Computational techniques for boosting verification of deep learning algorithms

Julien Girard-Satabin (CEA LIST), Guillaume Charpiat (INRIA TAU), Zakaria Chihani (CEA LIST), Marc Schoenauer (INRIA TAU)
24 septembre 2019
Outline

Reminder on deep learning

Necessity to certify deep neural networks and challenges
 Glory and faults of deep learning software
 Challenges of deep neural networks verification

Tricks of the trade
 Properties of interest
 Encodings
 Techniques

Some possible enhancements
Reminder on deep learning
Deep neural networks: what they are

A neural network is a directed, acyclic, weighted, graph (within our verifications problem)

Weights are learned through a learning procedure which we will not detail much. Key point: constrained optimization problem to minimize a cost function (that’s where the “deep” comes from)
Theoretical justifications: For an activation function ϕ that is non-constant, continuous and bounded, a neural network $f(x) = \phi(w^T x + b)$ can approximate any continuous function on compacts of \mathbb{R}^n (Cybenko, 1989, universal approximation theorem, and follow up work for width-bounded DNN Lu et al. 2017).

In practice, achieve good results on non-structured data, lot of tools to replicate and deploy them, hype since the convergence between GPUs and vast availability of data.
• conceptually simple programs: no loops, no explicit conditionals, just a bunch of additions and multiplications
• modern architectures have about billions of weights
• activations functions are important
Deep neural networks: activations functions

- gives the DNN its expressivity (non-linear functions such as XOR)
- usually occur after some linear operations
- some popular ones: Sigmoid, Rectified Linear Unit: $ReLU(x) = \max(x, 0)$
Necessity to certify deep neural networks and challenges
Adversarial examples (Szegedy et al. 2013)

Innocuous to humans, transferable between datasets, not systematic detection method
Model theft (Tramèr et al. 2018)
Dataset poisoning (Shafahi et al. 2018)
A critical system is a system whose failure may cause physical harm, economical losses or damage the environment
Goal: guarantee that the system respects a safety specification

\mathcal{P}: an autonomous car will not run over pedestrians
Formal methods history

• Studied in the academics since 1930 (λ-calculus, Church, Turing)
• Different techniques: abstract interpretation (Cousot and Cousot 1977), SAT/SMT (Davis and Putman 1960; Tinelli 2009), deductive verification (Coquand 1989), etc.
• Used in industrial settings such as aerospace, automated transports, energy to formally certify
Key points

Work on domains \(\mathcal{D} \) of inputs (global properties)

Answer is sound, formally guaranteed by mathematical logic
Abstract interpretation\(^1\), symbolic execution

1. Cousot et Cousot, 1977, courtesy to Antoine Minet for the figure
Explicit enumeration of variables instantiations with various search strategies and algorithms (backtracking, clause-driven learning, . . .) \rightarrow exhaustive and sound but costly
What prevents us to use formal methods directly on learned programs?
Case study: a self-driving car perception unit

Dream property P:
the autonomous car never run over pedestrians

Lack of formal definition on inputs prevents from formulating interesting safety properties.

Deep learning verification techniques
24 septembre 2019
Dream property P: *the autonomous car never run over pedestrians*
Case study: a self-driving car perception unit

Dream property \mathcal{P}: the autonomous car never run over pedestrians

no formal characterization of what a pedestrian is!
Dream property \mathcal{P}: *the autonomous car never run over pedestrians*

no *formal characterization* of what a pedestrian is!

Lack of formal definition on inputs prevents from formulating interesting safety properties
It’s hard to use formal methods on deep learning

<table>
<thead>
<tr>
<th>Classical software</th>
<th>Machine learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit control flow</td>
<td>Generated control flow</td>
</tr>
<tr>
<td>Explicit specifications</td>
<td>Data-driven specifications (lack of generality)</td>
</tr>
<tr>
<td>Abstractions and well known concepts</td>
<td>Very few abstractions and reusability</td>
</tr>
<tr>
<td>Documented and understood vulnerabilities</td>
<td>Flaws without systematic characterization</td>
</tr>
</tbody>
</table>

Some differences between classical software and machine learning
Another difficulty: performance of verification tools

2 cases per ReLU node for the solvers
Several million ReLU nodes $\Rightarrow 2^{O(10^6)}$ case splits

Combinatory explosion (if done naively)
Take home message

1. A combinatorial problem
2. A specification problem
Tricks of the trade
Local properties: adversarial robustness

For a given input x, a classification function f, an adversarial perturbation δ:

find δ satisfying classifier misclassification

such that perturbation stays below a certain threshold
Local properties: adversarial robustness

For a *given* input x, a classification function f, an adversarial perturbation δ:

find delta satisfying

\[f(x) \neq f(x + \delta) \]

such that

\[\|\delta\|_p \leq \varepsilon \]
If the intruder is distant and is significantly slower than the ownship, the score of a COC advisory will always be below a certain fixed threshold.

Bounds: $\rho \geq 55947.691$, $v_{own} \geq 1145$, $v_{int} \leq 60$
NN specifics functions (1)

SMT

\[
\text{define} \quad \text{fun} \quad \text{relu} \ (\text{Int}) \to \text{Int} \quad \text{ite} \ (\geq x \ 0) \ x \ 0 \\
\text{define} \quad \text{fun} \quad \text{max} \ (\text{Int} \ \text{Int}) \to \text{Int} \quad (+ \ y \ \text{relu}((-x \ y)))
\]

- \(\hat{z} = \text{Relu}(z) = \text{max}(z,0) \)
- \(u \): upper bound, \(l \): lower bound
- overapproximation:
 \[
 \hat{z} \geq 0, \hat{z} \geq z, -uz + (u-l)\hat{z} \leq -ul
 \]
 (Ehlers et al., 2017)

MILP

- \(\hat{z} = \text{Relu}(z) \)
- \(\hat{z} \leq zl(1-a) \land (\hat{z} \geq z) \land (\hat{z} \leq ua) \land (\hat{z} \geq 0) \land (a \in (0,1)) \) (Tjeng et al., 2019)
For abstract interpretation techniques (Vechev’s team), abstract transformers for ReLus, Linear, Conv, Sigmoid, Tanh, MaxPool... (Mirman et al., 2018, Singh et al., 2019) over the zonotope and hybrid zonotope domain (Goubault et Putot, 2008)

- For a matrix M:
 $$T_f^\#(h) = \langle M \cdot h_C, M \cdot h_B, M \cdot h_E \rangle$$
 Includes sum, scalar multiplication, convolutions...

- For ReLUs:
 - if $u \leq 0$, propagate 0
 - if $l \geq 0$, propagate the value
 - if phase is not clear, add a noise symbol and propagate linear approximation (linear transformer not accurate for very deep networks)
Lower bound on adversarial robustness (Weng et al., 2018, Singh et al., 2018, Boopathy et al., 2019)

- Basic idea: propagation of constraints in the network
- Constraints: $A \ast W + B$ for IBM
- $\delta < \varepsilon$ for ZTH

Illustration of workflow from Mirman et al., 2018

Other approaches such as symbolic propagation (Wang et al. 2018, Yang et al. 2019)

Improve adversarial robustness on 100 samples from CIFAR-10 from 0 to 80%, $\varepsilon = 8/255$, 3 hidden layers, convolutional network

Local properties
Lazy evaluation of ReLUs (Katz et al. 2017, Katz et al. 2019)

Simplex with ReLUs
New class of variables: ReLUs pairs: \(b = \text{ReLU}(a) \)
If \(a \geq 0 \) then \(a = b \), else \(b = 0 \)

1. start for an initial set of constraints \(S \) on variables \(v_i \in \mathcal{V} \)
2. if \(v_i \) violates a constraint \(s_i \in S \), add a constraint \(s_j \) on \(v_j, j \neq i \) that solve \(s_i \) (pivot)
3. if it is not possible to add \(s_j \), do a case split
4. repeat until convergence (SAT, UNSAT, TIMEOUT)

Exact verification of several *global properties* on a ACAS-Xu implementation

MILP : progressive computation of tighter bounds and presolving using basic domain knowledge

Combine MILP with abstract interpretation to compute tighter bounds :
\[fp\left(\frac{u}{u-l}\right)z + fp\left(-\frac{ul}{2(u-l)}\right) + fp\left(-\frac{ul}{2(u-l)}\right) \cdot \varepsilon_{new} \] (Singh et al.)

Search strategies : solve first neurons with high weight and high \(u - l \)

Alternatively, linear relaxations with LP (dual formulation)
Some possible enhancements
• Jointly constrain groups of ReLUs instead of linearising them independently

• Start from backward reasoning then propagates again: bound refinement

• inputs dependency, such as pixels correlation

• add another metric using the learning dataset

• use verification to output a class of counterexample

• new classification paradigm: activated ReLUs

• pruning networks to enhance verification

• ML can help too (active learning, learning to solve SMT Formula)
New properties to verify?

One big challenge unaddressed here: property formulation
New properties to verify?

One big challenge unaddressed here: property formulation

To Be Continued
Questions ?

Questions ? :)

Deep learning verification techniques
24 septembre 2019