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Stabilizing distributed systems expect all the component processes to run predefined programs
that are externally mandated. In Internet scale systems, this is unrealistic, since each process may
have selfish interests and motives related to maximizing its own payoff. This paper formulates
the problem of selfish stabilization that shows how competition blends with cooperation in a
stabilizing environment.
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1. INTRODUCTION

Current research on the design of self-stabilizing (a.k.a. stabilizing) distributed
systems [5; 6] assumes that all processes run predefined programs mandated by
an external agency who is the owner or the administrator of the entire system.
The model is acceptable only when processes cooperate with one another, and the
goal is purely a global one. The model falls apart when the distributed system
spans over multiple administrative domains or processes have private goals too. On
Internet-scale distributed systems, each process or each administrative domain may
have selfish motives to maximize its own payoff. In fact, payoffs or cost functions
have been the major driving force behind game theory, but individual payoffs never
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figured into the realm of stabilizing distributed systems. There are many applica-
tions where individual payoffs are relevant, but the spirit of competition need not
conflict with the general spirit of cooperation that is the driving force behind sta-
bilizing algorithms. To clarify this issue, consider that a system of n processes for
which a legal configuration is any element of the set of configurations {L1, · · · , Lk},
but different processes have different preferences about their ideal legal configu-
rations. Attaining the individual goal may be possible via the use of asymmetric
cost functions that are statically defined, or by the use of specific strategies that
may be adopted at run time. Such strategies refine the basic move. For example,
to execute the step of choosing a neighbor, different processes may adopt different
strategies for choosing the neighbor. While the choice will impact the payoffs, it
will not affect the global goal, or the stabilization mechanism. As an example,
consider the stabilizing token circulation protocols [5] that have been widely stud-
ied by the stabilization community. If there are several classes of processes with
competing interests, then in addition to the common goal of reducing the number
of tokens to one, each class may try to retain the token among themselves more
often than their competitors. Maximizing individual payoffs under the umbrella of
stabilization characterizes the notion of selfish stabilization.

Related Work. Selfish stabilization blends game theory with self-stabilization.
There are some strong similarities between the two paradigms, but there are signif-
icant differences too. Considering the players in games to be equivalent to processes
in a stabilizing system, the equilibrium in games is comparable to the legal configu-
ration of stabilizing systems, in as much as both satisfy the condition of convergence
and closure. However, unlike stabilizing systems, games start from predefined ini-
tial configurations, and largely ignore faulty moves or transient state corruptions.
An exception is the notion of bounded rationality (see Herbert Simon [20]) that
suggests that economic agents sometimes use heuristics to make decisions rather
than a strict rigid rule of optimization in light of the complexity of the situation. In
the context of distributed systems, the anarchic behavior of processes for meeting
selfish goals can be viewed as a weaker version of byzantine failure. Game theory so
far has been a hotbed of activities in computational economics (like auctions) and
algorithm design. It is also receiving attention in interdomain routing protocols
like BGP. For example, in the stable path problem [10], each process has to choose
the best path according to some local routing policy, and conflicts between local
interests can lead to unstable or oscillating behavior. Cobb et al [4] proposed a
stabilizing solution to the stable path problem. Halpern [11] presented a perspec-
tive of game theory for distributed systems researchers. Moscibroda, Schmid and
Wattenhofer [15] studied the formation of the topology of a P2P network by selfish
peers, and presented a negative result that the topology construction may not ter-
minate due to selfish behavior, even if churns are absent. They also analyzed [16]
the impact of allowing some processes to be malicious or byzantine, whereas others
are selfish, and computed the price of malice. Keidar et al’s Equicast protocol [13]
for multicast in a peer-to-peer network deals with freeloaders by treating the system
as a non-cooperative game, where nodes are selsh but rational. Each user chooses
its own strategy regarding its level of cooperation to participate in the multicast so
as to minimize its own cost. The goal of each node is to receive all the multicast
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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packets while minimizing its sending rate. Mavronicolas [14] used a game-theoretic
view to model security in wireless sensor networks as a game between the attack-
ers and the defenders. Cao et al [3] presented a variation of the pursuer-evader
games for asset protection using a large-scale sensor-actuator network - both are
only tangentially related to our work, since stabilization is not an issue. Other
than these, mixing game theory with distributed computing is certainly on a fast
growing curve, yet no specific work has addressed the self-stabilizing setting. This
paper aims at bridging the gap.
Contributions. This paper introduces the notion of selfish stabilization, and
addresses a specific problem in this domain. Given a graph G = (V,E), assume
that there are p different subsets (or classes or colors) of nodes. For each subset
or color, there is a separate cost function that maps the set of edges to the set of
positive integers. Starting from an arbitrary initial configuration, the p different
classes of nodes cooperate with one another to form a spanning tree rooted at a
designated node, and at the same time compete against each other to minimize
their cost of communication with the root node. The communication cost may
depend on various factors: for example, ownership of the routers may be a factor
in determining the cost of routing traffic for any class of nodes. The processes
are free to choose a strategy from a given set of strategies, and switch strategy
to satisfy their individual needs. We examine strategies under which, starting
from an arbitrary initial configuration, these classes of processes can stabilize to
an equilibrium configuration after which no process can unilaterally decrease its
communication cost to the root. The paper has three sections. Section 2 introduces
the model and the notations. Section 3 show that with three (or more) different
classes of nodes, there exists the possibility that no equilibrium is possible, and
proves that determining whether a particular setting admits an equilibrium is NP-
complete. On the positive side, Section 3 presents evidence that when there are two
(or less) classes, an equilibrium always exists. A (weakly) stabilizing distributed
algorithm is provided to construct an equilibrium tree. Alternative strategies for
participating nodes are also discussed. Section 4 further analyzes various aspects
of the problem, and provides some food for thought.

2. PRELIMINARIES

In this section, we present our model, followed by the various issues addressed in
the rest of the paper.
Model and notations. Let G = (V,E) denote the topology of the network where
V = {1, 2, . . . , n} is the set of nodes (processes) and E is the set of edges connecting
pairs of processes. Each process communicates with its neighbors using the locally
shared memory model. The execution of the protocol is organized in steps. In each
step, a process executes a guarded action g → A: the guard g is a boolean whose
value depends on its own state and the states of its immediate neighbors. When
the guard is true, the process executes an action A that updates its own state. The
global state or configuration of the system is a tuple consisting of the local states
of all the processes. Unless stated otherwise, a serial daemon schedules the action
by arbitrarily choosing a process with an enabled guard to execute its action. No
fairness (of the demon) is assumed. A computation is a maximal sequence of global
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states S1, S2, ..., where S1 is the initial global state, and each step of the protocol
changes the global state Si to state Si+1.

All nodes in V have a common goal: starting from an arbitrary initial con-
figuration, they collaborate with one another to form a spanning tree with a
given node designated as the root. We divide V into p disjoint subsets of nodes
V1, V1, V2, . . . , Vp, such that

V = ∪p
i=1Vi

For the ease of description, we associate a distinct color with each subset. In
addition to the common goal, these subsets have their own agenda: we call them
private goals. The private goals of the p different subsets may be conflicting -
for example, these subsets of nodes may want to split a common resource. To
illustrate such private goals, we convert G into a multi-weighted graph by defining
a cost function w of E → N∗p, where N∗ is the set of (strictly) positive integers.
For every i ∈ [1 . . . p], the function wi of E → N∗ is defined as:

∀e ∈ E, wi(e) = xi if and only if w(e) = (x1, . . . , xi, . . . , xp)

So, for each node in Vi, wi(e) denotes the cost of using edge e.
When a spanning tree T exists in G, this tree defines a unique path Tv→u between

any two nodes v and u of V . The cost of this path for a particular subset Vi is

wi(Tv→u) =
∑

e∈Tv→u

wi(e)

In this paper, we study the cost of reaching the root r of a spanning tree T from a
node v belonging to Vi. This cost is equal to cost(v) = wi(Tv→r).

The private goal for every node v is to minimize cost(v). A node v is stable in
a tree T if it has no incentive to chose another neighbor z ∈ Γg(v), i.e. choosing z
would not lower its cost.

Definition 2.1 Stable node. Let G = (V,E) be a graph and r a node of V . Let P
be a partition of V with p elements V = ∪p

i=1Vi. Let w be a function on E → N∗p.
Let T be a spanning tree of G. The node v ∈ Vi is stable in T for metric w if and
only if it satisfies the following condition:

∀z ∈ ΓG(v),
∑

e∈Tv→r

wi(e) ≤ wi((v, z)) +
∑

e∈Tz→r

wi(e)

In other word,

∀z ∈ ΓG(v), wi(Tv→r) ≤ wi((v, z)) + wi(Tz→r)

Similarly, a tree T is stable if every node in V is stable.

Definition 2.2 Stable tree. Let G = (V,E) be a graph and r a node of V . Let P
be a partition of V with p elements V = ∪p

i=1Vi. Let w be a function on E → N∗p.
Let T be a spanning tree of G. The tree T is stable for metric w if and only if for
every node v ∈ V , v is stable in T for metric w.

Unlike traditional stabilization algorithms where all processes execute the same
algorithm, here we allow processes to choose different algorithms, or switch algo-
rithms from a set Σ = {P1, P1, · · · , Pk} (each Pi reflects a distinct strategy) in order
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 1. Pure selfish strategies may not yield a tree. Each node picks an edge whose path towards
the root has minimal cost for its own color, and this results in a cycle.

to meet their private goals. Thus, each state transition (Si, Si+1) is caused by an
action of some algorithm Pj ∈ Σ. We will call Σ the strategy space.

Our goal is to devise a stabilizing mechanism for the construction of a stable
tree given a particular metric – the computation should lead to a tree configuration
so that the conflicting private goals of cost minimization do not interfere with the
common goal of tree formation. The two components of the mechanism are:

(1) Equilibrium. The goal configuration corresponds to an equilibrium configu-
ration such that no process has an eligible action that can unilaterally decrease
ts own cost.

(2) Convergence. Starting from an arbitrary initial configuration, the system of
processes must converge to an equilibrium configuration.

We add a few clarifications to explain the above two mechanisms:
Clarification 1. The equilibrium need not always correspond to a quiescent state
in which all guards are false. It can also represent the dynamic behavior of a
reactive system (like a token-passing system). For the current problem however, a
quiescent equilibrium state will suffice, and it naturally reflects a Nash equilibrium.
Clarification 2. In principle, the equilibrium condition can be further generalized
to the case where no coalition of processes can decrease the cost of a subset of them.
Clarification 3. Compared to the closure property [1] used in traditional stabi-
lizing systems, the equilibrium criteria is more general in as much as it allows the
processes to try out a different strategy that does not conflict with the spirit of
cooperation.

Indeed, a selfish strategy without cooperation (such as arbitrarily picking an edge
whose cost is minimal for its own color) can result in a graph that is not a tree .
Even if nodes are aware of the minimum cost path towards the root, the resulting
graph may still not be a tree (see Figure 1). In the subsequent section we show that
the problem is non-trivial even if processes stick to a fixed strategy that is known
to all. Strategy switch adds another level of complexity to it.
The roadmap. Among the set of all such problems, there are cases where no
equilibrium exists, regardless of the strategy chosen by the processes. This is tan-
tamount to presenting instances of metrics for which no stable tree exists. Fig 2
shows one such example with a 3-partition of the nodes of a complete graph of 4
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nodes (called graph K). The set of nodes V is partitioned into V1, V2, and V3 such
that V1 = {x}, V2 = {y}, and V3 = {r, z}. The metric w is described in the figure.
Let us show that there exists no stable tree here: assume there exists a stable tree
T . Now, if edge (x, r) is in T , this implies that edge (z, x) is also in T (otherwise
T would not be stable). Now consider node y. The edge (y, x) may not be in T
(indeed,

∑
e∈Ty→r

wi(e) = 6 ≥ wi((r, y)) = 3). The edge (y, z) may not be in T

(indeed,
∑

e∈Ty→r
wi(e) = 7 ≥ wi((r, y)) = 3). Thus, the edge (y, r) must be in

T . This contradicts the stable property of T because at node x, we would have∑
e∈Tx→r

wi(e) = 3 ≥ wi((x, y))
∑

e∈Ty→r
wi(e) = 2. The same argument can be

repeated starting from y and from z, so there exists no stable tree for this instance
of w. Of course, this example can be generalized to an arbitrary p ≥ 3.

Fig. 2. The complete graph K with 4 nodes

Clearly, there is no point in searching for a stabilizing solution, because no such
solution can be found. Deciding whether there exists an equilibrium is an NP-
complete problem.

3. RESULTS

This section summarizes our main results about selfish stabilization. We first dis-
cuss results about the existence of equilibria, and subsequently present algorithms
for solving the selfish stabilization problem in specific cases.

3.1 Existence of equilibrium

In this section, we discuss the existence of an equilibrium (i.e. a stable tree T for
a particular metric w) depending on the number of conflicting interests (i.e. the
number p in the partition of nodes of V into p sets V1, V2, . . . , Vp). Let us first notice
that the special case of p = 1 is the usual problem of the shortest path spanning
tree with non zero edge costs, so an equilibrium always exists. We first prove that
when p ≥ 3, determining whether there exists an equilibrium for a particular metric
w is an NP-complete problem.

Theorem 3.1. Let G = (V,E) be a graph and r a node of V . Let P be a
partition of V with p ≥ 3 elements V = ∪p

i=1Vi. Let w be a function on E → N∗p.
The problem of deciding the existence of a stable spanning tree T for metric w is
NP-complete.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Proof. It is easy to show that this problem is in NP. Indeed, given a particular
tree T , checking whether T is stable for metric w can be done in polynomial time
by checking if every node is stable in T for metric w.

Then, we construct a polynomial transformation (almost similar to transforma-
tion described in [10]) with the NP-complete problem 3-SAT defined as follows:

. Instance: Collection C = {c1, c2, . . . cm} of clauses on a finite set U of variables
such that |ci| = 3 for 1 ≤ i ≤ m.

. Question: Is there a truth assignment for U that satisfies all the clauses in
C?

We now present the transformation R : (C,U)→ (G, r,P, w):

(1) V ← {r}; V1 ← ∅; V2 =← ∅; V3 ← {r}; E ← ∅ ;
(2) for each variable v ∈ U do:

(a) V ← V ∪ {v, v};V1 ← V1 ∪ {v};V2 ← V2 ∪ {v};
(b) E ← E ∪ {(v, r), (v, r), (v, v)};
(c) w(v, r)← (3, 1, 1); w(v, r)← (1, 3, 1); w(v, v)← (1, 1, 3);

(3) for each element c = (s, t, q) ∈ C do:
(a) V ← V ∪ {c} ; V3 ← V3 ∪ {c};
(b) E ← E ∪ {(c, s), (c, t), (c, q)};
(c) w(c, s)← (3, 3, 1); w(c, t)← (3, 3, 1); w(c, r)← (3, 3, 1);
(d) a copy of graph K drawn in Fig. 2 whose nodes are named {c.x, c.y, c.z, c.r}

is a subgraph of G.
(e) E ← E ∪ {(c.r, r), (c, c.z)};
(f) w(c.r, r)← (3, 3, 3); w(c, c.z)← (1, 1, 3);

(4) P ← (V1, V2, V3)
(5) Return (G, r,P, w):

Figure 3 presents a partial example of this transformation. It is straightforward
to verify that this transformation can be done in polynomial time in the size of the
instance. We now prove that there exists a particular assignment t that satisfies all
clauses of C if and only if there exists a stable tree T in G for metric w.

First, assume that there exists an assignment t that satisfies all clauses of C. We
construct from t a tree T that is stable in G for metric w. For each variable v ∈ U ,
(v, v) ∈ T . If t(v) = true, then (r, v) ∈ T else (t(v) = false), (r, v) ∈ T . Nodes v
and v are stable in T for w (since all other paths from v (or v) to r are of weight
strictly greater to 4). Moreover, for every c ∈ C, there exists at least one of those
three elements v such that t(v) = true. T is constructed such that (v, c) ∈ T and
(c, c.z) ∈ T . Then, (c.r, r) ∈ T , (c.y, c.r) ∈ T , and (c.x, c.y) ∈ T . T is a stable tree
in V for metric w.

Second, assume that there exists a stable tree T in G for metric w. From this
stable tree T , we construct an assignment t that satisfies all clauses of C. We
consider an element c = (v, v′, v′′) ∈ C.

Let us first notice that the shortest path according to w3 in G from c.r to r is
(c.r, r). This permits to deduce that for every c ∈ C, (c.r, r) ∈ T . Assume now
that the path from c to r in T includes at least one of the nodes c.x, c.y, or c.z.
Then, by construction of G, to cover nodes c.x, c.y, c.z, c.r, the spanning tree T

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 3. Example of the transformation with a clause c = (v1,, v4, v8)

must use a subset of the edges of the complete graph induced by the set of nodes
{c.x, c.y, c.z, c.r}. This brings us back to the case of Figure 2 where there exists
no stable spanning tree. This contradicts the fact that the path from c to r in T
includes at least one of the three nodes {c.x, c.y, c.z}. Thus, this implies that:

(1) there exists a literal of clause c such that in graph G, the path from c to r in
T includes one of the nodes in {v, v′, v′′}.

(2) (c.y, c.r) ∈ T and (c.y, c.x) ∈ T

Without loss of generality, assume the path from c to r in T includes v. This path
does not include v (otherwise, {c.z, c, v, v, r} would have a weight of 8 whereas
{c.z, c.r, r} would have a weight of 6). In this configuration, node c.z is not stable
in T . Thus, (v, r) ∈ T and (v, v) ∈ T . We now present the assignment t : U →
{true, false}, such that for each variable v ∈ U , t(v) = true if and only if (v, u) ∈ T .
From the previous remark, we deduce that t satisfies all clauses in C.

We now prove that when the set of nodes is partitioned in two (p = 2), there
always exists at least one equilibrium. Before proving that, we give a property of
stable tree T in G.

Lemma 3.2. Let G = (V,E) be a graph and r a node of V . Let P be a partition
of V with 2 elements V1 and V2. Let w be a function on E → N∗2. Let v be a node
of Vi (with i ∈ {1, 2}) such that there exists a shortest path between v and r using
metric wi that only contains nodes in Vi, then every stable tree T in G with metric
wi contains the shortest path between v and r.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Proof. Let pcc = {r, v1, . . . , v`} be a shortest path between v and r in metric
wi, solely composed of nodes of Vi. We prove this lemma by induction on parameter
`.

—If ` = 1, then wi(pcc) = wi(r, v1). Let T be a stable tree such that (r, v1) /∈ T .
As v1 is stable in T , we have:

∀z ∈ ΓG(v1), wi(Tv1→r) ≤ wi((v1, z)) + wi(Tz→r)

As r ∈ ΓG(v1), we have:

wi(Tv1→r) ≤ wi(u, v1) ≤ wi(pcc)

Thus, T connects r to v1 using a shortest path according to metric wi.
—Suppose now that the lemma is true for any j such that 0 < i < `. Let T be a

stable tree for metric wi. By induction hypothesis, T connects u to v`−1 through
a shortest path according to metric wi. As v` is stable in T , we have:

∀z ∈ ΓG(v`), wi(Tv`→r) ≤ wi((v`, z)) + wi(Tz→r)

As v`−1 ∈ ΓG(v`), we have

wi(Tv`→r) ≤ wi((v`−1, v`)) + wi(Tv`−1→r)

Thus, T connects u to v` through a shortest path according to metric wi.

Theorem 3.3. Let G = (V,E) be a graph and r a node of V . Let P be a
partition of V with 2 elements V1 and V2, and such that V1 contains exactly one
node x. Let w be a function on E → N∗2. There always exists a stable tree T in G
for metric w.

Proof. If x = r, we fall back in the known case of the construction of a shortest
path spanning tree with metric w2. In the sequel, we assume that x 6= r. The
theorem is proved by induction on the degree d of x.

—If d = 1, every shortest path tree using metric w2 is a stable tree since x has
exactly one incident edge.

—Suppose now that the theorem is true for any graph where the degree of x is
(strictly) lower than d. Let z1, . . . , zd be the neighbors of x. Let pcci be a shortest
path between x and r including zi according to metric w2. For simplicity, we
assume neighbors are sorted by increasing values of w2(pcci). Let us now consider
the graph G1 that is constructed in the following way:
—V (G1) = V (G) and E(G1) = E(G) \ {(x, z1)}
—∀e ∈ E(G1), w′(e) = w(e)
By induction hypothesis, there exists a stable tree T 1 in G1 according to metric
w′. Suppose that T 1 is not stable in G according to metric w. By definition of
w′ and G1, only x may not be stable. Thus, we have:

w1((x, z1)) + w1(T 1
z1→r) ≤ w1(T 1

x→r) (1)

Consider T that is a copy of T 1 except that the parent of x is z1. Now, x is
stable in T . We now prove that T is stable in G according to metric w. Let

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Y = V ∩ {y : x ∈ T 1
y→r}. First, every node in V \Y are stable. Now consider a

node y ∈ V2 ∩ Y . Let t be the neighbor of y that belong to the path T 1
y→r. Now,

y is stable in G1 for metric w′ (since x 6= y), so we get:

∀s ∈ Γ(y)\{t}, w2(T 1
y→r) ≤ w2(T 1

s→r) + w2((s, y)) (2)

By definition, we have:

w2(Ty→r) = w2(T 1
y→x) + w2((x, z1)) + w2(T 1

z1→r) (3)

The path T 1
z1→r connecting r to z1 and belonging to T 1 is a shortest path ac-

cording to metric w2 since there exists a shortest path from r to w1 according to
metric w2 whose nodes all belong to V2 (see Lemma 3.2). Then, by definition of
pcc1 which is a shortest path from x to r through z1, we have:

w2(T 1
z1→r) + w2((x, z1)) = w2(pcc1) (4)

Combining Equations 3 and 4, we obtain:

w2(Tw→r) = w2(T 1
w→x) + w2(pcc1) (5)

By definition, ∀zi ∈ ΓG(x), we have w2(pcci) ≥ w2(pcc1). Combining the previ-
ous remark and Equation 5 gives:

w2(Ty→r) = w2(T 1
y→x) + w2(pcc1) ≤ w2(T 1

y→x) + w2(pcci) (6)

w2(Ty→r) ≤ w2(T 1
y→x) + w2(T 1

x→r) (7)

w2(Ty→r) ≤ w2(T 1
y→r) (8)

Combining Equations 2 and 8, we deduce that y is stable in tree T for metric w.
Thus, T is stable in G for metric w. This concludes the proof.

Theorem 3.4. Let G = (V,E) be a graph and r a node of V . Let P be a partition
of V with 2 elements V1 and V2, and such that V1 contains α nodes x1, x2, . . . xα.
Let w be a function on E → N∗2. There always exists a stable tree T in G for
metric w.

Proof. Without loss of generality, we assume that r ∈ V2. The theorem is
proved by induction on α. The case when α = 1 corresponds to Theorem 3.3.
Suppose now that the theorem is true for any value (strictly) lower than α.

Let pcc(xi) be the shortest path between xi and r according to metric w2. For
simplicity, nodes x1, . . . , xα are sorted with increasing values of w2(pcc(xi)). We
now consider node x1. By definition, pcc(x1) does not contain any node belonging
to V1. Node x1 has d neighbors in G denoted by z1

1 , . . . , z1
d. Again, we prove by

induction on d that there exists a stable tree T in G for metric w.

—If d = 1, it is sufficient to compute the stable tree T in G ⊂ {x1} using metric w
(there exists such a tree by induction hypothesis). Then, the edge incident to x1

is added to T . Such a tree is stable in G for metric w.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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—Suppose now that the theorem is true for any graph where x1 has degree (strictly)
less than d. Let z1

1 , . . . , z1
d be the neighbors of x1. Let pcci the shortest path

between x1 and r through z1
i according to metric w2. For simplicity, the neighbors

are sorted with increasing values of w2(pcci). Consider now the graph G1 that is
constructed in the following way:
—V (G1) = V (G) and E(G1) = E(G) \ {(x1, z

1
1)}

—∀e ∈ E(G1), w′(e) = w(e)
By induction hypothesis, there exists a stable tree T 1 in G1 according to metric
w′. Suppose T 1 is not stable in G according to metric w. By definition of w′ and
G1, only node x1 may not be stable. Thus:

w1((x1, z
1
1)) +

∑
e∈T 1

z1
1→r

w1(e) ≤
∑

e∈T 1
x1→r

w1(e) (9)

Consider T , that is a copy of T 1 except that the parent of x1 is z1
1 . Now,

x1 is stable in T . We now prove that T is stable in G with metric w. Let
Y = V ∩ {y : x1 ∈ T 1

y→r}. First, all nodes in V \Y are stable. Secondly we focus
on somes nodes y ∈ Y where y ∈ Vi with i ∈ {1, 2}. Let t be the neighbor of y
such that t belongs to path T 1

y→r. Since y is stable in G1 according to metric w′

(x1 6= y), we have:

∀s ∈ Γ(y) \ {t}, wi(T 1
y→r) ≤ wi(T 1

s→r) + wi((s, y)) (10)

Assume that y ∈ V1. We have w1(Ty→r) = w1(T 1
y→x1

)+w1(Tx1→r) and we obtain
w1(Ty→r) < w1(T 1

y→r) by Equation 9. By combining the previous remark and
Equation 10 we can deduce that

∀s ∈ Γ(y), w1(Ty→r) ≤ w1(Ts→r) + w1((s, y))

So, all vertices in Y ∩ V1 are stable in tree T for metric w.
Assume that y ∈ V2. By definition of y, we have:

w2(Ty→r) = w2(T 1
y→x1

) + w2((x1, z
1
1)) + w2(T 1

z1
1→r) (11)

The path T 1
z1
1→r

that connects r to z1
1 belonging to T 1 is a shortest path for metric

w2 since by definition of x1, there exists a shortest path from r to z1
1 according

to metric w2 whose all nodes belong to the same set V2 (see Lemma 3.2). Thus,
by definition of pcc1 which is a shortest path from x1 to r through z1

1 , we have:

w2(T 1
z1
1→r) + w2((x1, z

1
1)) = w2(pcc1) (12)

Combining Equations 11 and 12, we obtain:

w2(Ty→r) = w2(T 1
y→x1

) + w2(pcc1) (13)

By definition ∀zi ∈ ΓG(x), we have w2(pcci) ≥ w2(pcc1). Combining the previous
remark with Equation 13, we obtain:

w2(Ty→r) = w2(T 1
y→x1

) + w(pcc1) ≤ w2(T 1
y→x1

) + w2(pcci) (14)
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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w2(Ty→r) ≤ w2(T 1
y→x1

) + w2(T 1
x1→r) (15)

w2(Ty→r) ≤ w2(T 1
y→r) (16)

Combining Equations 10 and 16, we deduce that y is stable in tree T for metric
w. Thus, T is stable in G for metric w. This concludes the proof.

3.2 Stabilizing algorithm

Our goal in this section is to design distributed algorithms that construct a stable
tree T for a particular metric w. Since the system is distributed, nodes are only
aware of their neighborhood.

We assume that each node i is aware of Γ(i), the set of its neighbors (excluding
i itself). Similarly, each node i is aware of the cost of each of its adjacent edges
e = (i, j) : j ∈ Γ(i). The cost of an edge e is a vector

ω(e) = (ω1(e), ω2(e), ω3(e), . . . , ωp(e))

where ωk(e) denotes the cost of the edge e for a node of color k. Note that by
notation all local variables are represented by greek letters and that all global
variables is represented by normal letters. For example, in previous section, w is
used by denoted the function of edge cost. Now ω is the cost of an edge for an edge
e.

Also, i maintains two variables: π(i) and λ(i) (commonly called the parent and
the label or distance variables). By definition, for the root node r, π(r) is non-
existent. Every other node picks a neighboring node as its parent (i.e. the domain
of the π(i) variable is Γ(i). The label for each node is a vector

λ(i) = (λ1(i), λ2(i), λ3(i), . . . , λp(i))

where λk(i) denotes the distance for a node of the kth color from node i to the root.
By definition, λ(r) = (0, 0, . . . , 0).

In networks with selfish peers, the costs influencing decision-making are often
of commercial nature, and are thus kept private to the participating nodes. To
accommodate this feature in our framework, we assume that for each node, the
value of each component of λ and the weights of the edges incident on it ω will
be stored in an encrypted form. All the same color nodes share a common secret
key. Thus, no node can access the component of the costs of a different color from
a neighboring node or link to decide its course of action. However every node can
securely extract the component of the variables corresponding to its own color. This
authentication mechanism preserves fairness of the game and prevents possible foul
play by deliberately tampering the variables of the nodes of opposing color. We
will designate the encrypted version of a variable x by x̂. For the sake of simplicity,
we assume that 1

x̂ + ŷ = x̂ + y

We first propose a greedy algorithm for systems that contain nodes of two dif-
ferent colors 1 and 2 (i.e. p = 2): each node i of color k will select a parent π(i)

1Homomorphic encryptions like Pallier’s scheme [17] satisfy this property.
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that minimizes λk(i), regardless of what happens to λj(i) (j 6= k). For the sake of
brevity, we define the following:

Conditions

LabelOK(i) ≡ dλ(i) = λ̂(π(i)) + ̂ω(i, π(i))
ParentOK(i)i∈Vk ≡ λk(π(i)) + ωk(i, p(i)) = min{λk(j) + ωk(i, j) : j ∈ Γ(i)}

Actions

FixLabel(i) ≡ dλ(i) := λ̂(π(i)) + ̂ω(i, π(i))
FixParent(i)i∈Vk ≡ select π(i): λk(π(i)) + ωk(i, π(i)) = min{λk(j) + ωk(i, j) : j ∈ Γ(i)}

The proposed algorithm (denoted afterward as Algorithm Greedy) has a two
guarded actions. The root r does not execute any action. The other nodes execute
local adjustment of their labels (to make it consistent with their parent’s) and
of their parent neighbor (in order to locally minimize the cost of the metric for
the node color). Also, the label adjustment action has higher priority than the
parent adjustment action. The actions for node i 6= r are described in the following
algorithm:

Program for process i
{ Fix label }
¬ LabelOK(i) −→ FixLabel(i);
{ Fix parent }
LabelOK(i) ∧ ¬ ParentOK(i) −→ FixParent(i);

3.3 Proof of correctness

Theorem 3.5 Correctness. Let G = (V,E) be a graph and r a node of V .
Let P be a partition of V with p elements. Let w be a function on E → N∗p. If
no node has enabled rules, the structure induced by the π variables of each node
executing Algorithm Greedy induces a stable tree T rooted at r for metric w.

Proof. Let us first prove that the induced structure is a tree. Due to the fact
that the π variables are always pointing to a neighbor (for every node except r),
the structure is either a tree or a tree with disconnected circuits. Assume for the
purpose of contradiction that there exists at lest one circuit. As w only has costs in
N∗, all edge costs are (strictly) positive. As no rule is enabled, this implies that all
labels are OK, and thus each label is strictly greater as the label of the parent. Due
to the well founded property of the “lower than” relation on (positive) integers, the
existence of such a circuit is impossible. Hence, the induced structure is a tree.

Now, we prove that the obtained tree T is stable for metric w. As no rules are
enabled, this means that the λ variables are all properly computed from the local
metric information ω, that can not be corrupted. By induction on the distance (in
number of hops) to the root r, this means that the λ variables contain the correct
values for the cost of every path towards to root according to metric w (that is
known from the ω to every node). Now, the parent changing rules are also not
enabled. This implies that the π variables are actually selecting the best neighbor
according to the color k of node i ∈ Vk. This best neighbor being selected according
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to the metric w, we conclude that the tree T that is induced by the π variables is
a stable tree for metric w.

When there exists a single class of nodes in the system, the problem reduces to
the problem of constructing a shortest path tree to a particular node r. There exist
several self-stabilizing solutions to this problem, among which [7; 12]. In the case
there are exactly two classes of nodes, what we guarantee for Algorithm Greedy is
weak stabilization [8]. Weak stabilization guarantees that starting from an arbitrary
configuration, there exists at least one computation that leads the system to an
equilibrium configuration. Weak stabilization is possible when a central scheduler
(or daemon) randomly picks a process with an eligible guard, and schedules its
action.

Lemma 3.6. Let G = (V,E) be a graph and r a node of V . Let P be a partition of
V with 2 elements V1 and V2, and such that V1 contains α nodes x1, x2, . . . xα. Let
w be a function on E → N∗2. Starting from a configuration where the π variables
induce a single spanning tree, there exists an execution of algorithm Greedy that
reaches a terminal configuration.

Proof. Assume we start from a configuration where the π variables of all nodes
induce a single spanning tree. By the hypothesis that p = 2, we know there exists
at least one stable tree T . Now consider the execution in which all nodes that have
their label fixing rule enabled execute it, and that nodes that have their parent fixing
rule don’t execute it. Since the π variables induce a tree, only a fixed number of
label fixing rules can be executed. If in this configuration, no node has a rule to
execute, the configuration is terminal. Otherwise, this means that there exists at
least one node that is willing to change its parent. When one node changes its
parent, there exists an execution in which all nodes in its subtree update their label
and no other parent fixing rule is executed. Using this scheme, we always guarantee
that a single tree rooted at r induced by the π variables exists in the system.

Now we mimic the construction of the stable tree T in the proofs of Theorem 3.3
and 3.4, reasoning by induction on the number of nodes in V1, and then by induction
on the degree of each node in V1. Anytime an edge is removed then replaced
to move toward a stable tree, this correspond to a parent adjustment at some
node in our algorithm. Since all label adjustments are made between any two
parent adjustments, we conclude that the system eventually reaches a stable tree
T considering the π variables. Now, when the tree induced by th eπ variables is
stable, we consider the execution in which all labels are fixed. By the acyclic nature
of the tree, there is a finite number of such moves.

Lemma 3.7. Let G = (V,E) be a graph and r a node of V . Let P be a partition
of V with 2 elements V1 and V2, and such that V1 contains α nodes x1, x2, . . . xα.
Let w be a function on E → N∗2. Starting from an arbitrary configuration, there
exists an execution of Algorithm Greedy that reaches a configuration where the π
variables induce a single spanning tree.

Proof. In an arbitrary initial configuration, the π variables may induce either
a tree, or a tree and a set of circuits. We consider the following execution: first all
labels of nodes that are in the tree component and that need to be fixed are fixed
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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by executing the label adjustment rule. Then, for every circuit, there exists at least
one node that can adjust its label (due to the well foundedness of the “less than”
relation on positive integers). Then, it turns out that for every cycle, there exists
an execution that makes the label grow unboundedly. We consider the execution
that reaches a configuration where every node in a circuit has a label so high that it
is greater than the highest label of any node in the tree component plus the weight
of the edge for the node color according to metric w. Also, there is at least one
such circuit such that at least one node of the circuit is also a neighbor of one node
in the tree component. Now, consider one node i that is a neighbor of a node in
the tree component; this node may have to execute its label adjustment rule (in
case it is needed), then it may execute (immediately after) its parent change rule.
In this execution, we also consider that after this parent change move, all nodes
that were belonging to i circuit execute their label adjustment rule if needed. This
execution leads to a configuration where there is one less circuit component. The
process can be repeated, and by induction on the number of initial circuits, the
result is obtained.

Theorem 3.8 Weak Stabilization. Let G = (V,E) be a graph and r a node
of V . Let P be a partition of V with 2 elements V1 and V2, and such that V1

contains α nodes x1, x2, . . . xα. Let w be a function on E → N∗2. Algorithm Greedy
is weakly self-stabilizing for the stable tree construction problem according to metric
w.

Proof. Starting from an arbitrary initial configuration, there exists an execution
that reaches a configuration where a tree is induced by the π variables (Lemma 3.7).
From such a configuration, there exists an execution that reaches a terminal config-
uration (Lemma 3.6). Every terminal configuration denotes a stable tree according
to metric w (Theorem 3.5).

Weak stabilization is in contrast with traditional stabilization (call it strong sta-
bilization that allows the daemon to pick an arbitrary process with an enabled
guard, and schedules its action. Strong stabilization requires that all computations
starting from an arbitrary configuration lead the system to an equilibrium configu-
ration. The execution that is presented in Figure 4 shows that the Greedy protocol
is not self-stabilizing, as there exists some executions that never terminate, even
considering the central daemon model.

Of course, our (weakly) self-stabilizing solution does not precule the existence of
(strongly) self-stabilizing solutions, but proving the existence of such solution is an
open question.

3.4 Alternative strategies

If there exists a set of strategies (synonymous with algorithms) with the property
that no process can lower its cost by changing its strategy while the other processes
keep their strategies unchanged, then that set of strategies and the corresponding
costs constitute the Nash Equilibrium.

To prove that the stable configuration reflects a Nash equilibrium, we need to
consider various strategies that can be adopted by the processes to lower their costs.
The Greedy algorithm we proposed uses a greedy strategy, (call it Strategy A) but
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(a) (b) (c)

(d) (e)

Fig. 4. Example execution with the sequential (a.k.a. central) daemon. Configurations (a) and
(e) are symmetric, so repeating the process leads to Configuration (a) and the system is not
stabilizing.

it is, by no means, the only possible strategy. Let us examine a second strategy
for cost minimization by the individual processes. It is an altruistic strategy : each
node picks a parent that lowers the communication cost of the nodes of the opposite
color (call it Strategy B). As a result, processes in V1 will help lower the cost of the
processes in V2, and vice versa. To implement Strategy B, we modify the definition
of ParentOK and FixParent as follows (considering λ(i) denotes the label for the
other color than i, and that ω(i, k) denotes the weight for the other color than i) 2:

ParentOK(i) ≡ π(i) = j :

λ(j) + ω(i, j) = min{λ(k) + ω(i, k) : k ∈ Γ(i)}
FixParent(i) ≡ select π(i) := j :

λ(j) + ω(i, j) = min{λ(k) + ω(i, k) : k ∈ Γ(i)}

Once these are appropriately defined, the main algorithm remains unchanged.
Using the same line of arguments, we can show that this algorithm also stabilizes
the system, but to a different configuration. This leads to the following observation:

Observation 1. Using Strategy B, the system of processes (weakly) stabilizes

2This apparently weakens the encryption mechanism since it requires x > y ⇒ x̂ > ŷ. However,
using the altruistic protocol, processes in V1 lower their cost by helping the processes in V2 and
vice versa, and this is more conducive to building a trust relationship. So we will disregard the
encryption symbol.
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to an equilibrium configuration, and the edges connecting the processes with their
parents form a spanning tree.

The observation trivially follows from Theorem 3.8 if we swap the costs of the
nodes in V1 and V2 for each edge.
The Cost of Equilibrium. A natural component of such an exercise is to analyze
the quality of the equilibrium configuration: How bad is the cost of this configu-
ration in comparison with the “optimal” configuration? For the nodes of a given
color, define the cost of a configuration as the sum of weights of all the tree edges for
that color. Define the optimal cost as the cost of the tree when all nodes are of the
same color. The issue is: By what extent will it increase if some of the nodes belong
to a different color? Here is an upper bound. Let emax = max{ω(e), ω(e) : e ∈ E}
and emin = min{ω(e), ω(e) : e ∈ E}. Then the following theorem holds.

Theorem 3.9. For any set of processes of a given color, the ratio of the cost
of the equilibrium configuration to the cost of the optimal configuration is bounded
from above by emax

emin
.

Proof. A tree with N nodes has (N − 1) edges, so the cost of the optimal con-
figuration has a lower bound of (N − 1).emin. To determine the maximum possible
weight of the tree in an equilibrium configuration under any of the algorithms A or
B (or a mix of the two), think of an adversary that can switch the color of zero or
more processes so that each node chooses the edge with largest weight as its link
to its parent node. The cost of the resulting configuration is bounded from above
by (N − 1).emax. The ratio of the two costs will not exceed

emax

emin
.

This is a loose upper bound. In general, when the number of processes in V1 is
much larger than the number of processes in V2, Strategy A will lead to a lower cost
for the processes in V1, and Strategy B will lead to a lower cost for the processes
in V2. This is quite intuitive, since in Strategy A, each step by the majority (i.e.
in V1) processes helps lower their own cost at the expense of the competitors’ cost,
whereas in Strategy B, each step by the majority processes lowers the cost of the
competitors at the expense of their own cost.

Simulations support this observation, although the costs do not necessarily de-
crease (or increase) monotonically with the number of processes switching strate-
gies. The topology and the cost distribution play deciding roles. That said, based
on the knowledge acquired during the progress of the communication, processes
may be tempted to use different strategies. However, we will demonstrate that the
system is robust enough to guarantee convergence to a Nash equilibrium, where
all processes choose Strategy A, and no process can unilaterally lower its cost of
communication with the root node.

Observation 2. The cost of the processes in V1 (resp. V2) will be minimum
when they use Strategy A while the processes in V2 (resp. V1) use strategy B.

Viewed from the perspective of the processes in V1, the validity of the above
observation is based on the fact that that every node picks the best edge for the
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processes in V1, so the algorithm reduces to the classical stabilizing shortest path
algorithm (e.g. [12; 7]) for the nodes in V1.

Theorem 3.10. For a given graph G = (V,E) with a given composition of the
processes in V , and the set of strategies (A,B) the equilibrium configuration is
unique, and it reflects the Nash equilibrium.

Proof. Assume that using whatever strategy the processes choose, the system
of processes stabilizes to some configuration that determines the payoffs for the
processes in the V1 and V2 sets. Now consider three different cases:

(1) Assume that all processes use Strategy B. Observe that one or more processes
of a certain group will switch to Strategy A, since this will lower their cost
(Theorem 3). However the other group might apprehend this, they will also
switch from Strategy B to Strategy A.

(2) Assume that the processes in V1 use Strategy B, while the processes in V2 use
Strategy A. However, altruism does not pay off unless everyone is altruistic.
Since the processes in V1 do not know what strategy the processes in V2 are
using, they will switch to Strategy A, and their cost will go down.

(3) Assume that all processes use Strategy A. Now no process will be motivated
to switch to Strategy B, since such a switch will imply lowering the cost of the
other group even if it increases the cost of its own group. Thus this is a stable
configuration.

Thus, regardless of the initial strategies chosen by the processes in V1 and V2, all
processes will eventually switch to Strategy A, and regardless of the initial values
of L and p, the system will stabilize in a bounded number of steps. Furthermore,
since no process can unilaterally lower its cost by switching to a different strategy,
the stable configuration will reflect a Nash equilibrium.

Note. Both strategies (A and B) can be further optimized as follows. Consider
A first. There may be cases in which a node i ∈ V1 finds multiple neighbors j
satisfying the condition of being a “best parent”. Instead of arbitrarily choosing
one such node, i will choose a π(i) = j for which the cost of the opposite color
component of λ(i) is the lowest. A similar step can be taken by the nodes in V2

too. The interesting aspect of this exercise is that not only does the network state

stabilize to a desirable configuration, but the strategies stabilize too, in as much
as regardless of the starting strategies, all processes end up using the same final
strategy. This does not rule out the invention of new strategies beyond what has
been considered for this exercise.

4. CONCLUSION

Selfish stabilization reduces to classical stabilization when the private goals of the
constituent processes do not conflict. The following issues are relevant about the
approach taken in this paper:

The first is the separation of cooperation and competition. Assume that pro-
cesses first cooperate to form a spanning tree, then try to optimize it to improve
their individual payoffs. In presence of arbitrary initializations, failures, and selfish
motives, such segregation of actions is difficult to implement.
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The uniqueness of the equilibrium point is another significant issue. For the
current problem, under each strategy, the system of processes reaches a unique
equilibrium point, and the resulting Nash equilibrium is also unique. If this were
not true, then there could be multiple trees, possibly of different costs, where the
system of processes could stabilize to, the choice being determined by the schedule
and the relative speeds of actions. However, once reaching an equilibrium point,
an unhappy (or ambitious) process could deliberately introduce a perturbation (by
corrupting a local variable) to possibly reach a different equilibrium point with a
better payoff, and jeopardize the common goal. There is no guarantee that this will
happen. But the uniqueness of the equilibrium point will prevent the constituent
processes from using deliberate perturbation as a strategy to improve payoff, or at
least probe the possibility of a better payoff.

Non-compliance to global mandates can have an overall negative impact on the
payoffs when the Nash equilibrium corresponds to an inferior equilibrium. One
approach can be the development of a payment scheme to reward compliance. An-
other approach involves detecting cheaters and appropriately penalizing them to
force compliance. Quantification of these issues is an open problem, and is a topic
of future research.

The paradigm of selfish stabilization can easily be extended in several ways. First,
it can easily be extended to systems involving more than two competing groups,
in the extreme case, each process caring for itself and no one else. Second, the
metric used here (simple additive metric) could be replaced by any strictly mono-
tonic metric, such as those presented in [9; 7]. This would extend those previous
results on stabilizing generic routing, since our scheme allows the possibility to use
different metrics for different groups of players. This would also subsume previous
approaches that investigated a specific metric [4].
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