
A Matter of Trust: Skeptical Communication

Between Coq and External Provers

(Detailed Description)

Chantal Keller

Abstract

Most theorem provers are either hard to trust because they are large programs or hard to
use due to a lack of automation. They are thus used by two di�erent communities depending
on the property one needs most: the ability to prove quickly a large amount of theorems or
a high level of safety. My thesis studies a communication between these di�erent kinds of
tools, by asking for proof witnesses in addition to yes/no answers from automated provers,
and checking them in safe provers. It o�ers both a way to safely combine proofs coming
from all these provers in order to bene�t from the advantages of all of them and guaranties
to automated theorem provers.

Keywords: automated deduction; decision procedures; higher-order logic; type theory.

1 Introduction

1.1 Background

Theorem proving is torn between three a priori incompatible but desirable features: expres-
sivity, safety, and automation. In a schematic way, at the three vertices of this triangle, we
could respectively �nd:

• interactive theorem provers based on Type Theory: they are very expressive, rely on
a rather small kernel but which requires a deep knowledge to get convinced of its
soundness, with full automation for proof checking but almost none for proof writing;

• HOL-like interactive theorem provers: they rely on a very small kernel, with a good
expressivity and some automated proof search; and

• automatic theorem provers, such as satis�ability provers (SAT for the propositional
part or SMT modulo theories) or �rst-order provers: proof search is fully automatized,
but at the cost of a very large untrustable code and of lots of encodings on the front
end due to their lack of expressivity, encodings that may also obfuscate the properties
we are proving and thus be hard to trust.

My thesis presents a step towards reducing this gap by studying, in theory and in practice,
a communication between these three di�erent kinds of tools that are all good at one of
these criteria. The soundness of this communication is established skeptically [HT98]: we
ask for the tool to justify a posteriori all its actions and formally check the justi�cations.
This requires to check back any achievement of the external tool, but it is robust to changes
in the tool: as long as justi�cations remain the same, the skeptical checker is still relevant.

1.2 General idea

My approach consists in bene�ting from the expressivity and rather high level of safety of
the Coq interactive theorem prover1, based on the Calculus of Inductive Constructions, to

1Coq received the ACM SIGPLAN Programming Languages Software Award in 2013.

1

check and combine theorems coming from Coq and external provers based on Higher-Order
and First-Order logics into this system.

It relies on a common language composed of:

• a deep embedding in the Calculus of Inductive Constructions of the formulas of the
Higher-Order or First-Order logic, which are carefully translated into shallow terms;
and

• a certi�cate format for the proofs of these formulas, in the shape of a list of commands
that can be executed in a certi�ed way in order to formally establish the validity of
theorems.

It exploits two features of the Calculus of Inductive Constructions:

• its expressivity, that allows to embed the terms of Higher-Order logic either deeply
through an inductive data-type or shallowly as a subset of Coq's terms; and

• its computational power, both to de�ne the translation between the two levels of
embeddings and to check certi�cates via computational re�ection.

Intuitively, computational re�ection relies on the inherent conversion of the Calculus of
Inductive Constructions to replace potentially large proofs with computations. Section 3.2
explains it in more details in the case of a communication with external provers.

This study is put into practice for two di�erent kinds of provers that can return certi�-
cates: �rst, answers coming from SAT and SMT solvers can be checked in Coq to increase
both the con�dence in these solvers and Coq's automation; second, theorems established
in interactive provers based on Higher-Order Logic can be exported to Coq and checked
again, in order to o�er the possibility to produce formal developments which mix these two
di�erent logical paradigms. For both of them, embeddings and translations from one level
to another has been de�ned, as well as certi�cates formats and e�cient certi�ed checkers.
Preprocessors ensure the modularity with respect to concrete proof witnesses. It ends up
in two software: SMTCoq, a bi-directional cooperation between Coq and SAT/SMT solvers,
and HOLLIGHTCOQ, a tool importing HOL Light theorems into Coq.

1.3 Outline

The remaining of this description is organized as follows. I will �rst describe a very general
framework to make Coq communicate with external provers, with two ingredients: an en-
coding of the language of the external provers into Coq (Section 2), and a certi�ed checker
with respect to this encoding that is at the heart of proving safety, importing theorems and
building new automatic tactics (Section 3). I will then apply this general framework to two
di�erent kinds of provers. SMTCoq (Section 4) e�ciently checks proofs coming from SAT
and SMT solvers in order to improve their safety and Coq's automation. HOLLIGHTCOQ
(Section 5) imports HOL Light theorems into Coq in order to allow formal developments that
use the advantages of both provers. I will �nally conclude in Section 6.

2 A common language between two provers

In order to check theorems from an external prover into Coq, this latter needs to understand
the statements of these theorems. In this section, I present in a very general setting my
approach to the representation of statements coming from external provers into Coq, which
enjoys the property of keeping them intelligible and thus usable in combination with user
de�ned Coq theorems.

Note that this section presents a very generic way to embed some subset of terms into
Coq independently from any inference system or proof witnesses format.

2.1 Deep and shallow embeddings

To represent a logical framework A inside Coq, there are mainly two possible ways:

2

• a deep embedding: de�ne data-types in Coq that represent types and terms of A; we
can then de�ne, inside Coq, what it means to be provable in A; and

• a shallow embedding: represent types and terms of A using their counterparts in Coq;
this translation must preserve provability.

The relevant di�erences between the two options are summed up in Table 1. In order to
combine in the end developments partially made in Coq and in A, the theorem statements
must be naturally stated in Coq, in the shallow embedding. However, to e�ciently check
them using the certi�cate, in particular if we want to use computational re�ection, we need
to reason on the structure of terms, in the deep embedding. This deep embedding thus
forms a API between the two provers.

Deep Shallow

Repr. Inductive typeD := ... Definition typeS := Type
Inductive termD := ...
Inductive derivD := ... Coq proof term

Final object A Coq proof that the The theorem is proved in Coq in

theorem is provable in A the fragment corresponding to A

Access the structure of terms

Bene�ts - induction Concrete Coq terms

- computational re�ection

My usage API to the external world Coq theorems

Table 1: Deep and shallow embeddings

This observation is detailed in Figure 1. The theorem statements we want to obtain
belong to the shallow representation of terms in Coq. However, to communicate with the
external tool, we use a deep representation of the same terms both inside Coq for computa-
tional re�ection and outside Coq for inputs and outputs. We thus need to be able to switch
between the two representations: from deep to shallow, we de�ne in Coq an interpretation
function mapping the terms of the external prover into their Coq counterparts; and from
shallow to deep, we reify terms directly at the Ocaml level. Rei�cation can indeed be used
as an oracle without compromising soundness, as explained in Section 2.3. Notice that I do
not have a deep embedding of the inference rules: instead, I will prove correctness up to the
interpretation function, as explained in Section 3.1.

Deep
terms

Shallow
terms

Coq

Deep
terms

OCamlExternal tool
(blackbox)

rei�cation

interpretation

Figure 1: Interaction with external provers

3

2.2 From deep to shallow: interpretation

The interpretation function is a Coq program compiling the terms of the source language
into their Coq counterparts. The di�culty is to type this program: deep terms have di�erent
types, thus their interpretations also have di�erent Coq types. To handle this, I extended
to the particular sets of terms used by the external provers I consider an idea originally
given by Garillot and Werner as the compilation part of a Normalization by Evaluation
function [GW07]. For a matter of clarity, I am going to explain this idea when the source
language is the simply-typed λ-calculus.

De�ning an interpretation function for types [•] respecting the equations

[o] = Prop
[A ↪→ B] = [A]→ [B]

is straightforward. This is not the case of the interpretation function for terms | • |I .
Informally, it must satisfy the equations

|xA|I = I(xA)
|λxA.u|I = z 7→ |u|I(xA←z)

|u v|I = |u|I(|v|I)

where I is an environment interpreting the free variables, and recursively enriched when
interpreting abstractions. The di�culty is to type this function: its codomain depends on
its argument. More precisely, it depends on the deep type of its argument, in this way:

if ` t : A in STLC, then ` |t| : [A] in CIC

.
The idea of [GW07] is to use an intermediate interpretation function | • |′I that takes into

account the deep types of terms: it does not only compute its interpretation, but also its
deep type. It thus re�nes the typing function of STLC: it returns a dependent pair whose
�rst component is the deep type of the argument (like the typing function) and whose
second component is the actual interpretation. The true interpretation function can be
easily written by returning the second component. For ill-typed terms, the function simply
returns an error (using the option type).

The typing function and its re�nement can be described by these equations:

infer(xA) = A
infer(λxA.u) = A ↪→ infer(u)

infer(u v) =

{
B if infer(u) = A ↪→ B and infer(v) = A
fails otherwise

|xA|′I = (A, I(xA))
|λxA.u|′I = (A ↪→ U, z 7→ i) if |u|′I(xA←z) = (U, i)

|u v|′I =

{
(B, i j) if |u|′I = (A ↪→ B, i) and |v|′I = (A, j)
fails otherwise

(1)

which highlight the correspondence between the two.

2.3 From shallow to deep: rei�cation

The role of the rei�cation function can now be expressed in terms of the interpretation
function. Its objective is to compute, from a Coq term s, a deep term d and an environment
I such that

|d|I is convertible to s

when they exist.

4

Stated as such, it becomes clearer that this function needs not be certi�ed to keep
soundness. Indeed, if it was to compute wrong d or I, then |d|I would not be convertible to
s, but we would not prove something false. Nonetheless, we do not guarantee completeness,
but this is already the case in a skeptical certi�cation since we have no idea that the external
prover will actually return a proof.

At the Ocaml level, it consists in syntactically inspecting Coq terms to reconstruct their
structures when they belong to the set of terms we consider, which presents no theoretical
di�culty.

3 Interaction with external provers

Now that we de�ned an interface for terms of the external prover, the heart of the interaction
consists in a certi�ed checker for a certi�cate format given as a list of commands to execute in
order to establish the validity of a given input. This checker can then be used independently
to certify answers coming from the external solver as well as inside Coq to call external
provers from Coq goals. We again present the main ideas in a very general setting.

3.1 A certi�ed checker

Given a deeply embedded input formula φ and a certi�cate c supposed to establish the
validity of φ, a checker is a Coq program that returns a Boolean, as illustrated by Figure 2(a).
Its soundness is formulated with respect to the interpretation function, stating that whenever
it returns �yes� on some formula φ, then the interpretation of φ is valid in any environment:

∀φ c, checker φ c = > ⇒ ∀ I, |φ|I

Coq checker

input certificate

yes no

(a) Standard certi�ed
checker

Coq checker

certificate

output failure

(b) Variant when the for-
mula can be computed
from the certi�cate

Figure 2: Two variants of certi�ed checkers

A slight variant, presented in Figure 2(b), consists in computing the formula we want to
prove from the certi�cate when possible. When the certi�cate is wrong, then the checker
fails, which can be encoded in Coq by returning an option type. In this case, the soundness
theorem, still stated with respect to the interpretation function, establishes that the checker
only returns valid formulas when it does not fail:

∀φ c I, |checker φ c|I

Once again, we do not guarantee completeness, since certi�cates can be wrong: in this
case, we just do not add anything to Coq.

5

3.2 Computational re�ection

This is where computational re�ection is put into practice. I am going to explain its operating
principle for the �rst variant of the checker, but it works similarly for the second one. To
establish some theorem t, it is su�cient to �nd by rei�cation some φ and I such that |φ|I
is convertible to t, and by calling an external prover some c such that:

checker φ c reduces to >

A proof of t will thus simply be an application of the soundness theorem to φ, c, I, and a
proof that > = >, which is simply the re�exivity of >.

The length of this proof is thus the length of the certi�cate, which is the smallest possible
one in our setting. Moreover, it can be checked very e�ciently if the reduction mechanism of
the system is fast, which is the case for Coq with a reduction that uses an optimized call-by-
value evaluation bytecode-based virtual machine [Gré03], and more recently a machine-based
reduction available through the Ocaml's compiler [BDG11].

3.3 Three possible applications

Such a certi�ed checker can be used for our three kinds of interactions.
First, the most straightforward application is to use it to check answers of untrusted

provers, as illustrated by Figure 3(a). An external prover, applied to some problem, returns
a proof witness. By parsing the problem and the proof witness, we can fed them to our
certi�ed checker, and expect a �yes� answer.

In this case, the trusting base consists of:

• the Coq's kernel;

• the input parser, to ensure that we indeed prove our problem: hence, it is important
to make it simple so that we can be convinced that it has the shape of the identity;
and

• the interpretation function: it should also be the canonical injection from deep terms
to Coq terms, otherwise the soundness theorem does not have the intended meaning.

However, the proof witness parser does not need to be trusted: once again, if it is wrong,
we just lose more completeness. It implies, as presented in the �gure, that we can also
preprocess the witnesses as much as we want. This is really interesting for modularity : it
implies that we can plug any theorem prover, as long as we are able to preprocess its proofs
witnesses into a common certi�cate format.

Finally, for this application, instead of running the checker inside Coq, we can extract it
to run it in a more common programming language such as Ocaml.

Second, another application of the checker we are interested in is to bene�t in Coq from
results that can be established more easily in external provers, because of their automation
or their already existing libraries; it is illustrated by Figure 3(b). This time, instead of just
returning a Boolean, it de�nes a new Coq constant which is the interpretation of the theorem
validated by the soundness theorem on the proof witness, when this latter is correct.

In this case, the trusting base is only Coq's kernel: if something goes wrong during the
process, then the importer is simply going to fail, and we will not add anything wrong to
Coq. If the theorem is not the one the user intended, then he just cannot use it but it is
still a valid theorem. Besides, the proof witness can be arbitrary preprocessed again, which
is modular with respect to the external prover.

Finally, the last application of the checker is to provide automatic tactics by calling
external automatic provers. This time, the problem does not come from outside but from
a Coq goal through rei�cation. This is a way to automatically prove Coq goals, but also to
automatically �nd counter-examples if the external prover can return some, which can be
really useful in a development. Here also, the trusting base is only Coq's kernel, and proof
witnesses can be preprocessed.

6

Coq checker

input parser witness parser + preprocessor

problem proof witness

yes no

input certificate

(a) To check answers

Coq checker + soundness

input parser witness parser + preprocessor

problem proof witness

theorem failure

input certificate

(b) To import theorems

reification

external prover

parser + preprocessor

Coq checker + soundness

Coq goal

goal solved failure: counter-
example or unknown

input proof witness

certificate

(c) Inside a tactic

Figure 3: Uses of a certi�ed checker

I am now going to detail how I successfully applied this general setting to two di�erent
kinds of provers: SAT and SMT solvers, and interactive theorem provers based on Higher-
Order Logic.

4 SMTCoq: cooperation with SAT and SMT solvers

SAT and SMT solvers are modern automated provers, especially successful nowadays thanks
to both their performance and their expressivity: many decision and optimization problems
can be encoded into their logic. As we argued above, their e�ciency is at the cost of unsafety:
as they grow on performance and complexity, it is well established that they are likely to
contain bugs [BB09]. In this section, I will explain how to apply our certi�cation mechanism
to these rising provers.

What is presented in this section has been implemented in a software called SMTCoq2

which I still actively develop. It has been presented at two international conferences with
peer-reviewed proceedings: the �First International Conference on Certi�ed Programs and
Proofs� (CPP'11) [AFG+11a] and the �International Workshop on Proof-Search in Axiomatic
Theories and Type Theories� (PSATTT'11) [AFG+11b].

2SMTCoq is presented on this webpage: http://cs.au.dk/~chkeller/Recherche/smtcoq.html.

7

http://cs.au.dk/~chkeller/Recherche/smtcoq.html

4.1 Certi�cates

SAT and SMT solvers are satis�ability solvers, which means that they check if a given
formula is satis�able or not, that is to say if there exists an assignment of the variables such
that the interpretation of the formula is >. To use these provers, we are mostly interested
in unsatis�ability results, that are classically equivalent to provability.

In this case of unsatis�ability, SAT and SMT solvers can be easily instrumented to return
proofs in resolution and theory rules of the empty clause [NOT06, BFT11]. I thus consider
these as certi�cates.

I recall the basics: an atom a is an atomic formula in a combination of theories; a literal
is an atom a or its negation ¬a; a clause is a disjunction of literals l1∨· · ·∨ ln; and a formula
in Conjunctive Normal Form is a conjunction of clauses. The resolution rule, introduced by
Robinson [Rob65], builds the clause C ∨ D from two clauses a ∨ C and ¬a ∨ D, where no
atom appears with one polarity in C and the other in D:

a ∨ C ¬a ∨D
C ∨D

Certi�cates are trees in which nodes are either resolutions or theory rules, which are rules
provable in one theory independently from the others and from clause reasoning. Examples
of such rules are:

x1 = y1 . . . xn = yn

f(x1, . . . , xn) = f(y1, . . . , yn) φ

where φ is a tautology in linear integer arithmetic (also known as Presburger arithmetic).
The �rst rule speci�cally states the congruence of equality with respect to function symbols,
but we see in the second one that we can be really permissive as long as it does not mix
theories.

4.2 An e�cient and modular checker

This last point allows to build a very modular checker in terms of theories, as represented
in Figure 4. A main checker dispatches the nodes of the certi�cate to the corresponding
small checkers, which thus interact with each other only by means of the main checker.
The correctness of the small checkers, stated in the same way as in Section 3.1, imply the
correctness of the whole checker. It is thus really easy to add new small checkers: they just
need to know about the deep embedding of the terms that concerns them, but not the other
terms nor theories.

The e�ciency of this checker relies on two ingredients:

• a careful choice in the deep embedding: terms are maximally shared to be compact
as well as strati�ed to avoid some small checkers to be slowed down by too much
information (for instance, the resolution checker does not need to look inside atoms);
and

• the use of e�cient data-structures to represent the intermediate objects appearing in
the computation.

For small checkers, we either implemented dedicated ones, e.g. for congruence closure,
or used existing decision procedures in Coq, e.g. Micromega [Bes06] for linear arithmetic.

4.3 Checking answers, importing theorems, and tactics

On top of this checker, we wrote preprocessors for the prof witnesses coming from the SAT
solver ZCha� [FMM07] and the SMT solver veriT [BdODF09]. Following the mechanism
presented in Section 3.3, we designed commands to check answers and import theorems as
well as tactics to call external provers from Coq goals.

We evaluated these commands and tactics against:

8

CNF

resolution chains

EUF

LIA

Main checker

Coq checker

input certificate

yes no

CNF

resolution chains

EUF

LIA

Small checkers

Figure 4: Architecture of the Coq checker

• proof reconstruction of SAT and SMT proof witnesses in the Isabelle/HOL interactive
theorem prover [Web08, BW10]; and

• Ergo, a SMT solver written and certi�ed in Coq [LC09].

The experiments show that SMTCoq is more e�cient than these state-of-the-art techniques
to certify SMT solvers. Qualitatively, SMTCoq is more expressive than Ergo, but less power-
ful than the Isabelle/HOL Sledgehammer tactic built among others on top of [Web08, BW10].

4.4 Future directions

I intend to spread SMTCoq. For this, I am improving it accordingly to users' demands. In
particular, I am currently handling quanti�ers: it will make the tactics really more usable
if they can instantiate previously user-de�ned lemmas. To improve the tactics, I am also
working on a certi�ed encoding of Coq goals into the logic of SMT solvers. Finally, I work
on encoding the reasoning of other kinds of automatic provers into my certi�cate format,
in order to use SMTCoq as a back-end for a larger set of provers than SAT and SMT
solvers [Kel13].

In the longer term, I would like to use this SAT power given to Coq to build new decision
procedures based on bit blasting, a reduction of some kinds to problems to SAT.

5 HOLLIGHTCOQ: importing HOL Light into Coq

Cooperation between proof assistants is also a hot topic, as their number is increasing
while their logical frameworks diverge. Even if they have similar theoretical expressivities,
they are not practically suited for the same formalizations. An illustration is the Flyspeck
Project3 [HHM+10], aiming at a formal proof of the Kepler Conjecture: some parts involve
mathematical analysis, a domain widely explored by the HOL Light interactive theorem
provers; others are proved by the check of certi�cates provided by oracles, which would be
e�ciently done by computational re�ection in Coq. I will now explain how to apply my
certi�cation mechanism to allow formal developments in di�erent proof assistants.

What is presented in this section has been implemented in a software called HOLLIGHT-
COQ4 which I still maintain. It has been presented at the international conference with

3The progress of this project is available at http://code.google.com/p/flyspeck.
4HOLLIGHTCOQ is presented on this webpage:

9

http://code.google.com/p/flyspeck

peer-reviewed proceedings �First International Conference on Interactive Theorem Proving�
(ITP'11) [KW10].

5.1 Embeddings

Contrary to SMTCoq, the e�ort has been put on carefully de�ning embeddings that preserve
the intelligibility of theorem statements, which is important if we want to develop formal-
ization involving both HOL Light and Coq, rather than on e�ciency, which is nonetheless
still quite good since our generic approach ensures the use of computational re�ection. This
subsection describes HOL systems and is not speci�c to HOL Light.

Higher-Order Logic can be formulated in terms of a small bunch of rules over propositions
stated as terms of the simply-typed λ-calculus with prenex polymorphism and user-de�ned
term and type constants. Examples of these rules include:

REFL ` t : A` t =A t
ASSUME ` p : bool

{p} ` p

BETA

` (λx.t) x = t
Γ ` s = t

ABS x 6∈ FV(Γ)
Γ ` (λx.s) = (λx.t)

I extended what I presented in Section 2.2 for the simply-typed λ-calculus to handle
prenex polymorphism and user-de�ned term and type constants. The interesting point for
intelligibility is the translation of these user-de�ned constants. Indeed, to interact with
Coq theorems, we do not want to translate them into their HOL de�nitions, since most
corresponding constants are not de�ned in the same way in Coq. My solution is to allow the
user to translate them into any Coq term of the same type, as long as one can prove that
the interpretation of the HOL de�nition of the constant is equivalent to its Coq mapping. It
allows to �nally obtain theorems as the user would have stated them directly in Coq.

5.2 Certi�cates

At the time when this work started, there was no standard for Higher-Order Logic certi�-
cates. I chose a format who is simply a skeleton of derivations in HOL: the nodes belong
to an erased version of the small bunch of rules evoked above. On the same examples, this
nodes become respectively REFL(t), ASSUME(p), BETA(λx.t) and ABS(x,n) where n is inductively
another node.

A simple checker for such certi�cates is rather straightforward. More interestingly, the
soundness theorem associated to the checker establishes in Coq the correctness of this stan-
dard presentation of Higher-Order Logic, which is by itself an interesting formalization.

5.3 Importing theorems

In the case of HOL Light, we are mostly interested in the application of Figure 3(b) that
imports theorems � there is no need to just check HOL Light proofs since HOL Light is already
safer than Coq, and calling HOL Light from Coq goals would not give much automation.

On top of the checker, we use an implementation for HOL Light of our certi�cates called
Proof recording [OS06]. Since HOL Light does not store proofs, it requires to �rst record
them in order to be able to export them. I instrumented Proof recording to generate Coq
�les in my particular embedding.

With Proof recording, I was able to import in Coq HOL Light's standard library as well as
two non-trivial developments: a proof of consistency of HOL Light in HOL Light [Har06], and
the library to reason about basic linear algebra. The time and memory consumption were

http://cs.au.dk/~chkeller/Recherche/hollightcoq.html. It is also distributed with HOL Light:
http://www.cl.cam.ac.uk/~jrh13/hol-light.

10

http://cs.au.dk/~chkeller/Recherche/hollightcoq.html
http://www.cl.cam.ac.uk/~jrh13/hol-light

too large for a everyday use, but not much a bottleneck in the objective of �nally checking
a development that involves both provers.

Qualitatively, the goal of obtaining understandable theorems is perfectly achieved. As
an example, I can import HOL Light theorems on unary integers as Coq theorems on binary
integers, and compose them with Coq theorems on binary integers from Coq's standard
library. I thus obtain new properties that were not formalized before in any of the two
provers.

5.4 Future directions

Now, a generic proof format for Higher-Order Logic called OpenTheory [Hur09] is being
actively developed. Compared to Proof recording, it is very modular and thus likely to
require less time and memory to be re-checked. I intend to switch to this format as well
as to use more e�cient data-structures, in order to make HOLLIGHTCOQ scale to larger
developments, with the Flyspeck Project as a leading objective. Thanks to the modularity
of my certifying framework, these switches do not require to change the embedding, which
has already shown to achieve its goal.

6 Conclusion

In my thesis, I proposed an original framework to deal with the communication between
provers in the broad sense with Coq. This framework relies on a careful choice of embeddings
of the terms of the external prover into Coq. I described how this framework can be used
to bene�t from safety, automation and developments of these external provers.

I put it into practice for two di�erent applications: SMTCoq, designed for e�ciency and
automation, and HOLLIGHTCOQ, designed for intelligibility. Both of them are modular
and have shown to scale to non trivial certi�cations. They open new perspectives towards
decision procedures and formal developments.

References

[AFG+11a] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent
Théry, and Benjamin Werner. A Modular Integration of SAT/SMT Solvers to
Coq through Proof Witnesses. In Jouannaud and Shao [JS11], pages 135�150.

[AFG+11b] Mickaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent
Théry, and Benjamin Wener. Verifying SAT and SMT in Coq for a fully au-
tomated decision procedure. In PSATTT - International Workshop on Proof-
Search in Axiomatic Theories and Type Theories - 2011, Wroclaw, Pologne,
2011. Germain Faure, Stéphane Lengrand, Assia Mahboubi.

[BB09] B. Brummayer and A. Biere. Fuzzing and Delta-Debugging SMT Solvers. In
Proceedings of the 7th International Workshop on Satis�ability Modulo Theories,
pages 1�5. ACM, 2009.

[BDG11] Mathieu Boesp�ug, Maxime Dénès, and Benjamin Grégoire. Full Reduction at
Full Throttle. In Jouannaud and Shao [JS11], pages 362�377.

[BdODF09] T. Bouton, D.C.B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: An Open,
Trustable and E�cient SMT-Solver. In R. A. Schmidt, editor, CADE, volume
5663 of Lecture Notes in Computer Science, pages 151�156. Springer, 2009.

[Bes06] F. Besson. Fast Re�exive Arithmetic Tactics the Linear Case and Beyond.
In Thorsten Altenkirch and Conor McBride, editors, TYPES, volume 4502 of
Lecture Notes in Computer Science, pages 48�62. Springer, 2006.

[BFT11] F. Besson, P. Fontaine, and L. Théry. A Flexible Proof Format for SMT: a
Proposal. In PxTP 2011: First International Workshop on Proof eXchange for

11

Theorem Proving August 1, 2011 A�liated with CADE 2011, 31 July-5 August
2011 Wrocªaw, Poland, pages 15�26, 2011.

[BW10] S. Böhme and T. Weber. Fast LCF-Style Proof Reconstruction for Z3. In
Kaufmann and Paulson [KP10], pages 179�194.

[FMM07] Z. Fu, Y. Marhajan, and S. Malik. zCha�. Research Web Page. Princeton
University, USA,(March 2007) http://www.princeton.edu/~chaff/
zchaff.html, 2007.

[FS06] U. Furbach and N. Shankar, editors. Automated Reasoning, Third International
Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Pro-
ceedings, volume 4130 of Lecture Notes in Computer Science. Springer, 2006.

[Gré03] B. Grégoire. Compilation des termes de preuves: un (nouveau) mariage entre
Coq et Ocaml. Thése de doctorat, spécialité informatique, Université Paris 7,
École Polytechnique, France, December 2003.

[GW07] F. Garillot and B. Werner. Simple types in type theory: Deep and shallow
encodings. In K. Schneider and J. Brandt, editors, TPHOLs, volume 4732 of
Lecture Notes in Computer Science, pages 368�382. Springer, 2007.

[Har06] J. Harrison. Towards self-veri�cation of HOL Light. In Furbach and Shankar
[FS06], pages 177�191.

[HHM+10] Thomas C. Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven
Obua, and Roland Zumkeller. A Revision of the Proof of the Kepler Conjecture.
Discrete & Computational Geometry, 44(1):1�34, 2010.

[HT98] J. Harrison and L. Théry. A Sceptic's Approach to Combining HOL and Maple.
Journal of Automated Reasoning, 21(3):279�294, 1998.

[Hur09] Joe Hurd. OpenTheory: Package management for higher order logic theories.
In Gabriel Dos Reis and Laurent Théry, editors, PLMMS '09: Proceedings of
the ACM SIGSAM 2009 International Workshop on Programming Languages
for Mechanized Mathematics Systems, pages 31�37. ACM, August 2009.

[JS11] Jean-Pierre Jouannaud and Zhong Shao, editors. Certi�ed Programs and Proofs
- First International Conference, CPP 2011, Kenting, Taiwan, December 7-9,
2011. Proceedings, volume 7086 of Lecture Notes in Computer Science. Springer,
2011.

[Kel13] Chantal Keller. Extended Resolution as Certi�cates for Propositional Logic.
In Jasmin Christian Blanchette and Josef Urban, editors, PxTP@CADE, vol-
ume 14 of EPiC Series, pages 96�109. EasyChair, 2013.

[KP10] M. Kaufmann and L. C. Paulson, editors. Interactive Theorem Proving, First
International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Pro-
ceedings, volume 6172 of Lecture Notes in Computer Science. Springer, 2010.

[KW10] Chantal Keller and Benjamin Werner. Importing hol light into coq. In Kauf-
mann and Paulson [KP10], pages 307�322.

[LC09] Stéphane Lescuyer and Sylvain Conchon. Improving coq propositional reasoning
using a lazy cnf conversion scheme. In Silvio Ghilardi and Roberto Sebastiani,
editors, FroCos, volume 5749 of Lecture Notes in Computer Science, pages 287�
303. Springer, 2009.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract Davis�Putnam�Logemann�Loveland procedure to
DPLL(). J. ACM, 53(6):937�977, 2006.

[OS06] S. Obua and S. Skalberg. Importing HOL into Isabelle/HOL. In Furbach and
Shankar [FS06], pages 298�302.

[Rob65] John Alan Robinson. A Machine-Oriented Logic Based on the Resolution Prin-
ciple. J. ACM, 12(1):23�41, 1965.

12

http://www.princeton.edu/~chaff/zchaff.html
http://www.princeton.edu/~chaff/zchaff.html

[Web08] T. Weber. SAT-based Finite Model Generation for Higher-Order Logic. PhD
thesis, Institut für Informatik, Technische Universität München, Germany,
April 2008.

13

	Introduction
	Background
	General idea
	Outline

	A common language between two provers
	Deep and shallow embeddings
	From deep to shallow: interpretation
	From shallow to deep: reification

	Interaction with external provers
	A certified checker
	Computational reflection
	Three possible applications

	SMTCoq: cooperation with SAT and SMT solvers
	Certificates
	An efficient and modular checker
	Checking answers, importing theorems, and tactics
	Future directions

	HOLLIGHTCOQ: importing HOL Light into Coq
	Embeddings
	Certificates
	Importing theorems
	Future directions

	Conclusion

