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Abstract SMTCoq is a plugin for the Coq interactive theorem prover to work in
conjunction with automated theorem provers based on Boolean Satisfiability (SAT)
and Satisfiability Modulo Theories (SMT), in an efficient and expressive way. As
such, it allows one to formally establish, in a proof assistant, mathematical results
relying on large combinatorial properties that require automatic Boolean reasoning.
To this end, the huge SAT proofs coming from such problems can be safely checked
in Coq and combined with standard mathematical Coq developments in a generic
and modular way, for instance to obtain a formal proof of the Erdős Discrepancy
Conjecture.

To achieve this objective with the same degree of safety as Coq itself, SMTCoq
communicates with SAT and SMT solvers that, in addition to a yes/no answer, can
output traces of their internal proof search. The heart of SMTCoq is thus a certified,
efficient and modular checker for such traces expressed in a format that can encom-
pass most aspects of SMT reasoning. Preprocessors - that need not be certified -
for proof traces coming from the state-of-the-art SMT solvers CVC4 and veriT and
SAT solvers zChaff and Glucose are implemented. Coq can thus work in conjunc-
tion with widely used provers.

From a proof assistant perspective, SMTCoq also provides a mechanism to let
Coq users enjoy automation provided by external provers.
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1 Introduction

Mechanization of mathematical reasoning can be seen as starting from two some-
what opposite applications [Mac95].

On the one hand, interactive theorem provers (also known as proof assis-
tants) aim at checking (even complex) mathematical proofs with great confi-
dence. Theorems and proofs should be stated and written interactively by math-
ematicians, with the help of the system to deduce facts, discharge automatically
trivial sub-goals, and check the actual proof. To achieve confidence, these sys-
tems rely on a kernel that is a piece of code, as small as possible, implement-
ing a proof checker for a well-defined logic [H+96]. Among the most success-
ful current interactive theorem provers, one can cite the HOL family [Gor00]
(HOL4, HOL Light, Isabelle/HOL), the type-theoretical family (Agda [Nor09],
Coq [HH14], Lean [dMKA+15], Matita [ARCT11], . . . ) and many other systems
such as PVS [ORS92], Mizar [BBG+15] or Nuprl [ACE+00]. Interactive theo-
rem provers often come with high-level tactics that translate the interaction with
the user into low-level proofs that are checked by the kernel. These tactics offer
the possibility of having safe automation by performing complex reasoning while
relying on the kernel. Most of the time, such tactics are dedicated decision pro-
cedures [GM05, Bes06]: they can automatically solve problems that belong to a
recognized fragment of a logic.

On the other hand, automated theorem provers aim at finding proofs fully au-
tomatically. Theorems should be stated in a logic accepted by the system which
may, in return, prove it, give a counter-example, or fail, if the problem falls into an
undecidable fragment or the proof search exceeds some heuristic limit. While the
algorithms are shown to be correct on paper, actual implementations involve fast
automatic proof searches and may thus contain bugs [BB09]. They are very pow-
erful tools in proving automatically generated goals, for instance in the context of
proof of programs [FP13, SHK+16]. More recently they have been used to settle
combinatorial problems such as the Erdős Discrepancy Conjecture (for discrepancy
up to 3) [KL15] or the Boolean Pythagorean Triples problem [HKM16]. Currently,
the most two successful approaches rely on satisfiability [BHvMW09], in partic-
ular with Conflict-Driven Clause Learning SAT [SLM09] and SMT (Satisfiabil-
ity Modulo Theories) provers (zChaff [FMM07], CVC4 [BCD+11], Z3 [dMB08],
veriT [BODF09], . . . ), and saturation-based resolution and superposition [BG98]
with first-order provers (SPASS [WDF+09], Vampire [RV02], E [Sch13], . . . ).

The idea to deploy both human interaction and expressive automation in a sin-
gle tool started in the ’90s. One can in particular cite NQTHM and its successor
ACL2 [KM96], which implements an interactive prover on top of a powerful au-
tomated prover. Confidence was achieved by implementing ACL2 in ACL2 itself,
with the possibility of establishing properties on the system.

Subsequently, the independent success of both interactive and automated provers
led again to the need for reconciling both worlds. A first approach, called the autar-
kic approach, close to what has been done for ACL2, was to implement and prove
correct automatic provers inside proof assistants [Les11, Hur05]. This approach for-
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mally establishes the correctness of the underlying algorithms, but has the major
drawback of fixing an implementation that would be very difficult to enhance with-
out re-doing most of the proof work. More recently, the skeptical approach makes
use of external solvers that, in addition to a yes/no answer, can output a certificate,
that is to say the arguments underlying the proof they found, that allows proof recon-
struction in the proof assistants [BW10, PB10, BKPU16, AFG+11]. This approach
actually scales since it allows the use of state-of-the-art external solvers, which
may evolve independently. Moreover, proof checking is faster and easier rather than
proof search.

The skeptical approach has had a major success with the Isabelle/HOL sledge-
hammer tactic [PB10], that employs multiple external solvers in parallel and recon-
structs an Isabelle/HOL proof script based in particular on autarkic solvers. It allows
users of this interactive prover to sketch the interesting part of mathematical proofs
(induction, intermediate lemmas) and leave the remaining automatic. This idea has
been recently ported to the Coq proof assistant [BKPU16].

In this chapter, we present SMTCoq1 [AFG+11, EKK+16, EMT+17], a Coq
plugin to interact with SAT and SMT external solvers via certificates. The objective
is to provide a generic and efficient proof checker for automated provers, with the
same degree of confidence as Coq itself. This tool can be used to take advantage
of automation in Coq (Sec. 4.3). Care has also been taken to ensure efficiency of
proof checking (Sec. 3), which allows for the certification of big certificates that
arise when proving large combinatorial problems (Sec. 4.1 and 4.2). We start by
explaining the kind of problems that SMTCoq handles (Sec. 2).

2 The Satisfiability and Satisfiability Modulo Theories problems

SAT solvers are automated provers to decide the satisfiability of (quantifier-free)
Boolean formulas. They rely on an efficient exploration of the possible models
of such formulas. By nature, they are powerful tools to solve combinatorial prob-
lems [KL15, HKM16].

On top of them, SMT solvers (standing for Satisfiability Modulo Theory solvers)
automatically determine whether first-order formulas living in a combination of the-
ories are satisfiable. Theories often include equality, arithmetic over various do-
mains (integers, rationals, reals), and representation of data-structures (algebraic
data-structures, arrays, bit vectors, . . . ). SMT solvers try to satisfy SMT formulas by
the interaction of a SAT solver with theory reasoners (see [NOT06] for a detailed ex-
planation), with the possibility to instantiate quantified hypotheses [dMB07, Bar16],
making the logic very expressive.

1 SMTCoq is available at https://smtcoq.github.io.
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2.1 Examples

Let us illustrate the kind of problems SAT and SMT can be used for on the combi-
natorial example of the Erdős Discrepancy Conjecture.

Conjecture 1 (Erdős Discrepancy Conjecture). For any infinite sequence 〈x1,x2, . . .〉
of ±1 integers and any integer C, there exist integers k and d such that∣∣∣∣∣ k

∑
i=1

xi×d

∣∣∣∣∣>C

To prove this conjecture for a particular C0, one has to find a length l of sequences
such that the formula

∀〈x1,x2, . . . ,xl〉,∀k,∀d,

∣∣∣∣∣ k

∑
i=1

xi×d

∣∣∣∣∣6C0

is unsatisfiable. Konev and Lisitsa proposed a non trivial encoding of this prob-
lem into SAT, allowing to prove the conjecture up to C = 3 with modern SAT
solvers [KL15]. More naively, the problem can be easily encoded into SMT using
the theory of Linear Integer Arithmetic.

Example 1. For l = 6, the formula can be encoded in SMT by the conjunction of:

• (x1 =−1∨ x1 = 1)∧·· ·∧ (x6 =−1∨ x6 = 1) (domain of the sequence)
• (−C 6 x1 + x2 6C)∧·· ·∧ (−C 6 x1 + x2 + x3 + x4 + x5 + x6 6C)

(sums for d = 1)
• (−C 6 x2 + x4 6C)∧ (−C 6 x2 + x4 + x6 6C) (sums for d = 2)
• (−C 6 x3 + x6 6C) (sum for d = 3)

Most SMT solvers supporting integer arithmetic are able to prove the conjecture
for C0 = 1 by choosing the encoding for l = 12.

Theorem 1. Any sequence of length at least 12 has discrepancy at least 2.

The proof of such a theorem relies on (a) an encoding of the original problem
into a SMT formula, encoding which must be automatically generated for C > 2
since the formula becomes very large and (b) an automatic proof from a SAT or
SMT solver. To increase confidence, one can formally establish such theorems in
a proof assistant by (a) proving the correctness of the encoding and its generator
and (b) proving the correctness of the SMT answer, using the autarkic or skeptical
approach.

SMTCoq is, in particular, a way to formally establish (b) for the Erdős Discrep-
ancy Conjecture, based on the skeptical approach. In comparison to similar work in
checking these proofs in Coq [CS17], there was no need to implement and prove
correct a dedicated checker: SMTCoq is generic and efficient enough to encompass
such proofs.
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The expressivity of SMTCoq makes it possible to formally and efficiently check
SAT and SMT proofs coming from any kind of problem. Indeed, SAT and in par-
ticular SMT are very expressive and can encode problems coming from multiple
areas of mathematics and computer science. We illustrate this aspect by two exam-
ples coming from program testing, where one has to generate inputs satisfying the
preconditions of a program (Example 2), and program proving, where one has to
establish properties for all the possible runs of a program (Example 3).

Example 2. The problem of automatically generating sorted integer arrays of a given
length is a satisfiability problem in the combination of the theories of arrays and
integer arithmetic. For instance, for length 4, it can be formulated as such: find a
value for the variable a (belonging to the sort of arrays) such that:

• length a = 4
• a[0] 6 a[1] ∧ a[1] 6 a[2] ∧ a[2] 6 a[3]

Example 3. To prove the correctness of the mergesort algorithm on arrays, one
should be able to establish2 that if:

• ∀ k1 6 k2 < k, a[k1] 6 a[k2]
• ∀ k1 < k, a[k1] 6 x
• a[k] = x

then:

• ∀ l1 6 l2 6 k, a[l1] 6 a[l2]

where a is an array and k1, k2, k and x are integers. The validity of this formula
can be encoded as the unsatisfiabilty of the negation of the conclusion under the
same hypotheses, which corresponds to the following SMT problem: check that the
conjunction of

1. ∀ k1 6 k2 < k, a[k1] 6 a[k2]
2. ∀ k1 < k, a[k1] 6 x
3. a[k] = x
4. l1 6 l2 6 k ∧ a[l1] > a[l2]

is unsatisfiable, that is to say that there is no concrete instance for the variables a,
k, l1 and l2 that satisfy the four formulas.

2.2 SAT and SMT proof evidence

SMTCoq considers SMT solvers as black boxes that input a SMT problem and out-
put evidence of the satisfiability or unsatisfiability of the problem (or nothing or a

2 This corresponds to proving the invariant of the merge loop stating that the array is sorted up to
a certain point.
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partial evidence if it was not able to solve it). The input format has been standard-
ized in the SMT-LIB project [BdMR+10] and is thus common to most state-of-the-
art SMT solvers. However, the output format currently differs from one system to
another.

If the problem is satisfiable, most provers return as evidence an instance of the
variables that satisfies it, called a model.

Example 4. There exists a sequence of length 11 of discrepancy 1:

〈1,−1,−1,1,−1,1,1,−1,−1,1,1〉

So the SMT encoding of the Erdős Discrepancy Conjecture for C0 = 1 and l = 11 is
satisfiable and a possible model is:

{x1 7→ 1; x2 7→ −1; x3 7→ −1; x4 7→ 1; x5 7→ −1; x6 7→ 1;

x7 7→ 1; x8 7→ −1; x9 7→ −1; x10 7→ 1; x11 7→ 1}

Example 5. The problem of Example 2 is satisfiable and a possible model is:{
a 7→ -2 3 17 42

}
However, if the problem is unsatisfiable, while generic formats have been pro-

posed [Stu09, BFT11], the evidence output by various SMT solvers may differ a lot,
particularly in terms of granularity of the proof. To interact with various solvers at
small cost, SMTCoq is based on a certificate format inspired by [BFT11] that can
represent most existing SMT reasoning, and is also modular to be easily extensi-
ble with new theories or proofs with a different level of details3. This will make
SMTCoq easy to extend at small cost, as detailed in Sec. 3.1.

The idea of this format is to combine independent steps. A step can be any deduc-
tion that transforms a (possibly empty) set of clauses into a clause that is implied:
a step must preserve satisfiability of clauses. A clause consists of a disjunction of
literals, where a literal can be any formula (positive literal) or its negation (negative
literal)4.

Example 6. The problem of Example 1 consists of 14 clauses:

• 6 clauses of two positive literals each (e.g. a positive literal is x4 = −1) for the
domain of the sequence;

• 5 clauses of one positive literal each for the sums for d = 1;
• 2 clauses of one positive literal each for the sums for d = 2;
• 1 clause of one positive literal for the sums for d = 2.

The four formulas corresponding to the problem of Example 3 are four clauses with
a single positive literal (which is the formula itself).

3 This format has been designed together with the veriT [BODF09] proof production engine.
4 This definition of a clause is more general than the usual one: a literal can be any formula, even
containing logical connectives.
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The first clause deduced in Example 7:
¬ (a[l1] > a[l2]) ∨ ¬ (a[l1] = a[l2])
contains two negative literals.

A certificate then combines steps to deduce, in the end, the empty clause from the
initial problem. Since the empty clause is unsatisfiable, and each step must preserve
satisfiability, it implies that the initial problem is indeed unsatisfiable.

Example 7. The problem of Example 3 is unsatisfiable and a possible certificate
starts with the following steps5:
step deduced clause premises justification
5 ¬ (a[l1] > a[l2]) ∨ ¬ (a[l1] = a[l2]) - LIA
6 ¬ (l1 = l2) ∨ (a[l1] = a[l2]) - congruence
7 l1 6 l2 6 k 4 ∧ projection
8 a[l1] > a[l2] 4 ∧ projection
9 ¬ (l1 = l2) 5, 6, 8 resolution
. . . . . . . . . . . .
This piece of certificate reads as follows. The first four steps (which are not written)
consist of taking the four input clauses (in Example 3) as known clauses. Step 5
deduces a new clause from no premise (hence the clause must be a tautology) in the
theory of Linear Integer Arithmetic. Step 6 again produces a tautology by congru-
ence of equality with respect to array lookup. Steps 7 and 8 project the ∧ from the
fourth input clause, respectively on the left-hand-side and on the right-hand-side.
Finally, step 9 produces a new clause from steps 5, 6 and 8 by resolution (meaning
that literals appearing both positively and negatively can be simplified out).

Example 8. Similarly, a certificate6 for the SMT problem corresponding to Theo-
rem 1 is a proof of the empty clause obtained by combining, using resolution, the
initial problem with tautologies in Linear Integer Arithmetic such as:

(1 6 x1∧1 6 x2)⇒ x1 + x2 > 1

The main idea for modularity is that steps need only agree on the representation
of formulas, but otherwise can be completely independent from each other. In partic-
ular, they independently deal with the various theories: as illustrated in the example,
propositional reasoning is represented by resolution and connective steps [Tse70];
equality reasoning, by congruence (and transitivity) steps [BCP11], . . . etc. More-
over, they can have a different granularity: resolution is very fine-grained but noth-
ing prevents a step from representing a full SAT solving step.

Notice that results of unsatisfiability are the main use of SMTCoq: as illustrated
in Example 3, by contradiction, a formula is valid (i.e. always true) if and only if

5 It corresponds to the certificate given by veriT, stable version of 2016.
6 The certificate given by veriT, stable version of 2016, contains 178 steps.



8 Chantal Keller

CNF

resolution chains

EUF

LIA

Main checker

Coq checker

input certificate

yes no

CNF

resolution chains

EUF

LIA

Small checkers

Fig. 1 Architecture of the SMTCoq checker

its negation is unsatisfiable. The remaining of the chapter thus focuses on this part.
Nonetheless, checking the satisfiability given a model is much simpler7.

3 A certified, efficient and modular checker for SMT

3.1 A modular checker

The choice of the certificate format naturally induces a modular checker based on
the architecture given in Fig. 1.

To each kind of step corresponds what we call a small checker, whose task is
to check this particular kind of step independently of the other possible steps. The
role of the main checker is simply to dispatch each step to the corresponding small
checkers, and check in the end that the empty clause has been deduced.

Small and main checkers operate over a state S . This state initially contains the
problem whose unsatisfiability is to be verified (Steps 1 to 4 in Example 7), and is,
throughout the process, augmented with the clauses that are deduced by the small
checkers (Steps 8 and beyond in Example 7). The data-structure used for states will
be explained in the next subsection. One crucial aspect is that states can be embed-
ded into Coq terms by a Coq function J • Kρ : S → bool that interprets the
state as the conjunction of the interpretation of each formula, and for each formula,
interprets each syntactic connective and operator by its Coq counterpart (we refer
the reader to [AFG+11] for a detailed explanation of this interpretation function). As
standard, the valuation ρ is a mapping of the variables to Coq terms. The property
∀ρ, J s Kρ = false thus means that a state s ∈ S is unsatisfiable.

7 In Coq, one simply needs to assign the variables using the model and compute that the formula
reduces to the true formula.



SMTCoq 9

As explained in the previous section, a small checker takes as input a (possi-
bly empty) set of clauses and returns a new clause that is implied, in the sense of
satisfiability. Concretely, a small checker is thus given by:

• a function sc : S → step → S that, given a state and a step, returns the
state augmented with the deduced clause;

• a proof that this function preserves satisfiability:

sc_ok : ∀ (s:S ) (p:step),
∀ ρ, J s Kρ = true ⇒ J sc s p Kρ = true

Adding a new small checker consists of providing such a function and its proof of
correctness, independently of existing small checkers, making SMTCoq extensions
to new checkers easy.

As the figure suggests, various small checkers have already been implemented for
major SMT theories: the initial development of SMTCoq [AFG+11] implemented
small checkers for propositional reasoning (via CNF computation and resolution),
Equality of Uninterpreted Functions, and Linear Integer Arithmetic, and implemen-
tations of small checkers for the theories of bit vectors and arrays have been recently
added [EKK+16], confirming the modularity of SMTCoq.

3.2 An efficient checker

For the skeptical approach to be practical, certificate checking must be far cheaper
than proof search. This is theoretically the case for most concrete SAT and SMT
problems, and SMTCoq has been designed to be as efficient as possible while being
implemented and proved correct inside Coq.

The SMTCoq checker has been designed to run in a branch of Coq, called native-
coq8 [BDG11], that in particular lifts in Coq native data-structures such as machine
integers and mutable arrays (with history), while preserving soundness. SMTCoq
makes intensive use of these data-structures to be efficient.

As an example, formulas are hash-consed using mutable arrays instead of being
represented by a standard recursive algebraic datatype: each sub-formula is stored
in a cell of the array, and is referred to by its index in the array (which is a machine
integer). Literals are encoded as follows: the positive literal associated to the formula
at index i is represented by 2× i, and the negative literal, by 2× i+1. This encoding
enjoys the following aspects:

• it is efficiently represented in memory, since it has maximal sharing;
• computations that appear often in SMT checking are really fast: for instance,

checking if a literal l is the negation of a literal m is computed by the bitwise
operations l⊕m = 1.

8 The native-coq branch of Coq is progressively being integrated into the main version.
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Example 9. The fourth formula of Example 3 is the formula at index 2 in the follow-
ing array:
index 0 1 2
sub-formula l1 6 l2 6 k a[l1] > a[l2] 0 ∧ 2
It corresponds to 0 ∧ 2 since 0 = 2×0 is the positive literal associated to the sub-
formula at index 0 and 2 = 2×1 is the positive literal associated to the sub-formula
at index 1.

Another place where native data-structures are crucial is in the presentation of
states. As detailed above, states start with the initial problem and are “augmented”
with new clauses that are deduced. Simply keeping all the clauses is infeasible in
practice, since a certificate may produce thousands of them. Thus, a state is a muta-
ble array, whose length is (at least) the number of clauses that are alive at the same
time: once all clauses that are implied from a clause c have been deduced, clause c
is not useful anymore.

Example 10. In Examples 3 and 7, the fourth clause will not be useful anymore after
Steps 7 and 8, and can thus be removed from the state.

It is necessary to know in advance, before certificate checking, how many clauses
are alive at the same time and in which cell to allocate each clause (in order to over-
write clauses that will not be used anymore). This is done by another nice prop-
erty of the skeptical method: before checking, certificates can be transformed as
needed, and the whole process remains sound even if certificate transformations are
not proved correct. Indeed, if certificates are transformed in an unsound way, the
checker will not be able to reconstruct a proof.

This principle is widely applied in SMTCoq: upstream from the checker pre-
sented in this section, many preprocessors have been implemented (without the need
to certify them), that in particular allocate clauses, but also clean certificates from
unused steps, . . . etc. The checker of Fig. 1 is thus used in the context of Fig. 2 (left),
where the preprocessors need not be certified.

3.3 Modular link with state-of-the-art SMT solvers

In addition to efficiency, the preprocessing technique allows the use of the Coq
checker with any SMT solver without more certification, even if there is no stan-
dard for SMT proof witnesses (Sec. 2): it is sufficient to encode proof witnesses
into the SMTCoq certificate format, and this encoding does not need to be proved
(see Fig. 2 (right)). Thus, handling a new solver is simply writing an uncertified
encoder, and the SMTCoq format is generic enough to welcome state-of-the-art
solver’s formats.

Encoders for the SAT solvers zChaff and Glucose, as well as the SMT solvers
veriT and CVC4 are currently implemented, allowing an efficient check of the an-
swers of all these solvers with the same certified checker.
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Fig. 2 A certificate can be arbitrarily transformed before being validated by the Coq checker

4 Applications

4.1 Certified validation

The direct application of this checker is to certify answers coming from SAT and
SMT solvers: given a SAT or SMT problem and a proof witness provided by a
supported solver, the checker can be used to check the unsatisfiability of the input
problem, using the proof witness as a hint. This idea is detailed in Fig. 3 (top left).
Note that in this use case, the parser of the SAT/SMT problem must be trusted. If
it was to replace the input problem with a trivially unsatisfiable problem, then the
checker could easily answer “yes” but it would have certified nothing! In SMTCoq,
the parser has not been certified, but it is a very small piece of code that straight-
forwardly transforms a string into the corresponding SAT/SMT abstract syntax tree
(contrary to the encoders and preprocessors that can perform arbitrary transforma-
tions). Hence, in this application, if the checker answers “yes”, we can be sure that
the original problem is unsatisfiable: the checker is correct. Note that, however, if
the checker answers “no”, we know nothing: the answer coming from the solver
may be invalid or incomplete, or the checker may fail to check the proof since it is
not shown to be complete. However, it has been tested against a very large bench-
mark of problems (coming from the SAT and SMT competitions) to make sure that
it is complete in practice.

To handle this application, SMTCoq offers two possibilities: the checker can be
called from Coq via a dedicated command, or extracted to the OCaml programming
language to be used without the need to install Coq. Thanks to the use of native-
coq, both methods are really efficient: applications to the benchmarks of the SAT
and SMT competitions showed that proof search by the solvers is the bottleneck,
but not proof checking by SMTCoq [AFG+11].
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Fig. 3 Applications of the SMTCoq checker

4.2 Theorem import

More generally, the checker can be used to safely import new theorems into Coq
(Fig. 3 (top right)). Given a problem and a proof witness provided by a supported
solver, a Coq command generates a new theorem, proved by an application of the
correctness of the checker (if the checker fails, then the theorem is not proved and
not added to Coq). This theorem can then be used to deduce facts inside Coq. Con-
trary to the previous subsection, the input parser does not need to be trusted any-
more; if it changes the statement of the problem, then a useless theorem may be
imported in Coq, but it will not compromise soundness.

As illustrated in Sec. 2, this mechanism has been used to check mathematical
proofs containing very large combinatorial results, such as the proof of the Erdős
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Discrepancy, by importing the combinatorial part from SAT and proving the re-
maining as standard in Coq. An ongoing work applies this methodology to other
combinatorial proofs such as the Boolean Pythagorean Triples problem [HKM16].
Moreover, SMTCoq is generic enough to import theorems based on SMT solving
from many domains.

4.3 Automatic tactics

Finally, as discussed in the introduction, SMTCoq can also be used to automatically
solve Coq goals by discharging them to a SAT or a SMT solver and checking the an-
swer (Fig. 3 (bottom)). The input problem given to the solver comes from a concrete
goal that the user wants to prove: the goal is provable if and only if its negation is
unsatisfiable. Then, the same process as before is used. Hopefully, the chosen solver
returns a proof witness that can be verified by the SMTCoq checker, and if so, the
correctness of this latter allows to conclude. Notice that, if the goal is not provable,
then its negation is satisfiable and the SAT/SMT solver may return a model that can
be used to give a counter-example to the user.

SMTCoq comes with such tactics for most supported provers, which are actu-
ally able to solve goals that belong to the combination of theories supported by the
provers. Ongoing work [EMT+17] consists of improving the expressivity of these
tactics, in particular by encoding goals that are not directly supported by the logic
of SMT.

5 Conclusion and perspectives

We have presented SMTCoq, a plug-in for the Coq proof assistant to work in con-
junction with external SAT/SMT solvers. SMTCoq has been designed to be mod-
ular at many levels (handling new theories and new provers), making it extensible
at small cost, and already comes with support for state-of-the-art SAT and SMT
solvers. It is distributed as a Coq plug-in that users can enjoy, and is still under
active development and expansion. It can be used for various applications ranging
from formal proofs of combinatorial problems to day-to-day automation in Coq.

Recently, mathematicians have more frequently used programs and automated
provers to establish new results. In addition to the combinatorial problems already
presented, two major successes are the proofs of the four-color theorem [Gon07] and
of the Kepler conjecture [HAB+15]. SMTCoq is today a generic way to certify some
of these proofs, and we argue that, as a Coq plugin, it may become a way to revisit
and discover mathematical knowledge by structuring them in a new way [GAA+13].

The certificate approach has been designed first for proof exchange and proof
checking. However, we believe that it is more general and will become a standard
way of designing reliable proofs in mathematics and computer science.
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As presented in the introduction, SMTCoq belongs to a long-term goal to take
advantage of mechanized mathematical reasoning which is both automatic and ex-
tremely reliable. In this direction, having a single tool is unrealistic: many different
proof assistants and automated provers have been designed in the last decades be-
cause they all have strong and weak points (regarding automation and reliability,
but also expressivity, degree of expertise needed to master them, . . . etc.). We rather
advocate interoperability between different proof systems, and strongly argue that
it relies on universality of proofs and mathematical libraries [Mil13, KR16, Sai15].
Proof systems should be able to output evidence of their reasoning, in such a way
that it can be combined with proofs coming from other systems, while having the
flexibility to have various granularity and underlying logic.

With respect to computer science, many successful tools [FP13, SHK+16]
have been designed to prove the correctness of software based on the autar-
kic approach, and are used in critical industries such as avionics or cryptogra-
phy [JLB+15, DFK+17]. To reach a larger audience, and even be applicable to most
software, the skeptical approach offers a lighter technique that separates the software
design from its verification: instead of certifying (possibly complex) algorithms, we
certify checkers for their answers. Ongoing works are applying this method to other
domains than proof checking, with an objective to generalize certificates rather than
having to design a checker for each application. Recent cryptographic technologies
can be applied in this direction [PHGR13, FKL16].

Recent works show that the interoperability between systems could be designed
in a correct-by-construction approach rather than relying on certificates [BGS18,
BM17]. A way of understanding it is that a certificate checker can be turned into the
kernel of a certificate producer [BM17], in the same sense as a proof assistant. On-
going work consists of transforming SMTCoq into a kernel for an SMT solver that
could experiment with many proof search strategies without compromising sound-
ness9. Further work will lead to an understanding as to how this technique may apply
to generic a posteriori certification of software discussed in the previous paragraph.
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