple result shows that there is a direct link between acceptable sequences
and Eulerian trails in a constrained sequence graph.

Proposition 2. The set of acceptable sequences is included in the set of traces
of Bulerian trails in GrC(S, k, M).

Proof. Let S be an acceptable sequence over M = [My,..., M,], a multiset of
words, and J = (j1,...,Jp) be a perfect configuration of S according to M.
Let (i1,...,%p) be the positions in S of the occurrences of words pointed to

VIII

@/@\ (CATGGATG,1)

N
©
()
Ca \

Fig. 3. The constrained sequence graph of ATGTTCATGCATGGATGGATAG with
M = [GCATGGATGG] and k = 3.

by the perfect configuration .J. Let us consider T = (s{ g], -+ S[iy i +k—1]

coy S[ig | My | —1,i1+ | My |+k—2]> -+ Slipip+k—1]s -3 S[ip+|Mi|—1,ip+|Mi|+k—2]> -+
Sln—k+1,n]), an Bulerian trail in Gr(S, k) whose trace is S. Let C(M;) be the
cluster node associated with M;. Then, T" = (s[1 k], - - S[iy iy +k—1]» C(M1), - . -,
Slipsip+k—1]> C(Mp), - .., S[n—g+1,n]) is an Eulerian trail in GrC(S, k, M) whose
trace is S.

Searching for perfect configurations.

Unfortunately, not all Eulerian trails give rise to an acceptable sequence, because
motifs may overlap, as shown in Figure 4. Therefore, once a random sequence S
has been generated, we have to verify whether it contains a perfect configuration.
We call this problem PCS for “Perfect Configuration Searching”, and it is defined
as follows.

Instance: An alphabet A, a sequence S over A, a multiset M = [My,. .., M,]
of p words.
Question: Does there exist a perfect configuration of S according to M?

At this stage, the sequences that we are dealing with are not general sequences
because they result from an Fulerian trail in a sequence graph. Therefore, we
need to considerv the problem of searching for a perfect configuration in such
sequences. Definition 8 and Proposition 3 will allow us to do this.

Definition 8. Let k be a positive integer. A configuration C of a sequence S
according to a multiset of words M is (k)-pseudo-perfect if, and only if, for any
i and j, there is no overlap of as much as k letters between any two occurrences
of M; and M;.

This means that all the words pointed to by the configuration overlap by at
most k — 1 letters. We shall omit the parameter & when explicit reference to a

IX

(CA,D)

Qﬂ@

Fig. 4. In this constrained sequence graph with M =[ATAC,ACAG], the Eulerian trail
(AT, TA,AC,CA AG,GA AC,CA,AA AG) gives a sequence ATACAGACAAG, which is
not acceptable because the only occurrences of ATAC and ACAG are overlapping.

constrained sequence graph is given. In this case, k is the order of the graph.
Now, the following property holds.

Proposition 3. A sequence S has a k-pseudo-perfect configuration according to
M if, and only if, S is the trace of an Eulerian trail in the constrained sequence

graph GrC(S,k, M).

Proof. Let S be the trace of an Eulerian trail T = (t1,...,t,—k+1) given as a se-
quence of nodes in GrC'(S, k, M) = (V', E"). Some of these nodes say ti, ... ti,,
are cluster nodes. Therefore, for any [1,[s, there is no arc (tz’, stin,) in E’. Thus,

there exists t; € T such that ¢;, < j < 4;,. This implies that occurrences mi,, and
m;,, overlap in S by at most |t;| = k—1 letters, and S contains a pseudo-perfect
configuration over M = [My, ..., M,)].

Conversely, if S has a k-pseudo-perfect configuration (ji,...,J,) over M,
then we can construct the same Eulerian trail 7' from an Eulerian trail T in

Gr(S, k).
Thus, the actual problem we are addressing, FPCS for “Further Perfect Con-
figuration Searching”, is defined as follows.

Instance: An alphabet A, a multiset M = [M;,..., M), an integer k and S a
word over A such that S has a (k)-pseudo-perfect configuration over M.
Question: Does there exist a perfect configuration M over S ?

Unfortunately, we have:
Theorem 2. Problem FPCS is NP-complete.
And we deduce:

Corollary 1. PCS is NP-complete.

For readability, the proofs of Theorem 2 and Corollary 1 are given in Sec-
tion 4.

An algorithm for FPCS

Despite having just stated that FPCS is NP-complete, we present here an al-
gorithm that is efficient in realistic cases (see Section 5). First, we define the
overlapping graph of M over S.

Definition 9. The overlapping graph of M over S is the undirected graph G =
(V,E) such that every occurrence in S of each word in M is a distinct node
and such that there is an arc between two given nodes if the occurrences they are
associated with are overlapping in S.

An example of an overlapping graph is given in Figure 5. Given an overlapping

Fig.5. The overlapping Graph of M=[ATT,TATT,CGAT,TTAT,ATT] over
S =ATTATCGATTATATTATCCGACGATTATTC.

graph G, the algorithm is essentially a classical arborescent search. We suppose
that the motifs of M = [M;,..., M,] and the occurrences [M; 1, ..., M;,,] of
each motif M; are ordered. The algorithm then proceeds as follows: Take the
first occurrence of the first motif and delete all of its neighbours. Then continue
in the same manner with the first (remaining) occurrence of the second motif
and so on, until either the last motif is taken, or the process stops before reaching
all motifs. In the first case, the set of occurrences that were chosen constitutes a
perfect configuration. In the second case, we backtrack until we find a suitable
sequence of occurrences.

There is also a direct interpretation of a perfect configuration in terms of
graph G. If we add edges to make cliques on all the vertex-occurrences of a
same motif, then there is a one-to-one correspondence between the set of perfect
configurations and the set of maximum independent sets in this new graph.

XI

3.3 Generating sequences uniformly at random.

We now focus on the problem of generating random sequences uniformly. For
constrained sequence graphs, no property such as Proposition 1 holds. The num-
ber of Eulerian trails corresponding to a given trace strongly depends on this
trace. Consequently, the generation process is not necessarily uniform. There-
fore, we use a classical rejection method to make the generation uniform. When
a trace is generated, we either accept it with a probability proportional to the
number of its corresponding FEulerian trails, or we reject it and start the process
again. Hence, we need to count the number of Eulerian trails corresponding to
a given trace.

Proposition 4. The number of Eulerian trails corresponding to any given trace
S is
Nk, S, M)/] IM|m!
meM
where N (k, S, M) is the number of (k)-pseudo-perfect configurations of S ac-
cording to M, and | M|y, is the number of occurrences of m in the multiset

M.

Proof. In Propositions 2 and 3, we have seen how to map a k-pseudo-perfect
configuration to an Eulerian trail in GrC(S, k, M). This gives the numerator.
However, if two configurations are equivalent (see Definition 4), they will be
mapped to the same Eulerian trail, giving the denominator.

Now, counting the number of Eulerian trails corresponding to a given trace
reduces to counting the number of equivalence classes of pseudo-perfect configu-
rations. Our counting algorithm is based on the pseudo-overlapping graph of M
over S, similar to the previously defined overlapping graph.

Definition 10. The pseudo-overlapping graph of M over S is the undirected
graph G = (V, E) such that each occurrence in S of every word in M is a distinct
node, and there exists an edge between two given nodes if the occurrences with
which they are associated overlap by at least k letters.

If we consider the pseudo-overlapping graph in which all the nodes corre-
sponding to occurrences of any same word are connected together in a clique,
the number of maximal independent sets (MIS) in this graph is obviously equal
to the number of equivalence classes of perfect configurations in the related se-
quence. The problem of counting MISs is known to be polynomial in intersection
graphs (including interval graphs) [5]. Although each pseudo-overlapping graph
is clearly an interval graph, the graphs we consider here are not even perfect
graphs (the problem of determining the cardinal of an MIS is polynomial for
perfect graphs but NP-complete for general graphs, see [11,10] and refs.). Un-
fortunately, we have

Theorem 3. The problem of counting the equivalence classes of perfect config-
urations of S according to M is #P-complete.

The proof of this Theorem is given in Section 4.

XII

3.4 The random generation algorithm.

We are now able to state the complete algorithm for generating constrained
sequences uniformly at random.

Algorithm 1 Random generation
Input: a sequence S, an integer k, a multiset M
Output: a sequence T

(i) Produce the constrained sequence graph G = GrC(S,k, M).

(ii) Uniformly generate a random Eulerian trail in G, and take its trace T
(iii) If T has no perfect configuration then goto (ii).

(iv) Compute the number N of Eulerian trails corresponding to this particular
trace T'.

(v) Return T with probability 1/N, or goto (ii).

If we could compute a lower bound m of the minimum over the traces of
the number of Eulerian trails associated with any traces, we could replace the
rejection probability in (v) by m/N. However, in general, it is very difficult to
compute this lower bound.

Proposition 5. Step (i) of Algorithm 1 is called at most R times on average,
where R is the average number of Fulerian trails per trace.

Proof. Consider the square [0, 1]%. For any given trace of an Eulerian trail, con-
sider an interval of [0, 1] whose length is the probability of choosing this particular
trace. Place those intervals one after each other in any given order. Then, above
each interval, construct a rectangle whose height is the probability of keeping
this trace according to Algorithm 1. The sum of the areas of these rectangles
equals the number of distinct traces divided by the number of distinct Eulerian
trails. It is easy to verify that this number is, in fact, the inverse of the average
number of Eulerian trails associated to a trace. This is the expected number of
steps needed to hit one of these rectangles, and to stop the algorithm.

4 Proofs of Theorem 2, Corollary 1 and Theorem 3

Clearly, PCS is a special case of FPCS. For the sake of clarity, we first prove the
NP-completeness of PCS (Corollary 1) and then generalise it for FPCS(Theorem 2).

Corollary 1 PCS is NP-complete.

Proof. Clearly, we can verify in polynomial time whether or not a given con-
figuration is perfect. So PCS is in NP. We now reduce PCS to 3 Dimensional
Matching (3DM) (see example 1). The 3DM problem [10] is defined as follows:
Instance: A set C C X xY x Z where X, Y, Z are disjoint sets having the
same number ¢ of elements.

XIIT

Question: Does C contain a matching, that is, a subset C' C C such that |C'| = ¢
and no two elements of C' agree in any coordinate? Let us consider an instance
of 3DM, that is 3 sets X, Y, Z of the same cardinality ¢ and C C X xY x Z. For
any r € X UY U Z, we define f¢(r) as the number of occurrences of r in C.

Let C = {c1,...,¢s} and define S = w,, ... w., where, V¢ = (z,y,2) €
C, w, = wywyw;0, with w, = a0*~1109%q, wy = b0¥~1107"%h, and w, =
ba0*~11079=*ba0.

For any z € X, we define a multiset M, as follows: it contains

1. one occurrence of the motif m, = 0*~110¢"%ab
2. fe(x) — 1 occurences of the motif m!, = a0z 1107 %q

Similary, for any y € Y (resp. z € Z) we define M, (resp. M) as the multiset
containing one occurrence of m, = 0Y~'109"¥bba (resp. m, = 0°~'1097*ba0)
and fe(y) — 1 occurrences of m/, = b0y¥~'109"¥b (resp. fc(z) — 1 occurrences of
m!, = ba0z*~'109*ba). Finally, we set M = {J,c x yuz Me where |J denotes
the union of multisets.

Obviously, this transformation is polynomial with respect to the instance of

3DM. So, we only need the following two claims to conclude.

Claim 1 If there exists a perfect matching in C, then there exists a perfect
configuration of M over S.

Let C' be a perfect matching for C. We construct a perfect configuration of S
over M by independently considering the factors w, = a0* 1107~ %a b0¥ 1107 Yb
ba0*~1109=*ba0 of S, for all ¢ € C.

1. Each ¢ = (z,y,z) € C' is recovered by the following three motifs of M:
m, = 0°~1109"*ab, m, = 0Y"1109"¥bba, and m. = 01107 *ba0. Each of
these motifs occurs only once in M,, M, and M, respectively. Since there
is only one occurrence of z, y and z respectively in C’ by definition of a
matching, only the motifs in {mg, m,,m, : ¢ € X,y € Y,z € Z} of M have
been used to cover all the factors w,. of S for any ¢ € C'.

2. Each ¢ = (x,y,2) ¢ C' is recovered by the following three motifs of M:
m}, = a0"~'107"*a, m} = b0¥~'109"¥b, and m/, = ba0*~'109 *ba. Since
motif m;, (resp. mj, m/) occurs fe(z) — 1 (resp. fe(y) — 1, fe(z) — 1) times
in M, all the factors w. of S for any ¢ ¢ C' are covered (unless the terminal
0 in each of them), and all the motifs m;,, m; and m} of M have been used.

Finally, all motifs of M have been used, and no two overlap. We have thus
defined a perfect configuration of S according to M.

Claim 2 If there exists a perfect configuration of M over S, then there
exists a perfect matching in C.

Let P be a perfect configuration of M over S. We construct a perfect match-
ing C' in C. We define C' as follows: ¢ = (z,y,2) € C' if, and only if, in P, w, of
factor w. = wy,wyw,0 of S is partially recovered by the motif m, = 0*~1102*ab
of M.

Since [{m, : z € X}| = |X| = ¢, by construction we get |C'| = {m, : z €
X}| = ¢. Tt remains to prove that C’ is a perfect matching of C. Indeed, let ¢ =

XIV

(®,y,z) € C'. In the corresponding factor w, = wwy,w,0 of S, by definition w, is
recovered by m,. The fe(z) — 1 remaining occurrences of w, in S are recovered
by the fe(z) — 1 motifs m!. Thus, w. is necessarily recovered by mgzmym.,
because, by construction, no two motifs m, and m/ (for any r,s € X UY U Z)
can recover a factor w. without overlapping. As there is exactly one motif m,
(resp. my, m;) per element of X (resp. Y, Z), each element of X (resp. Y, Z)
occurs exactly once in C'. Finally, C' is a perfect matching of C.
This concludes the proof.

Ezample 1. We consider an instance Z of 3DM such that X = {z,2'}, ¥V =

{yay,}a Z = {Z,Z’}, ¢ = {01 = (.Z‘,y’,Z),CQ = (x’,y,z’),c3 = ('Tayazl)}' The
instance T'(Z) of PCS is defined as follows:

- w, = alla, wy = a0la,w, = b10b, wy = bO1b,w. = balOba, w, = ba0lba
- w¢, = al0ab01bbal0bal, w., = a01labl0bba01bal,w., = a1l0abl0bba01lbal

- M = [10ab, al0a, 01ab, 10bba, b10b, 01bba, 10ba0, 01ba0, ba0lba].
— 8 = a10ab01bbal10ba0a01ab10bba01ba0al0abal0bba01bal.

The instance Z has a matching composed of ¢; and co. For the instance T'(7)
has a perfect configuration of M over S.

NSNS AN AN NS AN NN
S = a10ab01bba 10ba0 a 01ab 10bba 01bal a10a b10b ba0lba O

Weq Weq Weg

Theorem 2 Problem FPCS is NP-complete.

Proof. We only need to prove the result for the particular case where k = 2. It
is easy to see that Problem FPCS belongs to NP. Moreover, we transform 3DM
to FPCS by the transformation given in Corollary 1. Let us consider an instance
T of 3DM, that is, three sets X,Y, Z of the same length ¢ and C C X xY x Z.
Let 7' be an instance of FPCS obtained by the transformation in Corollary 1.
Instance Z' is composed of an alphabet A = {0, 1, a, b}, a multiset M of p words,
and a word S over A. By the proof of corollary 1, there exists a perfect matching
in C if, and only if, there exists a perfect configuration of M over S.

It remains to prove that S has a (2)-pseudo-perfect configuration C' over
M. Let z € X. Recall that fe(r) is the number of occurrences of r in C. By
the transformation from 3DM in corollary 1, there is one motif 0*~110? *ab
and fe(x) — 1 motifs a0*~'109"%a in M. We now construct a pseudo-perfect
configuration C over M. The f¢(z) patterns a0 ~110?~%ab contained in S can be
covered by the corresponding f¢ () motifs in M. We apply the same construction
for all elements of Y and Z. Now, for each ¢ = (z,y, z) in C, the word w, in S
is covered by three motifs of M, and, by construction, two consecutive motifs
overlap by at most one letter. So, C' is a (2)-pseudo-perfect configuration over
M.

XV

Theorem 3 The counting problem of the equivalence classes of perfect config-
urations of S according to M is #P-complete.

Proof. Problem #PCS belongs to the class #P because there is a polynomial-
time algorithm to determine, given an instance z of #PCS and a configuration
y of S according to M, if y is a perfect configuration of S according to M. We
demonstrate that #PCS is #P-hard, by showing a parsimonious reduction from
the #P-complete problem #Perfect Matching defined as follows:

Instance: A bipartite graph G.

Question: How many perfect matchings does G have?

Suppose that we are given an instance I of the #Perfect Matching problem
with bipartite graph G = (V; U V4, E) such that no two vertices within V (resp.
V5) are adjacent. The reduction can be splitted into two parts.

First, instance I is tranformed into an instance I’ of 3DM such that:

- X:V1,Y:V2 andZ:VQ.
— C:{($1,$2,l‘2) R (1'1,1'2) EE/\I'l S ‘/1/\1'2 S ‘/.2}

Therefore, the number of perfect matchings in G is equal to the number of
matchings in C. Indeed, there is a one-to-one correspondence between the set, of
perfect matchings in G and the matching in C.

Also, the instance I' of 3DM is transformed into an instance I"' of #PCS
using the same transformation as in the proof of Corollary 1. The proofs of
Claims 1 and 2 show that there exists a one-to-one correspondence between the
set of matchings in C and the set of equivalence classes of perfect configurations
of S. So, there exits a one-to-one correspondence between the set of perfect
matchings in G and the set of equivalence classes of perfect configurations of .S.

Thus, this reduction from #Perfect Matching to #PCS is parsimonious.

5 Experimental results.

We know the theoretical complexity of every routine of our algorithm except for

1. the number of times step (ii) of the algorithm is processed
2. searching if T' contains a perfect configuration (step (iii));
3. counting the number of Eulerian trails which correspond to T' (step (iv)).

Therefore, we carried out simulations on random data to determine the average
complexity of these routines. We aimed to determine what can and cannot be
done in terms of the size of the parameters. Routines 2 and 3 involve essentially
an arborescent search over an overlapping graph. The first routine requires only
one “good” search and then stops. However, in many case for routine 3, a search
of the whole search tree is needed. This makes the two algorithms different in
terms of what makes them difficult.

We generated random instances of the problem as follows. Sequences of size
n were generated according to uniform Bernoulli probabilities over an alphabet
of size t. Generally, we took t = 4 because we are interested in DNA sequences.

XVI

Given the cardinality p of M and the size s of its motifs, we then generated
the multiset M by choosing p positions in the sequence and taking, for each
position, the word of length s beginning at that position. Thus, all motifs had
the same length.

We first looked at the number of times step (ii) was processed. We found that
for small &, say k < 10, almost all the sequences produced contained a perfect
configuration. Therefore, the algorithm behaves as if there were no rejection.

For routine 2, a difficult case would occur when n is far larger than 4°. In this
case the motifs would tend to have more than one occurrence in S and therefore,
the overlapping graph would have many nodes. The problem is even more difficult
if these occurrences overlap, which is the case when the motifs are numerous and
large enough. If £ >> 1, the instance also becomes difficultbecause any trace of
an Eulerian trail already contains a (k)-pseudo-perfect configuration. Therefore,
to generate difficult cases, we need n >> 4% and s > k >> 1. If we choose
k > 10 and s > 11, then n should be greater than 10%. The graph library we
used for our implementation did not allow us to investigate this many values
efficiently. Therefore, we restricted our simulations to & = 5 and found no case
when n < 100000 and | M| < 1000 in which the computation time of routine
2 was significant. (For bioinformatics purposes, k = 5 is a standard value for
shuffling DNA sequences.) We are currently working on implementing a graph
library that should allow us further investigations.

Routine 3 is the bottleneck of our algorithm. As it enumerates all pseudo-
perfect configurations, its complexity strongly depends on the number of nodes
of the pseudo-overlapping graph. As for routine 2, this number is very dependent
on the number of occurrences of the motifs in the sequence, which is itself related
to the ratio of n/4%. If this ratio is high, we expect a high number of occurrences
of motifs and, consequently, a high computation time. This is what we observed
with random data, as illustrated in Figure 6. We show here the case for s = 6,
but the results are similar for other values of s, with the time scale increasing
exponentially when s decreases.

In practice, the program can generate sequences up to a length of 100000
with | M| up to several dozens of motifs in a few minutes on a standard PC.

We are also trying to improve the processing time. We have found that a
number of motifs appear “naturally” in almost any (unconstrained) shuffled
sequence, depending on their length and on the nucleotide composition of the
starting sequence. Therefore, we can use a variant of the algorithm. We divide M
into two multisets M and M5 such that M; contains the “more likely” motifs
and My contains the “less likely” motifs. We then produce the constrained
sequence graph on M using only step (i) of the algorithm, and consider M in
its entirety in step (iii). As almost any sequence contains the motifs of M, and
as step (iv) may be faster, the total processing time is much improved.

XVII

Time

8000
7000
6000 [
5000 |
3000 - e SRCIDIN e

2000 |
1000 |

Length of sequences

Fig. 6. Experiments on random data, with £ =3 and s = 6.

6 Acknowledgement

We are grateful to Bodo Lass for his help. This research was partially supported
by the French IMPG Program ad the project “m-vert” of the ACI “New Interfaces
of Mathematics”.

References

1. T. van Aardenne-Ehrenfest and N.G. de Bruijn, Circuits and trees in oriented
linear graphs, Simon Stevin (= Bull. Belgian Math. Soc.) 28 (1951), pp. 203-217.

2. D. Aldous, A random walk construction of uniform spanning trees and uniform
labelled trees, STAM Journal on Discrete Mathematics 3 (1990), pp. 450-465.

3. S. Altschul and B. Erickson, Significance of nucleotide sequence alignments: a meth-
ode for random sequence permutation that preserves dinucleotide and codon usage,
Mol. Biol. Evol. 2 (1985), pp. 526-538.

4. S. Altschul, T. Madden, A. Schiffer, J. Zhang, Z. Zhang, W. Miller and D. Lipman,
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Research 25 (1997), pp. 3389-3402.

5. E. Balas and C. Yu, On graphs with polynomially solvable mazimum-weigth clique
problem, Networks 19 (1989), pp. 247-253.

6. E. Beaudoing, S. Freier, J. Wyatt, J. Claverie and D. Gautheret, Patterns of vari-
ant polyadenylation signal usage in human genes, Genome Research 10 (2000),
pp. 1001-1010.

“““ Sty " Number of motifs

XVIII

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Broder, Generating random spanning trees, in: proc. of 30th Annual Symposium
on Foundations of Computer Science, IEEE, 1989, pp. 442-447.

A. Denise, M. Régnier and M. Vandenbogaert, Assessing statistical significance on
overrepresented oligonucleotides, in: O. Gascuel and B. Moret, editors, Proceedings
of WABI’01, Lecture Notes in Computer Science 2149 (2001), pp. 85-97.

W. Fitch, Random sequences, Journal of Molecular Biology 163 (1983), pp. 171-
176.

M. R. Garey and D. S. Johnson, “Computers and intractability : a guide to the
theory of NP-completeness.” W. H. Freeman and Company, 1979.

M. Grotschel, L. Lovasz and A. Schrijver, Polynomial algorithms for perfect graphs,
Annals of Discrete Mathematics 21 (1984), pp. 322-356.

D. Kandel, Y. Matias, R. Unger and P. Winkler, Shuffling biological sequences,
Discrete Applied Mathematics 71 (1996), pp. 171-185.

D. Lipman, W. Wilbur, T. Smith and M. Waterman, On the statistical significance
of nucleic acid similarities, Nucleic Acids Research 12 (1984), pp. 215-226.

P. Nicodeme, B. Salvy and P. Flajolet, Motif statistics, Theoretical Computer
Science 287 (2), 2002, pp. 593-618.

J. Propp and D. Wilson, How to get a perfectly random sample from a generic
Markov chain and generate a random spanning tree of a directed graph, Journal of
Algorithms 27 (1998), pp. 170-217.

M. Régnier, A unified approach to word occurrence probabilities, Discrete Applied
Mathematics 104 (2000), pp. 259-280.

G. Reinert, S. Schbath and M. Waterman, Probabilistic and statistical properties
of words: An overview, Journal of Computational Biology 7 (2000), pp. 1-46.

J. van Helden, Metrics for comparing regulatory sequences on the basis of pattern
counts, Bioinformatics 20 (2004), pp. 399-406.

J. van Helden, B. André and J. Collado-Vides, Eztracting regqulatory sites from
the upstream region of yeast genes by computational analysis of oligonucleotide
frequencies, Journal of Molecular Biology 281 (1998), pp. 827-842.

A. Vanet, L. Marsan and M.-F. Sagot, Promoter sequences and algorithmical meth-
ods for identifying them, Res. Microbiol. 150 (1999), pp. 779-799.

D. Wilson, Generating random spanning trees more quickly than the cover time,
in: Proceedings of the Twenty-FEighth Annual ACM Symposium on the Theory of
Computing, 1996, pp. 296-303.

