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Language-integrated queries: a BOLDR approach
Anonymous Author(s)

ABSTRACT
We present BOLDR, a modular framework that enables the evalu-

ation in databases of queries containing application logic and, in

particular, user-de�ned functions. BOLDR also allows the nesting

of queries for di�erent databases of possibly di�erent data models.

�e framework detects the boundaries of queries present in an

application, translates them into an intermediate representation

together with the relevant language environment, rewrites them in

order to avoid query avalanches and to make the most out of data-

base optimizations, and converts the results back to the application.

Our experiments show that the techniques we implemented are ap-

plicable to real-world database applications, successfully handling

a variety of language-integrated queries with good performances.

1 INTRODUCTION
�e increasing need for sophisticated data analysis encourages the

use of programming languages that either be�er �t a speci�c task

(e.g., R or Python for statistical analysis and data mining) or that

manipulate speci�c data formats (e.g., JavaScript for JSON). It is

therefore crucial for databases to support data analysis methods

wri�en in these languages. Currently, two opposite and incompati-

ble solutions exist. One is to use a particular language supported by

a speci�c database. For example, Oracle R Enterprise (Oracle 2017a),

and PostgreSQL’s PL/R for R; PL/Python (PostgreSQL 2017), its de-

rivative Amazon Redshi� (Amazon 2017), Hive (Apache 2017a),

and SPARK (Apache 2017b) for Python; or MongoDB (MongoDB

2017) and Cassandra’s CQL (Apache 2017c) for JavaScript. But this

implies using a low-level and ad hoc API in which data is accessed

by custom operations and yields code that is not portable. Contrary

to this ad hoc approach, language-integrated querying, popular-

ized with Microso�’s LINQ framework (Microso� 2017), proposes

to extend programming languages with builtin querying syntax

and to represent externally-stored data in the data model of the

language, thus shielding programmers from having to learn the

speci�c syntax or data model aspects of databases. To that end,

LINQ exposes the language to a set of standard query operators that

external data providers must implement. However, LINQ su�ers

from a key limitation: queries can only execute if they can be trans-

lated into the set of query operators. For instance, the LINQ query

db.Employee.Where(x => x.sal >= 2000 * getRate("USD", x.cur)) (1)

which is intended to return the set of all employees having a salary

(stored in some currency) greater than 2000 USD, will throw an error

at runtime since LINQ fails to translate the function getRate to an

equivalent expression in the database. One solution is to mirror the

de�nition of getRate in the database, but this hinders portability and

may not be possible at all if the function references values present

in the runtime of the language. A more common workaround is to

rewrite the code as follows:

db.Employee.AsEnumerable()

.Where(x => x.sal >= 2000 * getRate("USD", x.cur))

But this seemingly innocuous piece of code hides huge performance

issues: all the data is imported in the runtime of the language, poten-

tially causing important network delays and out-of-memory errors,

and the �ltering is evaluated in main memory thus neglecting all

possible database optimizations.

In this work, we introduce BOLDR (Breaking boundaries Of

Language and Data Representations), a language-integrated query

framework that allows arbitrary expressions from the host language
(language from which the query comes from) to occur in queries

and be evaluated in a database, thus li�ing a key limitation of the

existing solutions. Additionally, BOLDR is tied neither to a partic-

ular combination of database and programming language, nor to

querying only one database at a time: for instance, BOLDR allows a

NoSQL query targeting a HBase server to be nested in a SQL query

targeting a relational database. BOLDR translates these queries

into a Query Intermediate Representation (or QIR for short), an

untyped λ-calculus with data-manipulation builtin operators. �en,

it applies a normalization process that may perform a partial eval-

uation of the QIR expression. �is partial evaluation composes

distinct queries that may occur separated in the code of the host

language into larger queries that, a�er a further step of translation,

are shipped to the database. �e composition of distinct queries

into a larger one not only reduces the communication overhead

between the client runtime and the database but, above all, allows

the database to perform whole query optimizations. Consider again

our initial query (1) containing the call to getRate. In BOLDR, the

translation of (1) produces a QIR expression according to four di�er-

ent scenarios: (i) if getRate can be translated in the query language

of the targeted database, then the whole expression is translated

into a single query expressed in the query language of the targeted

database; (ii) if getRate cannot be entirely translated but contains

one or several queries that can be translated, then the normalization

process a�empts to rewrite the QIR expression so it can be trans-

lated into fewer queries to be sent to the database; (iii) if getRate

contains subqueries to one or several databases di�erent from the

targeted database of the outer query, then BOLDR produces the

corresponding translated subqueries and send them to their respec-

tive databases, and combines the results at QIR level; (iv) if getRate

cannot be translated at all, then BOLDR sends a query containing

the serialized host language abstract syntax tree of getRate to be

potentially executed on the database side.

Our implementation of BOLDR uses Tru�e (Würthinger et al.

2013), a framework developed by Oracle Labs to implement pro-

gramming languages. Several features make Tru�e appealing to

BOLDR: �rst, Tru�e implementations of languages must compile

to an executable abstract syntax tree (AST) that BOLDR can di-

rectly manipulate; second, languages implemented with Tru�e

can be executed on o�-the-shelf JVMs, making their addition as

an external language e�ortless in databases wri�en in Java (e.g.,

Cassandra, HBase, . . . ), and relatively simple in others such as Post-

greSQL. �ird, the work done for one Tru�e language can easily

be transposed to other Tru�e languages.
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Figure 1: Evaluation of a BOLDR host language program

Our implementation currently supports the PostgreSQL, HBase
and Hive databases, as well as FastR (Oracle 2017b) (Tru�e imple-

mentation of the R language) and Oracle’s SimpleLanguage (a simple

dynamic language with syntax and features inspired by JavaScript).

�e following R program illustrates the key aspects of BOLDR:

1 # Exchange rate between rfrom and rto

2 getRate = function(rfrom, rto) {

3 # table change has three columns: cfrom, cto, rate

4 t = tableRef("change", "PostgreSQL")

5 if (rfrom == rto) 1

6 else subset(t, cfrom == rfrom && cto == rto, c(rate))
7 }

8

9 # Employees earning at least minSalary in the cur currency

10 atLeast = function(minSalary, cur) {

11 # table employee has two columns: name, sal

12 t = tableRef("employee", "PostgreSQL")

13 subset(t, sal >= minSalary * getRate("USD", cur), c(name))
14 }

15

16 richUSPeople = atLeast(2000, "USD")

17 richEURPeople = atLeast(2000, "EUR")

18 print(executeQuery(richUSPeople))
19 print(executeQuery(richEURPeople))

�is example is a pure R program with two exceptions: the

function tableRef (Line 4 and 12) referencing an external source in

lieu of creating a data frame (R implementation of tables) from a

text �le; and the function executeQuery (Line 18 and 19) that forces

the evaluation of queries. We recall that in R, the c function creates

a vector, the subset function accepts a table, a logical expression as

a �lter, and optionally a vector of names of columns to extract. �e

�rst function getRate takes the code of two currencies and queries

a table using the subset function to get their exchange rate. �e

second function atLeast takes as input a minimum salary and a

currency code and retrieves the names of the employees earning at

least the minimal salary. Since the salary is stored in dollars in the

database, the getRate function is used to perform the conversion.

In BOLDR, subset is overloaded to build an intermediate query

representation if applied on an external source reference. �e �rst

call to atLeast(2000, "USD") builds a query and captures the variables

in the local scope. When executeQuery is called, then (i) the interme-

diate query is normalized, inlining all bound variables with their

values; (ii) the normalized query is translated into a target database

query (here SQL); and (iii) the resulting query is evaluated in the

database and the results sent back. A�er normalization, the query

generated for the �rst call on Line 16 is:

SELECT name FROM employee WHERE sal >= 2000 * 1

which is optimal, in the sense that a single SQL query is generated.

�e code generated for the second call is also optimal thanks to the

interplay between lazy building of the query and normalization:

SELECT name FROM employee WHERE sal >= 2000 *

(SELECT rate FROM change WHERE rfrom = "USD" AND rto = "EUR")

�us, BOLDR not only allows the database to execute user-de�ned

functions (UDFs) wri�en in the syntax of the host language (the

getRate call at Line 13), but also it creates fewer and larger queries,

thus allowing a be�er exploitation of database optimizations and

avoiding the “query avalanche” phenomenon (Grust et al. 2010).

While similar approaches exist (see Section 8 on related work),

BOLDR outperforms them on UDFs that cannot be completely

translated. For instance, consider:

1 getRate = function(rfrom, rto) {

2 cfrom = c("EUR", "EUR", "USD", "USD", "JPY", "JPY")

3 cto = c("USD", "JPY", "EUR", "JPY", "EUR", "USD")

4 rate = c(1.44, 129, 0.88, 114, 0.0077, 0.0088)

5 t = data.frame(cfrom, cto, rate)

6 if (rfrom == rto) 1

7 else subset(t, cfrom == rfrom && cto == rto, c(rate))
8 }

�is function builds an in-memory data frame using the builtin

function data.frame. BOLDR cannot translate it to QIR since it calls

the underlying runtime, so instead it generates the following query:

SELECT name FROM table_employee WHERE

sal >= 2000 * R.eval("@...", array("USD", "EUR"))

where the string "@..." is a reference to a closure for getRate.

Mixing di�erent data sources is supported, although less e�-

ciently. For instance, we can refer to an HBase table in the function

getRate by replacing the second argument of tableRef in Line 4 of

our example by "HBase". BOLDR is still able to evaluate the query

by sending a query to both the HBase and PostgreSQL database,

and by executing in main memory what cannot be translated.

�e general �ow of query evaluation in BOLDR is described in

Figure 1. During the evaluation 1 of a host program, QIR nodes are

lazily accumulated. Once the host runtime reaches a point where

it needs to evaluate a QIR term, it requests this evaluation to the

QIR runtime 2 . �e QIR term is normalized 3 in order to reduce

the fragmentation of queries. Next, the QIR term is translated 4

in a new QIR term which contains native queries (e.g., in SQL) to

send to databases. Each piece of this �nal term is then evaluated

where it belongs, either in main-memory 5 or in a database 7 .

“Frozen” host language expressions occurring in these queries are

evaluated either by the runtime of the host language that called

the QIR evaluation 6 or in the runtime embedded in the target

database 8 , thus repeating the whole process (this happens to the

subquery in Line 6 of our example). Results are then translated

from the database to QIR 9 , then from QIR to the host language 10 .

OverviewandContributions. In this work, we introduce BOLDR,
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a multi-language framework for integrated queries with a unique

combination of features such as the possibility of executing user-

de�ned functions in databases, of partially evaluating and merging

distinct query fragments, and of de�ning single queries that operate

on data from di�erent data sources. Our technical developments

are organized as follows. We �rst give a formal de�nition of QIR

(Section 3). We then present the translation from QIR to query

languages and focus on a translation from QIR to SQL, and a type

system that statically ensures that well-typed queries translate into

SQL and are avalanche-free (Section 4). We continue by presenting

a normalization procedure on the QIR to optimize the translation of

a query (Section 5). We �nally describe the translation from a host

language (namely R) to QIR (Section 6). We discuss experimental

results (Section 7) of our implementation that handles the languages

R and SimpleLanguage and the databases PostgreSQL, HBase and

Hive. We show that queries generated by BOLDR perform on a

par with hand-wri�en ones, and that UDFs can be e�ciently exe-

cuted in an embedded runtime whenever they cannot be natively

translated in the target database.

2 DEFINITIONS
We give some basic de�nitions we use throughout the presentation.

De�nition 2.1 (Host language). A host language H is a 4-tuple

(EH , IH ,VH ,
H
→) where:

• EH is a set of syntactic expressions
• IH is a set of variables, IH ⊂ EH
• VH is a set of values
•

H
→ : 2

IH×VH × EH → 2
IH×VH × VH , is the evaluation function

We abstract a host languageH by reducing it to its bare compo-

nents: a syntax given by a set of expressions EH , a set of variables

IH , and a set of values VH . Lastly we assume that the semantics

of H is given by a partial evaluation function
H
→. �is function

takes as input an evaluation environment (a set of pairs of variables

and values, ranged over by σ ) and an expression and returns a new

environment and a value resulting from the evaluation of the input

expression. �is entails that to integrate a host language we need to

be able to manipulate syntactic expressions of the language, inspect

and build environments, and have access to an interpreter for the

language. We write dom(σ ) for the set of variables bound in σ and

FV (e) for the set of free variables in an expression e .

De�nition 2.2 (Database language). Given a host languageH , a

database language D with support forH is a 4-tuple

(ED ,VD ,OD ,
D
→) where:

• ED is a set of syntactic expressions
• VD is a set of values
• OD is a set of supported operator names, equipped with an arity

function | | : OD → N.

•
D
→ : 2

IH×VH × ED → 2
IH×VH × VD is the evaluation function

Similarly to host languages, we abstract databases by identifying

them with their query language D composed of a syntax ED , a set

of values VD , and an evaluation function
D
→ which takes as input a

host language environment and a database expression and returns

a new host language environment and a database expression. Such

an evaluation function allows us to abstract the behavior of modern

databases that support queries containing foreign function calls

(e.g., calling R code from a SQL query). Last, but not least, a database

language exposes the set OD of operators it supports. �is set of

operators will play a crucial role in building queries that can be

e�ciently executed by a database back-end.

3 QUERY INTERMEDIATE REPRESENTATION
3.1 Core calculus
In this section, we de�ne our �ery Intermediate Representation,

a λ-calculus with recursive functions, constants, basic operations,

data structures, data operators, and foreign language expressions.

De�nition 3.1. Given a host languageH , a set of database lan-

guages D, and a countable set of variables IQIR, we de�ne the set of

QIR expressions, denoted by EQIR and ranged over by q, as the set

of �nite productions of the following grammar:

q ::=x | funx (x)→q | q q | c | op (q, . . . ,q) | ifq thenq elseq
| { l :q, . . . , l :q } | [ ] | q ::q | q@@@q
| q · l | q as x ::x ? q : q | o〈q, . . . ,q | q, . . . ,q〉 | �(σ , e)

Besides lambda-terms, QIR expressions include constants (such

as integers, strings, . . . ), and some builtin operations (arithmetic

operations, . . . ). �e data model consists of records and sequences.

Records can be deconstructed through �eld projections. Sequences

are constructed as usual and deconstructed by the list matching
destructor whose four arguments are: the list to destruct, a sim-

ple pa�ern that binds the head and the tail of the list to vari-

ables, the term to evaluate (with the bound variables in scope)

when the list is not empty, and the term to return when the list is

empty. �e new additions to these mundane constructs are data-
base operators and host language expressions. A database operator

o〈q1 . . . ,qn | q′
1
, . . . ,q′m〉 is similar to the notion of operator in the

relational algebra. We divide its arguments in two groups: the qi
expressions are called con�gurations and in�uence the behavior of

the operator; the q′i expressions are the sub-collections that are op-

erated on. Finally, a host expression �(σ , e) is an opaque construct

that contains an evaluation environment σ and an expression e of

the host language. We use the following syntactic shortcuts:

• [q1, . . . ,qn ] stands for q1 :: . . . ::qn :: [ ]
• funf (x1, . . . ,xn )→q stands for funf (x1)→(. . . (fun(xn )→q))
• q (q1, . . . ,qn ) stands for (. . . (q q1) . . .) qn

Functions can be de�ned recursively by using the recursion variable

that indexes the fun keyword, that we omit when useless.

De�nition 3.2 (Reduction rules). Let→δ ⊂ EQIR × EQIR be a re-

duction relation for basic operators and→⊂ EQIR × EQIR be the

reduction relation de�ned by:

(funf (x )→q1) q2 → q1 {f /funf (x )→q1, x/q2 }

if true thenq1 elseq2 → q1

if false thenq1 elseq2 → q2

{ . . . , l : q, . . . } · l → q
[ ] as x ::y ? qlist : qempty → qempty

qhead ::qtail as x ::y ? qlist : qempty → qlist {x/qhead, y/qtail }
[ ]@@@q → q
q@@@ [ ] → q

(q1 ::q2)@@@q3 → q1 :: (q2 @@@q3)

(q1 ::q2)@@@q3 → q1 :: (q2 @@@q3)

where q{x1/q1, . . . ,xn/qn } denotes the standard capture avoiding

substitution. We de�ne the reduction relation of QIR expressions

as the context closure of the relation→δ ∪ →.

3
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Crucially, embedded host expressions as well as database opera-

tor applications whose arguments are all reduced are irreducible.

3.2 Extended semantics
We next de�ne how to interface host languages and databases with

QIR. We introduce the notion of driver, a set of functions that

translate values from one world to another.

De�nition 3.3 (Language driver). Let H be a host language. A

language driver for H is a 3-tuple (H
−−→
EXP,
−−→
VALH ,H

−−→
VAL) of total

functions such that:

• H
−−→
EXP : 2

IH×VH × EH → EQIR ∪ {Ω} takes an environment

and anH expression and translates the expression into a QIR

expression.

•
−−→
VALH : VQIR → VH ∪ {Ω} translates QIR values toH values

• H
−−→
VAL : VH → VQIR ∪ {Ω} translatesH values to QIR values.

where the special value Ω denotes failure to translate.

A host language driver must therefore be able to translate values

from the host language to QIR (and vice versa), and provide a

translation function to embed expressions of the host language into

QIR terms. Likewise, we de�ne a database driver as:

De�nition 3.4. (Database driver) Let D be a database language.

A driver for D is a 3-tuple (
−−→
EXPD ,

−−→
VALD ,D

−−→
VAL) of total functions

such that:

•
−−→
EXPD : EQIR → ED translates a QIR expression into a D

expression.

•
−−→
VALD : VQIR → VD ∪ {Ω} translates QIR values to D values.

• D
−−→
VAL : VD → VQIR ∪ {Ω} translates D values to QIR values.

where the special value Ω denotes a failure to translate.

We are now equipped to de�ne the semantics of QIR terms,

extended to host expressions and database operators.

De�nition 3.5 (Extended QIR semantics). LetH be a host language,

(H
−−→
EXP,
−−→
VALH ,H

−−→
VAL) a driver forH , D a database language, and

(
−−→
EXPD ,

−−→
VALD ,D

−−→
VAL) a driver for D. We de�ne the extended se-

mantics σ ,q � σ ′,q′ of QIR by the following set of rules:

q → q′

σ , q � σ , q′
σ ∪ σ ′, e H→σ ′′, w

σ , �(σ ′, e)� σ ′′,H
−−→
VAL(w )

−−→
EXPD (o 〈q1, . . . , qn | q′

1
, . . . , q′m 〉) = e

σ , e D→σ ′, w

o ∈ OD
e , Ω
D−−→VAL(w ) , Ω

σ , o 〈q1, . . . , qn | q′
1
, . . . , q′m 〉 � σ ′,D

−−→
VAL(w )

Since QIR acts as an intermediate language from a host language

to a database language, the evaluation of QIR terms will always

be initiated from the host language runtime. It is therefore natu-

ral for the extended semantics to evaluate a QIR term in a given

host language environment. If this QIR term is pure, meaning it is

neither a database operator nor a host language expression, then

the simple semantics of De�nition 3.2 is used to evaluate the term.

�e extended semantics of De�nition 3.5 is instead used to evaluate

impure terms. Host expressions are evaluated using the evaluation

relation of the host language in the environment formed by the

union of the current running environment and the captured envi-

ronment. While this rule may seem strange from the point of view

of statically typed and scoped languages, it allows us to simulate the

behavior of most dynamic languages we encountered (in particular

R, Python, and JavaScript) that allow a function to reference an

unde�ned global variable as long as it is de�ned when the function

is called. Last, but not least, the evaluation of a database operator

consists in (i) �nding a database language that supports this opera-

tor, (ii) use the database driver for that language to translate the

QIR term into a native query and (iii) use the evaluation function of

the database to evaluate the query. �e results are then translated

back into a QIR value.

At this stage, we have de�ned a perfectly viable �ery Interme-

diate Representation in the form of a λ-calculus extended with data

operators. When a QIR term is evaluated, subterms that consist

of data operators are evaluated by the appropriate database driver

and their results are returned to the host runtime. We next address

the two following problems:

(1) How to create database drivers in practice?

(2) How to avoid query avalanches as much as possible?

4 DATABASE TRANSLATION
In this section, we describe how the implementer of a database

driver can translate a QIR expression into a representation under-

standable by a target database. Here the di�culty is twofold: not

only do we need to translate a QIR expression into an e�cient

query of a given database language, but we also need to do so

in a context where QIR subterms targeting di�erent database lan-

guages may co-exist in the same program. Also, we want to design

the translation process so it can be seamlessly extended with new

database drivers. To that end, we separate the translation in two

phases. First, a generic translation that traverses QIR expressions

recursively to determine the targeted query language, second, a

speci�c translation that makes use of database drivers.

4.1 Generic translation
�e goal of the generic translation is to produce a QIR term where

some subexpressions have been translated into native database

queries. Ideally, we want the whole QIR expression to be translated

into a single database query, but this is not always possible and

sometimes part of the query has to be evaluated in the client side

(where the QIR runtime resides). �e QIR evaluator therefore relies

on two components. First, a “fallback” implementation of QIR

operators using the QIR itself, that we dub MEM for in-memory

evaluation. �e MEM language is a trivial database language where

the translations of values to and from the QIR are the identity

function, and where some operators (namely, Filter, Project,

and Join) are de�ned as plain QIR recursive functions. �e full

de�nition of MEM is straightforward and given in Appendix A.

Second, to allow the QIR evaluator to send queries to a database

and translate the results back into QIR values, we assume that for

each supported database language D ∈ D, we have a basic QIR

operator, evalD de�ned as:

σ , e D→σ ′,v

σ , evalD (e)� σ ′,D
−−→
VAL(v)

Notice that in the case of theMEM language, the operator evalMEM

is simply the reduction of a QIR term.

4



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

submi�ed to Web Programming, 2018

(db-op) q′i { ei , D, i ∈ 1..m
−−→
EXPD (o 〈q1, . . . , qn | q′

1
, . . . , q′m 〉) = e D ∈ D \MEM e , Ω

o 〈q1, . . . , qn | q′
1
, . . . , q′m 〉 { e, D

(fun)
q { e, D

funf (x )→q { funf (x )→evalD (e), MEM

(mem-op)
q′i { ei , Di , ∈ 1..m

o ∈ OMEM
ei , Ω

o 〈q1, . . . , qn | q′
1
, . . . , q′m 〉 {

−−→
EXPMEM(o, q1, . . . , qn, evalD

1

(e1), . . . , eval
Dm (em )), MEM

(app)
q1 { e1, D

1 q2 { e2, D
2

q1 q2 { (eval
D1

(e1)) (eval
D2

(e2)), MEM

Figure 2: Some rules of the generic translation

�e generic translation is given by the judgment q { e,D
where q ∈ EQIR and e ∈ ED ∪ {Ω}, whose meaning is that a QIR

expression q can either be rewri�en into an expression e of the

language ED of the database D or fail when e = Ω. An excerpt of

the set of inference rules used to derive this judgment is given in

Figure 2. We focus on the rules dealing with database operators.

�e main one, rule (db-op), states that given a database operator,

if there exists a database language D distinct from the fallback

language MEM such that all data arguments can be translated into

expressions of D, then if the speci�c translation

−−→
EXPD called on

the operator yields a fully translated D expression e , then e is

returned as a translation inD. �is rule may fail in two cases. First

case, the speci�c translation forD could yield an error Ω even if all

data arguments of the operator have been successfully translated

into expressions of the same language D. �is can happen, for

instance, when the operator is not supported by D or when the

speci�c translation of a con�guration qi fails. Second case, the

data arguments of the operator could have been translated to more

than one database language. If the operator o at issue is one of

the supported operators of MEM, then both cases are handled by

the rule (mem-op): each translated subexpression ei is wrapped

in a call to the evalDi
operator and o is evaluated with its MEM

semantics. All the other rules are bureaucratic and propagate the

translation recursively to subterms.

4.2 Speci�c translation: SQL
We document how to de�ne speci�c database translations using

SQL as an example of a database language. QIR to SQL is an im-

portant translation as it allows BOLDR to target not only relational

databases but also some distributed databases such as Apache

Hive (Apache 2017a), Apache Spark (Apache 2017b), or Cassan-

dra’s CQL (Apache 2017c). We assume that the set of values for

SQL, namely VSQL, only contains basic constants (strings, num-

bers, Booleans, . . . ) and tables. A table is a pair of a schema, that

is a n-tuple of column names associated to column types, and a

multi-set of n-tuples of column names associated to values. �e

set of expressions ESQL is the set of syntactically valid SQL queries

(sql 2016). �e set of supported operators OSQL we consider is {

Filter, Project, Join, From, GroupBy, Sort }. Due to space con-

straints, we describe these operators and the full translation from

QIR to SQL in Appendix A and B. �e translation from QIR to SQL
is mostly straightforward. However, ensuring that it does not fail

is challenging. Indeed, SQL is not Turing complete and relies on a

�at data model: a SQL query should only deal with sequences of

records whose �elds have basic types. Another important aspect

of this translation is that we want to avoid query avalanche by

translating as many QIR expressions as possible.

We obtain both strong guarantees using an ad hoc SQL type

system for QIR terms described in Figure 3. �is type system is

straightforward, but in accordance with the semantics of SQL we

require applications of basic operators and conditional expressions

to take as arguments and return expressions that have basic types

B, and data operators to take as sources �at record lists. We also use

a rule to type a �at record list as a base type since SQL allows the

use of a table containing only one value (one line of one column)

as a value. For instance, (SELECT 1)+ 1 is allowed and returns 2.

Note that we do not require the host language to be statically

typed. Given a QIR term q, we ensure the following:

(1) if q can be typed with a type t in the SQL type system, then

the reduction relation of De�nition 3.2 terminates and yields a

term q′ that has type t .
(2) if a term q has type t in the SQL type system and is in normal

form, then the generic translation of Figure 2 yields a single,

syntactically correct SQL expression (using the translation of

Appendix B).

We restrict the set of expressions of QIR by restricting functions

to non-recursive functions, refusing untranslatable terms (such as

list destructors) as well as host expressions since we limit ourselves

to pure queries, and by restricting data operators to Project, From,

Filter, Join, GroupBy, and Sort. What we obtain is a simply

typed λ-calculus extended with records and sequences without

recursive functions, which entails strong normalization. We also

state an expected subject reduction theorem

Theorem 4.1 (Subject reduction). Let q ∈ EQIR and Γ an envi-
ronment from QIR variables to QIR types. If Γ ` q : T , and q → q′,
then Γ ` q′ : T .

and are now equipped to state our soundness of translation theorem

Theorem 4.2 (Soundness of translation). Let q ∈ EQIR such
that ∅ ` q : T , q →∗ v , and v is in normal form. If T ≡ B or T ≡ R
or T ≡ R list then v { s, SQL.

On the technical side, we show that typable QIR terms have

a very particular normal form imposed by their type, and that

these normal forms can be translated into syntactically correct SQL

expressions (see Appendix B).

5 QIR HEURISTIC NORMALIZATION
Our guarantees only hold for the translation of a QIR query tar-

geting only a SQL database. However, in general, a QIR term may

mix several databases or use features that escape the hypotheses

5
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B ::= string | int | bool | . . .
T ::= B | T → T | T list | {l : T , . . . , l : T }
R ::= {l : B, . . . , l : B }

Γ ` x : Γ(x )
Γ, x : T1 ` q : T2

Γ ` fun(x )→q : T1 → T2

Γ ` q1 : T1 → T2 Γ ` q2 : T1

Γ ` q1 q2 : T2

Γ ` c : typeof(c)

Γ ` q : T
Γ ` q :: [ ] : T list

Γ ` q1 : T Γ ` q2 : T list
Γ ` q1 ::q2 : T list

(q2.[ ])
Γ ` q1 : T list Γ ` q2 : T list

Γ ` q1 @@@q2 : T list
Γ ` op : B1 → . . . → Bn → B Γ ` bi : Bi i ∈ 1..n

Γ ` op (b1, . . . , bn ) : B
Γ ` b1 : bool Γ ` b2 : B Γ ` b3 : B

Γ ` ifb1 thenb2 elseb3 : B
Γ ` qi : Ti i ∈ 1..n

Γ ` { l1 :q1, . . . , ln :qn } : {l1 : T1, . . . , ln : Tn }

Γ ` q1 : R2 → R1 Γ ` q2 : R2 list
Γ ` Project〈q1 | q2 〉 : R1 list

Γ ` n : string

Γ ` From〈n〉 : R list
Γ ` q1 : R → bool Γ ` q2 : R list

Γ ` Filter〈q1 | q2 〉 : R list

Γ ` q1 : R3 → R4 → R1

Γ ` q2 : R3 → R4 → bool
Γ ` q3 : R3 list
Γ ` q4 : R4 list

Γ ` Join〈q1, q2 | q3, q4 〉 : R1 list
Γ ` q1 : R3 → R1 list Γ ` q2 : R1 list→ R2 Γ ` q3 : R3 list

Γ ` GroupBy〈q1, q2 | q3 〉 : R2 list
Γ ` q1 : R2 → R1 Γ ` q2 : R2 list

Γ ` Sort〈q1 | q2 〉 : R2 list
Γ ` q : {l : B, . . . } list

Γ ` q : B
Γ ` q : {l : T , . . . }

Γ ` q · l : T

Figure 3: QIR type system for SQL

C
T

F

e1 en… …

C: surrounding context

F : fragment

T : non-compatible expression

e1, . . . , en : non-compatible ex-

pressions

Figure 4: A fragment within a larger QIR term

of �eorem 4.2. In particular, outside these hypotheses, we cannot

guarantee the termination of the normalization of a term. We are

therefore stuck between two unsatisfactory options: either (i) try-

ing to normalize the term (to fully reduce all applications) and yield

the best possible term w.r.t. query translation but risk diverging

in the process, or (ii) translate the term as-is at the risk of intro-

ducing query avalanches. We tackle this problem with a heuristic

normalization procedure that tries to reduce QIR terms enough to

produce a good translation by combining database query subtrees.

To that end, we de�ne a measure of “good” QIR terms, and ask

that each reduction step taken yields a term with a smaller measure.

To formally de�ne this measure, we �rst introduce a few concepts.

De�nition 5.1 (Compatible data operator application). Let D be

the set of database languages. A QIR data operator o〈q1, . . . ,qn |
q′

1
, . . . ,q′m〉 is a compatible operator application if and only if:

∃D ∈ D, e1, . . . , em ∈ ED s.t.

−−→
EXPD (o,q1, . . . ,qn , e1, . . . , em ) , Ω

Intuitively, a compatible data operator application is one where

the con�guration arguments are in a form that is accepted by the

speci�c translation of the database languageD. We now de�ne the

related notion of fragment.

De�nition 5.2 (Fragment). A fragment F is a subterm of a QIR

term q such that q = C[T (q1, . . . ,qi−1, F [e1, . . . , en ],qi+1, . . . ,qj )]
where C is a one-hole context made of arbitrary expressions; T is

a non-compatible j-ary expression; q1, . . . ,qi−1,qi+1, . . . ,qj and F
are the children ofT ; F is ann-hole context made only of compatible

operators applications of the same database language D; and all

e1, . . . , en have head expressions that are not compatible.

Figure 4 gives a graphical representation of a fragment. We are

now equipped to de�ne a measure of “good” QIR terms.

De�nition 5.3 (measure). Let q ∈ EQIR be a QIR expression, we

de�ne the measure of q as the pair

M(q) = (Op(q) − Comp(q), Frag(q))
where Op(q) is the number of occurrences of data operators in q,

Comp(q) is the number of occurrences of compatible data operator

applications in q and Frag(q) is the number of fragments in q. �e

order associated with M is the lexicographic order on pairs.

�is measure works as follows. During a step of reduction of a

term q into a term q′, q′ is considered a be�er term either if the

number of operators decreases, or if q′ possesses more occurrences

of compatible operator applications, meaning less cycles between

QIR and the databases, or lastly, if the number of data operators

does not change but the number of fragments decreases, meaning

that some data operators were combined into a larger fragment.

Our heuristic-based normalization procedure uses this measure

as a guide through the reduction of a QIR term: it applies all possible

combinations of reduction steps to the term as long as its measure

decreases a�er a number of steps �xed by heuristic. �is allows us

to generate a more e�cient translation while ensuring termination.

Some practical choices impact the e�ectiveness of the QIR nor-

malization such as the choice of which reduction rules to apply

among all the possible ones (e.g., choosing those with more ar-

guments), or which maximum number of steps to use. Exten-

sive experiments for both points are detailed in a technical report

[ANONYMIZED]. In particular, we measure that the normaliza-

tion represents a negligible fraction of the execution time of the

whole process, since it is dominated by those of other tasks (parsing,

exchanges on the network with databases, . . . ).

6 FROM A HOST LANGUAGE TO QIR
In this section we outline how to interface a general purpose pro-

gramming language with BOLDR. Our aim is to allow program-

mers to write queries using constructs of the language they already

master. In particular, we do not want to extend the syntax of the

language and only allow ourselves to extend its runtime with some

builtin functions. �e full details of our treatment to the R language

can be found in Appendix C.

We choose the R programming language as example of a host

language and give an overview on how to implement a language

driver for it. R programs include �rst-class functions; side e�ects

(“=” being the assignment operator as well as the variable de�nition

operator); sequences of expressions separated by “;” or a new-

line; structured data types such as vectors and tables with named

6
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columns (called data frames in R’s lingo); and static scoping as it is

usually implemented in dynamic languages (e.g., as in Python or

JavaScript) where identi�ers that are not in the current static scope

are assumed to be global identi�ers even if they are unde�ned when

the scope is created. For instance, the R program:

f = function (x) { x + y }; y = 3; z = f(2);

is well-de�ned and stores 5 in z (but calling f before de�ning y yields

an error). We next de�ne the core syntax of R.

De�nition 6.1. �e set ER of expressions (e) and values (v) of R
are generated by the following grammars:

e ::= c | x | function(x , . . . ,x){e} | e(e, . . . , e) | op e . . . e

| x = e | e; e | if (e) e else e
v ::= c | functionσ (x, . . . , x) {e} | c(v, . . . ,v)

where c represents constants, x ∈ IR, and σ ∈ 2
IR×VR

is the envi-

ronment of the closure.

We recall that c(e1, . . . , en ) is used in R to build vectors. De�ni-

tion 6.1 only de�nes expressions that can be translated to QIR.

Expressions not listed in the de�nition are translated into host

expression nodes.

We now highlight how queries are performed in (plain) R. While

there are several ways to �lter a data frame, the preferred one is the

subset function we already used in the example in the introduction:

13 subset(t, sal >= minSalary * getRate("USD", cur), c(name))

�is function returns the data frame given as �rst argument, �ltered

by the predicate given as second argument, and restricted to the

columns listed in the third argument. Note that before resolving its

second and third arguments, and for every row of the �rst argument,

subset binds the values of each column of the row to a variable of

the corresponding name. �is is why in our example the variables

sal and name occur free: they represent columns of the data frame t.

�e join between two data frames is implemented with the func-

tion merge. We recall that the join operation returns the set of all

combinations of rows in two tables that satisfy a given predicate.

To integrate R with BOLDR, we de�ne two builtin functions:

• tableRef takes the name of a table and the name of the database

the table belongs to, and returns a reference to the table

• executeQuery takes a QIR expression, closes it by binding its

free variables to the translation to QIR of their value from

the current R environment, sends it to the QIR runtime for

evaluation, and translate the results into R values

We also extend the set of values VR:

v ::= . . . | tableRef(v, ...,v) | qσ
where qσ are QIR closure values representing queries associated

with the R environment σ used at their de�nition.

�e functions subset and merge (and other functions used to ma-

nipulate data frames) are overloaded to call the translation
R−−→EXP

on themselves if their �rst argument is a reference to a database

table created by tableRef, yielding a QIR term q to which the current

scope is a�xed, creating a “query closure” qσ . At this stage, free

variables in q that are not in σ can only be global identi�ers whose

bindings are to be resolved when the query is executed (when qσ
is given as argument to executeQuery).

We now illustrate the whole process on the introductory exam-

ple of Section 1.

Evaluation of the query expression: When an expression rec-

ognized as a query is evaluated, it is translated to QIR (using De�-

nition C.2). In the introductory example, the function call

16 richUSPeople = atLeast(2000, "USD")

triggers the evaluation of the function atLeast:

10 atLeast = function(minSalary, cur) {

11 # table employee has two columns: name, sal

12 t = tableRef("employee", "PostgreSQL")

13 subset(t, sal >= minSalary * getRate("USD", cur), c(name))
14 }

in which the function subset (Line 13) is evaluated with a table

reference as �rst argument, and is therefore translated to a QIR

expression. richUSPeople is then bound to the QIR closure value:

Project〈fun(t )→{ name : t · name } |
Filter〈fun(e )→e · sal ≥ minSalary ∗ (getRate "USD" cur)) |
From〈employee〉〉〉
{minSalary 7→2000, getRate 7→functionσ (rfrom,rto){. . .},cur 7→”USD”}

�ery execution: As mentioned earlier in this section, a query

is executed when the function executeQuery is called with the corre-

sponding QIR closure as argument. In our running example, this

happens at Line 18 and 19:

18 print(executeQuery(richUSPeople))
19 print(executeQuery(richEURPeople))

At that point, the only free variables in the QIR closure are global

variables. �ese are resolved by applying each variable to the

translation to QIR of their value in the R environment:

(fun(getRate)→
(fun(minSalary, cur)→
Project〈fun(t )→{ name : t · name } |
Filter〈fun(e )→ ≥ (e · sal, ∗ (minSalary, getRate "USD" cur)) |
From〈employee〉〉〉
)(2000, "USD")
)(fun(rfrom, rto)→ . . .)

�en, the evaluation engine for QIR terms is called, the query is

normalized to:

Project〈fun(t )→{ name : t · name } |
Filter〈fun(e )→ ≥ (e · sal, 2000) |
From〈employee〉〉〉

and translated to SQL as:

SELECT T.name AS name FROM (

SELECT * FROM (SELECT * FROM employee) AS E WHERE E.sal >= 2000

) AS T

�is query is sent to the targeted database, and the results are

translated back to QIR values (Steps 3 to 9 in Figure 1). Finally,

the results are translated back to R using

−−→
VALR , then cached in the

QIR closure to avoid evaluating the same query twice.

7 IMPLEMENTATION AND RESULTS
Implementation. �e BOLDR framework consists of the QIR

runtime, host languages, and target databases. To evaluate our

approach, we have implemented the full stack, using R and Sim-

pleLanguage as host languages and PostgreSQL, HBase and Hive

as database back-ends. Table 1 gives the number of lines of Java

code of each component to gauge the relative development e�ort

needed to interface a Tru�e-based host language or a database

back-end to BOLDR. All developments are done in Java using the

Tru�e framework.
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Component l.o.c. Remark
FastR / SimpleLanguage 173000 / 12000 not part of the framework

Detection of queries (in R and SL) 600 modification of builtins/operators
R to QIR / SL to QIR 750 / 1000 the translation of Definition C.2

QIR 4000 norm/generic translation/evaluator

QIR to SQL / HBase language 500 / 400 the translation
SQL
{ /

HBase
{

PostgreSQL / Hbase / Hive binding 150 / 100 / 100 low-level interface
Table 1: BOLDR components and their sizes in lines of code.

As expected, the bulk of our development work lies in the proper

QIR component (its de�nition and normalization) which is com-

pletely shared between all languages and database backends. Com-

pared to its 4000 l.o.c., the development cost of languages or data-

base drivers, including translations to and from QIR is modest

(between 400 and 1000 l.o.c.).

Even though our main focus is on Tru�e-based languages, on

which we have full control over their interpreters, all our require-

ments are also met by the introspection capabilities of modern

dynamic languages. For instance, in standard R, the environment

function allows to retrieve the environment a�xed to a closure as a

modi�able R value (and even replace the environment of a closure

by a new one!), the body function returns the body of a closure as a

manipulable abstract syntax tree, and the formal function returns

the name of the formal parameters of a function. Using these in-

trospection capabilities would be a way to achieve an even more

seamless integration.

Experiments. �e results of our evaluation
1

are reported in Ta-

ble 2. �eries named TPCH-n are SQL queries taken from the TPC-H

performance benchmark (TPC 2017). �ese queries feature joins,

nested queries, grouping, ordering and various arithmetic subex-

pressions. �e goal of this benchmark is to see how well a database

engine optimizes these queries when generated by BOLDR. Table 2.A
and 2.B illustrate how our approach fare against hand-wri�en SQL

queries. Each row reports the expected cost (in disk page fetches as

reported by the EXPLAIN ANALYZE commands) as well as the actual

execution time on a 1GB dataset. Row SQL represents the hand-

wri�en SQL queries from the benchmark, Row SQL+UDFs represents

the same SQL queries where some subexpressions are expressed as

function calls of stored functions wri�en in PL/SQL. Row R repre-

sents the SQL queries from the benchmark generated by BOLDR

from an equivalent R expression, and Row R+UDFs represents the

same SQL queries as in Row SQL+UDFs generated by BOLDR from an

equivalent R expression using R functions. Lastly, for row R+�, we

added untranslatable subexpressions kept as host language nodes to

impose a call to the database embedded R runtime. �e results show

that we can successfully match the performances of Row SQL with

Row R, and that BOLDR outperforms PostgreSQL in Row R+UDFs
against Row SQL+UDFs. �is last result comes from the fact that

PostgreSQL is not always able to inline function calls, even for

simple functions wri�en in PL/SQL. In stark contrast, no overhead

is introduced for a SQL query generated from an R program, since

the normalization is able to inline function calls properly, yielding

a query as e�cient as a hand-wri�en one. As an example, the

TPCH-15 query was wri�en in R+UDFs as:

1
�e test machine was a PC with Ubuntu 16.04.2 LTS, kernel 4.4.0-83, with the latest

master from the Tru�e/Graal framework and PostgreSQL 9.5, Hive 2.1.1, and HBase

1.2.6 all with default parameters.

supplier = tableRef("supplier", "PostgreSQL", "postg.conf", "tpch")

revenue = tableRef("revenue", "PostgreSQL", "postg.conf", "tpch")

max_rev = function() max(subset(revenue, TRUE, c(total_revenue)))
q = subset(merge(supplier, revenue, function(x, y) x$s_suppkey ==

y$supplier_no),

total_revenue == max_rev(),

c(s_suppkey, s_name, s_address, s_phone, total_revenue)

)[order(s_suppkey), ]

print(executeQuery(q))

BOLDR was able to inline this query, whereas the equivalent in

SQL+UDFs could not be inlined by the optimizer of PostgreSQL.

Table 2.B illustrates the overhead of calling the host language

evaluator from PostgreSQL by comparing the cost of a non-inlined
pure PL/SQL function with the cost of the same function embed-

ded in a host expression within the query. While it incurs a high

overhead, it remains reasonable even for expensive queries (such

as TPCH-1) compared to the cost of network delays that would

happen otherwise since host expressions represent expressions that

are impossible to inline or to translate in the database language.

Table 2.C illustrates the overhead of calling the host language

evaluator from Hive against a pure inlined Hive query. For instance

SELECT * FROM movie WHERE year > 1974 ORDER BY title

against

SELECT * FROM movie WHERE R.APPLY('@...', array(year))ORDER BY title

where '@...' is the serialization of an R closure, and R.APPLY is a

function we de�ned that applies an R closure to an array of values

from Hive (including the necessary translations between Hive, QIR,

and R). �e results are that with one (�ery 1/2) or two (�ery 3)

calls to the external language runtime, the overhead is negligible

compared to the execution of the query in Map/Reduce.

We give for completeness the performances of queries mixing

two data sources between a PostgreSQL, a HBase, and an Hive

database in Table 2.D. We executed the code of the example in the

Introduction and varied the data sources for the functions getRate
and atLeast. In the current implementation, the join between

tables from di�erent databases is made on the client side (see our

future work in the Conclusion), therefore the queries in which the

two functions target the same database perform be�er, since they

are entirely evaluated in one database implying less network delays

and less work on the client side.

8 RELATEDWORK
�e work in the literature closest to BOLDR is T-LINQ and P-LINQ

by Cheney et al. (2013) which subsumes previous work on LINQ

and Links and gives a comprehensive “practical theory of language

integrated queries”. In particular, it gives the strongest results to

date for a language-integrated queries framework. Among their

contributions stand out: (i) a quotation language (a λ-calculus with

list comprehensions) used to express queries in a host language,

(ii) a normalization procedure ensuring that no query can cause

a query avalanche when translated in the target database, (iii) a

type system which guarantees that well-typed queries can be nor-

malized, (iv) a general recipe to implement language-integrated

queries and (v) a practical implementation that outperforms Mi-

croso�’s LINQ standard. Some parts of our work are strikingly

similar: our intermediate representation is a λ-calculus using re-

duction as a normalization procedure. However, our work diverges

radically from their approach because we target a di�erent kind

8
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A TPCH-1 TPCH-2 TPCH-3 TPCH-4 TPCH-5 TPCH-6 TPCH-9 TPCH-10 TPCH-11 TPCH-12 TPCH-13 TPCH-14 TPCH-15 TPCH-16 TPCH-18 TPCH-19
103 page fetches time (s)

SQL 424 9.44 99 0.42 353 0.99 161 0.49 200 0.59 248 1.03 336 5.54 270 1.72 65 0.33 320 1.61 258 2.07 217 1.05 412 2.06 45 0.94 1462 4.33 306 1.31
SQL+UDFs 1753 15.50 655 0.43 426 2.21 424 0.79 617 1.69 1719 1.90 677 5.34 869 2.90 43 ∞ 1798 1.95 493 3.20 1766 5.26 207∗ ∞ 133 206.11 1118∗ ∞ 216 1.25

R 424 9.37 52 0.66 359 0.97 49939 0.53 200 0.76 248 1.02 300 3.20 272 1.73 65 0.31 334 1.37 258 2.03 217 0.97 412 2.00 39 0.41 2069 4.45 338 1.54
R+UDFs 424 9.51 52 0.68 359 0.95 49939 0.53 200 0.71 248 0.95 300 3.09 272 1.85 65 0.31 334 1.41 258 1.99 217 0.95 412 1.95 39 0.40 2069 4.35 338 1.58

B TPCH-1 TPCH-3 TPCH-5 Ex. 1
SQL+UDFs 1753 15.50 426 2.21 617 1.69 0.9 0.05

R+� 1720 37.56 97 2.01 471 8.99 0.9 0.11

C (in s) Query 1 Query 2 Query 3
Hive 1.24 6.27 6.27

Hive+R 1.25 6.31 6.33

D (in s) PostgreSQL (atLeast) HBase (atLeast) Hive (atLeast)
PostgreSQL (getRate) 0.34 1.47 1.17

HBase (getRate) 1.44 1.33 2.07
Hive (getRate) 0.74 1.78 0.66

∞: evaluation took more than 5 minutes. ∗ wrong cost estimation due to complex PL/SQL function

Table 2: Evaluation of BOLDR’s performances

of host languages. T-LINQ requires a pure host language, with

quotation and anti-quotation support and a type-system. Further,

T-LINQ only supports one (type of) database per query and a very

limited set of operators (essentially, selection, projection, and join,

expressed as comprehensions). While de�nitely possible, extending

T-LINQ with other operators (e.g., “group by” or “sort”) or other

data models (e.g., graph databases) seems challenging since their

normalization procedure hard-codes in several places the semantics

of SQL. �e host languages we target do not lend themselves as

easily to formal treatment, as they are highly dynamic, untyped,

and impure programming languages. We designed BOLDR to be

target databases agnostic, and to be easily extendable to support

new languages and databases. We also endeavored to lessen the

work of driver implementers (adding support for a new language

or database) through the use of embedded host language expres-

sions, which take advantage of the capability of modern databases

to execute foreign code. �is contrasts with LINQ where adding

new back-ends is known to be a di�cult task (Eini 2011). Last,

we obtained formal results corresponding to those of T/P-LINQ by

gra�ing a speci�c SQL type system on our framework.

QIR is not the �rst intermediate language of its kind. While

LINQ proposes the most used intermediate query representation,

recent work by Ong et al. (2014) introduced SQL++, an intermediary

query representation whose goal is to subsume SQL and NoSQL

query languages. In this work, a carefully chosen set of operators

is shown to be su�cient to express relational queries as well as

NoSQL queries (e.g., queries over JSON native databases). Each

operator supports con�guration options to account for the sub-

tle di�erences in semantics for distinct query languages and data

models (treatment of the special value NULL, semantics of basic

operators such as equality, . . . ). In opposite, we chose to let the

database expose the operators it supports in a driver.

Grust et al. (2010) present an alternative compilation scheme

for LINQ, where SQL and XML queries are compiled into an inter-

mediate table algebra expression that can be e�ciently executed

in any modern relational database. While this algebra supports

diverse querying primitives, it is designed to speci�cally target SQL

databases, making it un�t for other back-ends.

Our current implementation of the BOLDR framework is at an

early stage and, as such, it su�ers several shortcomings. Some are al-

ready addressed in existing literature. First, since we target dynamic

programming languages, some forms of error cannot be detected un-

til query evaluation. �is problem has been widely studied and, be-

sides the already cited T-LINQ, there are works such as SML# (Ohori

and Ueno 2011) or ScalaDB (Garcia et al. 2010) where the static type

system of the host language is used to ensure the absence of a large

class of runtime errors in generated queries. Second, our treatment

of e�ects is rather crude. Local side e�ects, such as updating muta-

ble references scoped inside a query, work as expected while observ-

able e�ects, such as reading from a �le on host machine memory,

is unspeci�ed behavior. �e work of Cook and Wiedermann (2011)

shows how client-side e�ects can be re-ordered (to some extent) and

split apart from queries. �ird, at the moment, when two subqueries

target di�erent databases, their aggregation is done in the QIR run-

time. Costa Seco et al. (2015) present a language which allows ma-

nipulation of data coming from di�erent sources, abstracting their

nature and localization. A drawback of their work is the limitation

in the set of expressions that can be handled. Our use of arbitrary

host expressions would allow us to circumvent this problem.

9 CONCLUSION AND FUTUREWORK
We presented BOLDR, a framework that allows programming lan-

guages to express complex queries containing application logic

such as user-de�ned functions. �ese queries can then target any

source of data as long as it is interfaced with the framework, more

precisely, with our intermediate language QIR. We provided meth-

ods for programming languages and databases to interface with

QIR, as well as an implementation of the framework and interfaces

for R, SimpleLanguage, PostgreSQL, HBase, and Hive. We described

how QIR reduces and partially evaluates queries in order to take the

most of database optimizations, and showed that BOLDR generates

queries performing on a par with hand-wri�en SQL queries.

Future work includes the de�nition and implementation of a

domain-speci�c language to de�ne the translation from QIR to a

database query representation, allowing implementers of an in-

terface between QIR and a database to focus on the translation

and leave the implementation details to the language itself, with

the associated gains of speed, clarity, and concision. Currently,

queries targeting more than one data sources (e.g., a join between

tables from di�erent databases) are partially executed in the host

language runtime. We plan to determine when such queries could

be executed e�ciently in one of the targeted data sources instead

(e.g., in a join between two distinct data sources, determine when

it is convenient to send data from one data source to the other

that will complete the join). ORMs and LINQ can type queries

since they know the type of the data source. BOLDR cannot do it

yet since QIR queries may contain highly dynamic code (in host

expression nodes). While we cannot foresee any general solution

(and our goal is not to type-check the whole host language), we

believe that to exploit any type information available one should

use gradual typing (Siek and Taha 2006), a recent technique blend-

ing static and dynamic typing in the same language. In particular,

we would be able to use type information from database schemas

(when available) to infer types for the queries.

9
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Appendices

A QIR AS A DATABASE LANGUAGE
An important design decision of any intermediate query represen-

tation is the set of supported database operators. �e choice might

prove to be di�cult due to the following con�icting aspects:

• an operator may be speci�c to a particular data model (e.g.,

computing the transitive closure in a graph database);

• an operator may be generic enough but not natively supported

by some back-ends (NoSQL databases usually do not support

join operations).

�e set of operators exposed by the intermediate representation

should be broad enough so that the end users do not have to re-

implement operators in host languages, and generic enough so

that translating queries from the intermediate representation to a

database representation stays manageable.

To experiment with this vast design space, we equip the QIR

with a particular database language, dubbed MEM. MEM shares its

values and expressions with QIR, and its data operators constitute

a �rst a�empt at de�ning a core set of operators that should be

implemented by BOLDR even though some back-ends may not

support them natively.

De�nition A.1 (MEM database language). �e MEM language
MEM = (EMEM,VMEM,OMEM,

MEM
→) is de�ned by:

• EMEM = EQIR
• OMEM = {Filter, Project, Join}
• VMEM is the set of �nite terms generated by the grammar

v ::= funx (x)→q | c | { l :v, . . . , l :v } | [ ] | v ::v | �(σ , e)
•

MEM
→ is the operational semantics of the QIR (relation → in

De�nition 3.2).

Of course the semantics of the MEM target language would be

incomplete without the de�nition of a driver for MEM:

De�nition A.2 (MEM driver). �e driver for the MEM database

language is the 3-tuple (
−−→
EXPMEM( ),

−−→
VALMEM( ),MEM −−→VAL( )) of to-

tal functions such that:

•
−−→
VALMEM( ) : VQIR → VMEM ∪ {Ω} is the identity function.

• MEM−−→VAL( ) : VD → VQIR ∪ {Ω} is the identity function.

•
−−→
EXPMEM( ) : EQIR → EMEM is de�ned by case as

−−→
EXPMEM(Filter〈f | l 〉) =
(funfilter(l )→l as h :: t ? if f h thenh :: (filter t ) else (filter t ) : [ ]) l
−−→
EXPMEM(Project〈f | l 〉) =
(funproject(l )→l as h :: t ? (f h) :: (project t ) : [ ]) l
−−→
EXPMEM(Join〈f1, f2 | l1, l2 〉) =
(funjoin(l )→Project〈f1 | l as h1 :: t1?

(Project〈fun(h2)→h1 ./ h2 | Filter〈f2 h1 | l2 〉〉)@@@ (join t1)

: [ ]) l1 〉

�e de�nition of the operators supported by MEM is straightfor-

ward and well-known to functional programmers. Filter〈f | l〉 is

implemented as a recursive function that iterates through an input

list l and keeps elements for which the input predicate f returns

true. Project〈f | l〉 (also known as map) applies the function f to

every element of l and returns the list of the outputs of f . Lastly the

Join〈f1, f2 | l1, l2〉 operator is de�ned as a double iteration which

tests for each record element h1 of l1 and each record element h2 of

l2 if the pair h1, h2 satis�es the join condition given by the function

f2, then the two records are concatenated and added to the result.

Finally, the function f1 is applied to every element to obtain the

�nal result. For simplicity, we express Join in terms of Project
and Filter, but we could have given a direct de�nition.

B QIR TO SQL
In this section, we give technical details of our translation from

QIR to SQL. �e set of supported operators of the translation is:

OSQL = {Project, From, Filter, GroupBy, Sort, Join, Limit}

�e semantics of Filter, Project, and Join was described in

Section A. From〈n〉 loads the contents of a table from its name,

GroupBy〈f , agg | l〉 partitions elements of l for which f returns the

same value into groups, and returns the list of the results of applying

agg to each group. Sort〈f | l〉 sorts a collection l using a sorting

key returned by applying f to each element of the list. �e speci�c

translation

−−→
EXPSQL is de�ned by the judgment q

SQL
{ e stating that

a QIR expression q can be translated into a SQL expression e . �e

derivation of this judgment is given by the rules in Figure 5.

Data operators are translated into their SQL equivalent. Con-

stants are translated using the translation function

−−→
VALSQL provided

by the driver, identi�ers are translated as they are. Field access is

handled by (SQL-�eld-simp) if the �rst argument is syntactically

an identi�er, and by (SQL-�eld-cplx) otherwise. Basic operators

are translated into their SQL counterpart by rule (SQL-basic-op).

Conditional expressions are translated into the corresponding CASE
construct. Host language expressions are evaluated using a BOLDR-

provided function that calls the evaluator of the host language in

the database. Lastly, the (SQL-error) rule propagates errors and

ensures that the whole translation fails if one of the sub-cases fails.

Next we show that the type-system de�ned in Section 4.2 stati-

cally detects QIR terms that can be soundly translated into SQL, that

is, QIR terms in which all subterms can be handled by our speci�c

translation. �is property is formally stated by �eorem 4.2:

Let q ∈ EQIR such that ∅ ` q : T , q →∗ v , and v is in normal

form. If T ≡ B or T ≡ R or T ≡ R list then v { s, SQL.

To prove this theorem, we proceed in three steps. First, we show

through the usual property of subject reduction that the normal

form v has the same type T as q. Second, we show that normal

forms of a given type have a particular shape. Lastly, we show by

case analysis on the translation rules that the translation can never

fail.

subject-reduction. Let q ∈ EQIR and Γ an environment from

QIR variables to QIR types. If Γ ` q : T , and q → q′, then Γ ` q′ : T .

We prove the property by induction on the typing derivation.

• (funf (x)→q1) q2 → q1{ f /funf (x)→q1, x/q2}:

Γ, f : T ′ → T ,x : T ′ ` q1 : T

Γ ` funf (x)→q1 : T ′ → T

Γ ` q2 : T ′

Γ ` (funf (x)→q1) q2 : T
11
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(SQL-var)

x
SQL
{ X

(SQL-apply)

qi
SQL
{ ei ei , Ω i ∈ 1..2

q1 q2

SQL
{ SELECT F(e2) FROM (e1) AS F

(SQL-cst)

c
SQL
{
−−→
VALSQL(c)

(SQL-basic-op)

qi
SQL
{ ei ei , Ω i ∈ 1..n

o(q1, . . . ,qn )
SQL
{ oSQL((e1), . . . , (en ))

(SQL-if)

qi
SQL
{ ei ei , Ω i ∈ 1..3

ifq1 thenq2 elseq3

SQL
{ SELECT CASE WHEN (e1) THEN (e2) ELSE (e3) END

(SQL-lcons-empty)

q
SQL
{ e e , Ω TMP fresh

q :: [ ] SQL
{ SELECT * FROM (e1) AS TMP

(SQL-record)

qi
SQL
{ ei ei , Ω i ∈ 1..n

{ l1 :q1, . . . , ln :qn }
SQL
{ SELECT (e1) AS X1, . . . , (en) AS Xn

(SQL-tdestr-cplx)

q
SQL
{ e e , Ω TMP fresh

q · l SQL
{ SELECT TMP.L FROM (SELECT (e)) AS TMP

(SQL-lcons)

qi
SQL
{ ei ei , Ω i ∈ 1..2 TMP, TMP2 fresh

q1 ::q2

SQL
{ SELECT * FROM (e1) AS TMP UNION ALL (e2) AS TMP2

(SQL-lconcat)

qi
SQL
{ ei ei , Ω i ∈ 1..2 TMP, TMP2 fresh

q1 @@@q2

SQL
{ SELECT * FROM (e1) AS TMP UNION ALL (e2) AS TMP2

(SQL-tdestr-simpl)

q
SQL
{ X

q · l SQL
{ SELECT X.L

(SQL-project)

qi
SQL
{ ei i ∈ 1..2 e , Ω

Project〈fun(x)→q1 | q2〉
SQL
{ SELECT e1 FROM (e2) AS X

(SQL-from)

From〈"table"〉 SQL
{ SELECT * FROM table

(SQL-�lter)

qi
SQL
{ ei i ∈ 1..2 ei , Ω

Filter〈fun(x)→q1 | q2〉
SQL
{ SELECT * FROM (e2) AS X WHERE (e1)

(SQL-limit)

qi
SQL
{ ei i ∈ 1..2 ei , Ω

Limit〈q1 | q2〉
SQL
{ SELECT * FROM (e2) AS X LIMIT (e1)

(SQL-group-by)

qi
SQL
{ ei ei , Ω i ∈ 1..3

GroupBy〈fun(x)→q1, fun(x)→q2 | q3〉
SQL
{ SELECT (e2) FROM (e3) AS X GROUP BY (e1)

(SQL-join)

qi
SQL
{ ei ei , Ω i ∈ 1..4

Join〈fun(x ,y)→q1, fun(x ,y)→q2 | q3,q4〉
SQL
{ SELECT (e2) FROM (e3) AS X, (e4) AS Y WHERE (e1)

(SQL-sort)

qi
SQL
{ ei i ∈ 1..2 ei , Ω

Sort〈fun(x)→q1 | q2〉
SQL
{ SELECT * FROM (e2) AS X ORDER BY (e1)

(SQL-host-expr)

�(σ , e)
SQL
{ SELECT BOLDR.EVAL(�(σ , e))

Figure 5: Translation from QIR to SQL

• if true thenq1 elseq2 → q1:

Γ ` true : bool Γ ` q1 : T Γ ` q2 : T

Γ ` if true thenq1 elseq2 : T

• if false thenq1 elseq2 → q2:

Γ ` true : bool Γ ` q1 : T Γ ` q2 : T

Γ ` if false thenq1 elseq2 : T

• [ ]@@@q → q:

Γ ` [ ] : T Γ ` q : T

Γ ` [ ]@@@q : T

• q@@@ [ ]→ q:

Γ ` q : T Γ ` [ ] : T

Γ ` q@@@ [ ] : T
12
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• (q1 ::q2)@@@q3 → q1 :: (q2 @@@q3):

Γ ` q1 : T Γ ` q2 : T list
Γ ` q1 ::q2 : T list

Γ ` q3 : T list

Γ ` (q1 ::q2)@@@q3 : T list
so:

Γ ` q1 : T Γ ` q2 : T list Γ ` q3 : T list
Γ ` q2 @@@q3 : T list

Γ ` q1 :: (q2 @@@q3) : T list

• { . . . , l : q, . . . } · l → q:

Γ ` { . . . , l : q, . . . } : {. . . , l : T , . . .}

Γ ` { . . . , l : q, . . . } · l : T

�

�e next step is to show that a normal form of QIR has a particular

shape depending on its type.

De�nition B.1. A normal form v of QIR is a �nite production of

the following grammar:

v ::= x
| funx (x)→v
| v v �rst v . funx (x)→v
| c
| op (v, . . . ,v)
| ifv thenv elsev �rst v . true and �rst v . false
| { l :v, . . . , l :v }
| [ ]
| v ::v
| v@@@v v . [ ] and �rst v . v ::v
| v · l v . { l :v, . . . , l :v }
| o〈v, . . . ,v | v, . . . ,v〉

We now isolate a subset of normal forms that are translatable

into SQL, that is a set of normal forms for which the translation

succeeds.

De�nition B.2 (Translatable normal forms). We de�ne translat-

able normal forms as the �nite terms produced by the following

grammar:

s ::= r :: [ ] | r :: s | s @@@ s | Project〈funx (x )→r | s 〉
| From〈b 〉 | Filter〈funx (x )→b | s 〉
| Join〈funx (x, x )→r, funx (x, x )→b | s, s 〉
| GroupBy〈funx (x )→s, funx (x )→r | s 〉
| Sort〈funx (x )→r | s 〉

r ::= x
| { l :b, . . . , l :b }

b ::= true | false | 0 | 1 | . . .
| ifb thenb elseb
| x · l
| op (b, . . . , b)

Lemma B.3. Let v be a normal form of QIR and Γ an environment
from QIR variables to QIR types such that ∀x ∈ dom(Γ).Γ(x) ≡ R, and
Γ ` v : T , then:
• If T ≡ B then v ≡ b or v ≡ s

• If T ≡ R then v ≡ r
• If T ≡ R list then v ≡ s
• If T ≡ R → B then v ≡ funx (x)→b
• If T ≡ R → R then v ≡ funx (x)→r
• If T ≡ R → R list then v ≡ funx (x)→s
• If T ≡ R list→ R then v ≡ funx (x)→r
• If T ≡ R → R → B then v ≡ funx (x)→funx (x)→b
• If T ≡ R → R → R then v ≡ funx (x)→funx (x)→r
• If T ≡ T → T then v ≡ funx (x)→v
• If T ≡ {l : T , . . . , l : T } then v ≡ x or v ≡ { l :v, . . . , l :v }

Proof.

Hypothesis 1 (H1). v is in normal form

Hypothesis 2 (H2). ∀x ∈ dom(Γ).Γ(x) ≡ R

We prove the property by structural induction on the typing

derivation of Γ ` v : T . We proceed by case analysis on T :

• IfT ≡ B then if the last typing rule used in the proof of Γ ` v : B
is the coercion rule, then Γ ` v : {l : B} list, so by induction

hypothesis v ≡ s else

– If v = x then impossible since Γ ` x : Γ(x) ≡ R by

Hypothesis H2

– Ifv = funf (x)→v ′ then impossible since Γ ` funf (x)→v ′ :

T1 → T2

– If v = v1 v2 then by the typing rule of the applica-

tion: Γ ` v1 : T1 → T2, so by induction hypothesis

v1 ≡ funx (x)→v , which is impossible by Hypothesis H1

– If v = c then v ≡ b
– If v = op (v1, . . . ,vn ) then by the typing rule of operators:

∀i ∈ 1..n, Γ ` vi : Bi , so by induction hypothesis ∀i ∈
1..n,vi ≡ b, so v = op (v1, . . . ,vn ) ≡ op (b, . . . ,b) ≡ b

– If v = ifv1 thenv2 elsev3 then by the typing rule of the

conditional expression: ∀i ∈ 1..3, Γ ` vi : Bi , so by induc-

tion hypothesis∀i ∈ 1..3,vi ≡ b, sov = ifv1 thenv2 elsev3 ≡

ifb thenb elseb ≡ b
– If v = { l1 :v1, . . . , ln :vn } then impossible since

Γ ` { l1 :v1, . . . , ln :vn } : {l1 :T1, . . . , ln :Tn }
– If v = [ ] then impossible since [ ] cannot be typed

– If v = v1 ::v2 then impossible since Γ ` v1 ::v2 : R list
– If v = v1 @@@v2 then impossible since Γ ` v1 @@@v2 : R list
– Ifv = v ′ ·l then by the typing rule of the record destructor:

Γ ` v ′ : {l1 :T1, . . . , ln :Tn }, so by induction hypothesis

either v ′ ≡ { l :v, . . . , l :v }, which is impossible by Hy-

pothesis H1, or v ′ ≡ x , then v = v ′ · l ≡ x · l ≡ b
– If v = Project〈v1 | v2〉 then impossible since

Γ ` Project〈v1 | v2〉 : R list
– If v = From〈v ′〉 then impossible since

Γ ` From〈v ′〉 : R list
– If v = Filter〈v1 | v2〉 then impossible since

Γ ` Filter〈v1 | v2〉 : R list
– If v = Join〈v1,v2 | v3,v4〉 then impossible since

Γ ` Join〈v1,v2 | v3,v4〉 : R list
– If v = GroupBy〈v1,v2 | v3〉 then impossible since

Γ ` GroupBy〈v1,v2 | v3〉 : R list
– If v = Sort〈v1 | v2〉 then impossible since

Γ ` Sort〈v1 | v2〉 : R list
13
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• If T ≡ R then

– If v = x then v ≡ r
– If v = funf (x)→v ′ then impossible since

Γ ` funf (x)→v ′ : T1 → T2

– If v = v1 v2 then impossible for the same argument as for

T ≡ B
– If v = c then impossible since Γ ` c : typeof(c) ≡ B
– If v = op (v1, . . . ,vn ) then impossible since

Γ ` op (v1, . . . ,vn ) : B
– If v = ifv1 thenv2 elsev3 then impossible since

Γ ` ifv1 thenv2 elsev3 : B
– If v = { l1 :v1, . . . , ln :vn } then by the typing rule of the

record constructor ∀i ∈ 1..n, Γ ` vi : Bi , so by induction

hypothesis∀i ∈ 1..n,vi ≡ b, sov = { l1 :v1, . . . , ln :vn } ≡
{ l :b, . . . , l :b } ≡ r

– If v = [ ] then impossible since [ ] cannot be typed

– If v = v1 ::v2 then impossible since Γ ` v1 ::v2 : R list
– If v = v1 @@@v2 then impossible since Γ ` v1 @@@v2 : R list
– If v = v ′ · l then by the typing rule of the record destruc-

tor: Γ ` v ′ : {l1 :T1, . . . , ln :Tn }, so by induction hypoth-

esis either v ′ ≡ { l :v, . . . , l :v }, which is impossible by

Hypothesis H1, or v ′ ≡ x , but then by Hypothesis H2

Γ ` v ′ ≡ x : Γ(x) ≡ R′, so impossible since by the typing

rule of the record destructor Γ ` v = v ′ · l : B
– If v = Project〈v1 | v2〉 then impossible since

Γ ` Project〈v1 | v2〉 : R list
– If v = From〈v ′〉 then impossible since

Γ ` From〈v ′〉 : R list
– If v = Filter〈v1 | v2〉 then impossible since

Γ ` Filter〈v1 | v2〉 : R list
– If v = Join〈v1,v2 | v3,v4〉 then impossible since

Γ ` Join〈v1,v2 | v3,v4〉 : R list
– If v = GroupBy〈v1,v2 | v3〉 then impossible since

Γ ` GroupBy〈v1,v2 | v3〉 : R list
– If v = Sort〈v1 | v2〉 then impossible since

Γ ` Sort〈v1 | v2〉 : R list
• If T ≡ R list then

– If v = x then impossible since Γ ` x : Γ(x) ≡ R by

Hypothesis H2

– If v = funf (x)→v ′ then impossible since

Γ ` funf (x)→v ′ : T1 → T2

– If v = v1 v2 then impossible for the same argument as for

T ≡ B
– If v = c then impossible since Γ ` c : typeof(c) ≡ B
– If v = op (v1, . . . ,vn ) then impossible since

Γ ` op (v1, . . . ,vn ) : B
– If v = ifv1 thenv2 elsev3 then impossible since

Γ ` ifv1 thenv2 elsev3 : B
– If v = { l1 :v1, . . . , ln :vn } then impossible since

Γ ` { l1 :v1, . . . , ln :vn } : {l1 :T1, . . . , ln :Tn }
– If v = [ ] then impossible since [ ] cannot be typed

– Ifv = v1 ::v2 then by the typing rule of the list constructor:

Γ ` v1 : R and Γ ` v2 : R list, so by induction hypothesis

v1 ≡ r and v2 ≡ s , so v = v1 ::v2 ≡ r :: s ≡ s

– If v = v1 @@@v2 then by the typing rule of the list concate-

nation: Γ ` v1 : R list and Γ ` v2 : R list, so by induction

hypothesis v1 ≡ s and v2 ≡ s , so v = v1 @@@v2 ≡ s @@@ s ≡ s
– If v = v ′ · l then impossible for the same argument as for

T ≡ R
– If v = Project〈v1 | v2〉 then by the typing rule of

Project: Γ ` v1 : R′ → R and Γ ` v2 : R′ list, so by

induction hypothesis v1 ≡ funx (x)→r and v2 ≡ s , so

v = Project〈v1 | v2〉 ≡ Project〈funx (x)→r | s〉 ≡ s
– If v = From〈v ′〉 then by the typing rule of From: Γ `
v ′ : string ≡ B, so by induction hypothesis v ′ ≡ b, so

v = From〈v ′〉 ≡ From〈b〉 ≡ s
– If v = Filter〈v1 | v2〉 then by the typing rule of Filter:

Γ ` v1 : R′ → bool and Γ ` v2 : R′ list, so by in-

duction hypothesis v1 ≡ funx (x)→b and v2 ≡ s , so

v = Filter〈v1 | v2〉 ≡ Filter〈funx (x)→b | s〉 ≡ s
– If v = Join〈v1,v2 | v3,v4〉 then by the typing rule of

Join: Γ ` v1 : R′ → R′′ → R, Γ ` v2 : R′ → R′′ → bool,

Γ ` v3 : R′ list and Γ ` v4 : R′′ list, so by induc-

tion hypothesis v1 ≡ funx (x ,x)→r , v2 ≡ funx (x ,x)→b,

v3 ≡ s and v4 ≡ s , so v = Join〈v1,v2 | v3,v4〉 ≡
Join〈funx (x ,x)→r , funx (x ,x)→b | s, s〉 ≡ s

– If v = GroupBy〈v1,v2 | v3〉 then by the typing rule of

GroupBy: Γ ` v1 : R′′ → R′ list, Γ ` v2 : R′ list → R
and Γ ` v3 : R′′ list, so by induction hypothesis v1 ≡

funx (x)→s , v2 ≡ funx (x)→r and v3 ≡ s , so

v = GroupBy〈v1,v2 | v3〉
≡ GroupBy〈funx (x)→s, funx (x)→r | s〉 ≡ s

– If v = Sort〈v1 | v2〉 then by the typing rule of Sort:

Γ ` v1 : R → R′ and Γ ` v2 : R list, so by induction

hypothesisv1 ≡ funx (x)→r andv2 ≡ s , sov = Sort〈v1 |
v2〉 ≡ Sort〈funx (x)→r | s〉 ≡ s

• If T ≡ R → B then

– If v = x then impossible since Γ ` x : Γ(x) ≡ R by

Hypothesis H2

– If v = funf (x)→v ′ then by typing rule of the function:

Γ,x : R ` v ′ : B, so by induction hypothesis v ′ ≡ b, so

v = funf (x)→v ′ ≡ funx (x)→b
– If v = v1 v2 then impossible for the same argument as for

T ≡ B
– If v = c then impossible since Γ ` c : typeof(c) ≡ B
– If v = op (v1, . . . ,vn ) then impossible since

Γ ` op (v1, . . . ,vn ) : B
– If v = ifv1 thenv2 elsev3 then impossible since

Γ ` ifv1 thenv2 elsev3 : B
– If v = { l1 :v1, . . . , ln :vn } then impossible since

Γ ` { l1 :v1, . . . , ln :vn } : {l1 :T1, . . . , ln :Tn }
– If v = [ ] then impossible since [ ] cannot be typed

– If v = v1 ::v2 then impossible since Γ ` v1 ::v2 : R list
– If v = v1 @@@v2 then impossible since Γ ` v1 @@@v2 : R list
– If v = v ′ · l then impossible for the same argument as for

T ≡ R
– If v = Project〈v1 | v2〉 then impossible since

Γ ` Project〈v1 | v2〉 : R list
– If v = From〈v ′〉 then impossible since

Γ ` From〈v ′〉 : R list

14
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– If v = Filter〈v1 | v2〉 then impossible since

Γ ` Filter〈v1 | v2〉 : R list
– If v = Join〈v1,v2 | v3,v4〉 then impossible since

Γ ` Join〈v1,v2 | v3,v4〉 : R list
– If v = GroupBy〈v1,v2 | v3〉 then impossible since

Γ ` GroupBy〈v1,v2 | v3〉 : R list
– If v = Sort〈v1 | v2〉 then impossible since

Γ ` Sort〈v1 | v2〉 : R list
• If T ≡ R → R then

– If v = funf (x)→v ′ then by typing rule of the function:

Γ,x : R ` v ′ : R, so by induction hypothesis v ′ ≡ r , so

v = funx (x)→v ′ ≡ funx (x)→r
– all other cases are impossible for the same arguments as

for T ≡ R → B
• If T ≡ R → R list then

– If v = funf (x)→v ′ then by typing rule of the function:

Γ,x : R ` v ′ : R list, so by induction hypothesis v ′ ≡ s , so

v = funx (x)→v ′ ≡ funx (x)→s
– all other cases are impossible for the same arguments as

for T ≡ R → B
• If T ≡ R list→ R then

– If v = funf (x)→v ′ then by typing rule of the function:

Γ,x : R list ` v ′ : R, so by induction hypothesis v ′ ≡ r , so

v = funx (x)→v ′ ≡ funx (x)→r
– all other cases are impossible for the same arguments as

for T ≡ R → B
• If T ≡ R → R → B then

– If v = funf (x)→v ′ then by typing rule of the function:

Γ,x : R ` v ′ : R → B, so by induction hypothesis v ′ ≡
funx (x)→b, so v = funx (x)→v ′ ≡ funx (x ,x)→b

– all other cases are impossible for the same arguments as

for T ≡ R → B
• If T ≡ R → R → R then

– If v = funf (x)→v ′ then by typing rule of the function:

Γ,x : R ` v ′ : R → R, so by induction hypothesis v ′ ≡
funx (x)→r , so v = funx (x)→v ′ ≡ funx (x ,x)→r

– all other cases are impossible for the same arguments as

for T ≡ R → B
• If T ≡ T1 → T2 then

– If v = funx (x)→v ′ then the property is true

– all other cases are impossible for the same arguments as

for T ≡ R → B
• If T ≡ {l1 : T1, . . . , ln : Tn }

– If v = x then the property is true

– If v = funf (x)→v ′ then impossible since

Γ ` funf (x)→v ′ : T1 → T2

– If v = v1 v2 then impossible for the same argument as for

T ≡ B
– If v = c then impossible since Γ ` c : typeof(c) ≡ B
– If v = op (v1, . . . ,vn ) then impossible since

Γ ` op (v1, . . . ,vn ) : B
– If v = ifv1 thenv2 elsev3 then impossible since

Γ ` ifv1 thenv2 elsev3 : B
– If v = { l1 :v1, . . . , ln :vn } then the property is true

– If v = [ ] then impossible since [ ] cannot be typed

– If v = v1 ::v2 then impossible since Γ ` v1 ::v2 : R list

– If v = v1 @@@v2 then impossible since Γ ` v1 @@@v2 : R list
– If v = v ′ · l then impossible for the same argument as for

T ≡ R
– If v = Project〈v1 | v2〉 then impossible since

Γ ` Project〈v1 | v2〉 : R list
– If v = From〈v ′〉 then impossible since

Γ ` From〈v ′〉 : R list
– If v = Filter〈v1 | v2〉 then impossible since

Γ ` Filter〈v1 | v2〉 : R list
– If v = Join〈v1,v2 | v3,v4〉 then impossible since

Γ ` Join〈v1,v2 | v3,v4〉 : R list
– If v = GroupBy〈v1,v2 | v3〉 then impossible since

Γ ` GroupBy〈v1,v2 | v3〉 : R list
– If v = Sort〈v1 | v2〉 then impossible since

Γ ` Sort〈v1 | v2〉 : R list

�

We have shown that well-typedness of a QIR term restricts its

syntactic form. We can �nally show that terms that have a relational

type can be translated into SQL by our speci�c translation.

Lemma B.4. Let v be a normal form of QIR such that v ≡ b, or

v ≡ r , or v ≡ s , then ∃!e ∈ ESQL such that v
SQL
{ e .

Proof. �e rules of Figure 5 used to derive the judgment

v
SQL
{ e are syntax-directed (at most one rule applies), and ter-

minate since the premises are always applied on a strict syntactic

subterm of the conclusion. �us, since v is �nite by de�nition of a

QIR term, the translation derivation is �nite and unique. We can

therefore prove our lemma by induction on the translation deriva-

tion. We will use HI (Hypothesis Induction) to denote the induction

hypothesis and proceed by case analysis.

• If v ≡ b then

– If v = c then:

(SQL-cst)

c
SQL
{
−−→
VALSQL(c)

– If v = ifb1 thenb2 elseb3 then:

(SQL-if)

(HI)

bi
SQL
{ ei

ei , Ω i ∈ 1..3

ifb1 thenb2 elseb3

SQL
{

SELECT CASE WHEN (e1) THEN (e2)

ELSE (e3) END

– If v = x · l then:

(SQL-tdestr-simpl)

(SQL-var)

x
SQL
{ X

x · l SQL
{ SELECT X.L

15
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– If v = op (b1, . . . ,bn ) then:

(SQL-basic-op)

(HI)

bi
SQL
{ ei

ei , Ω i ∈ 1..n

o(b1, . . . ,bn )
SQL
{ oSQL((e1), . . . , (en ))

• If v ≡ r then

– If v = x then:

(SQL-var)

x
SQL
{ X

– If v = { l1 :b1, . . . , ln :bn } then:

(SQL-record)

(HI)

bi
SQL
{ ei

ei , Ω i ∈ 1..n

{ l1 :b1, . . . , ln :bn }
SQL
{ SELECT (e1) AS X1, ..., (en) AS Xn

• If v ≡ s then:

– If v = r :: [ ] then:

(SQL-lcons-empty)

(HI)

r
SQL
{ e

e , Ω TMP fresh

r :: [ ] SQL
{ SELECT * FROM (e1) AS TMP

– If v = r :: s then:

(SQL-lcons)

(HI)

r
SQL
{ e1

(HI)

s
SQL
{ e2

ei , Ω
i ∈ 1..2

TMP, TMP2 fresh

r :: s
SQL
{ SELECT * FROM (e1) AS TMP UNION ALL (e2) AS TMP2

– If v = Project〈funf (x)→r | s〉 then:

(SQL-project)

(HI)

r
SQL
{ e1

(HI)

s
SQL
{ e2

ei , Ω i ∈ 1..2

Project〈funf (x)→r | s〉 SQL
{ SELECT e1 FROM (e2) AS X

– If q = From〈n〉 then:

(SQL-from)

From〈"table"〉 SQL
{ SELECT * FROM table

– If q = Filter〈funf (x)→r | s〉 then:

(SQL-�lter)

(HI)

r
SQL
{ e1

(HI)

s
SQL
{ e2

ei , Ω i ∈ 1..2

Filter〈funf (x)→r | s〉 SQL
{ SELECT * FROM (e2) AS X WHERE (e1)

– If q = Join〈funf (x ,y)→r , funf (x ,y)→b | s1, s2〉 then:

(SQL-join)

(HI)

r
SQL
{ e1

(HI)

b
SQL
{ e2

(HI)

si
SQL
{ ei

ei , Ω
i ∈ 3..4

Join〈funf (x ,y)→r ,
funд (x ,y)→b | s3, s4〉

SQL
{

SELECT (e2) FROM (e3) AS X,

(e4) AS Y WHERE (e1)

– If q = GroupBy〈funf (x)→s, funf (x)→r | s〉 then:

(SQL-group-by)

(HI)

si
SQL
{ ei

(HI)

r
SQL
{ e3

ei , Ω i ∈ 1..2 e3 , Ω

GroupBy〈fun(x)→s1,

fun(x)→r | s2〉
SQL
{

SELECT (e1) FROM (e2) AS X

GROUP BY (e3)

– If q = Sort〈funf (x)→r | s〉 then:

(SQL-sort)

(HI)

r
SQL
{ e1

(HI)

s
SQL
{ e2

ei , Ω i ∈ 1..2

Sort〈fun(x)→r | s〉 SQL
{ SELECT * FROM (e2) AS X ORDER BY (e1)

�

Last, but not least, we can prove our sound translation theorem

as a direct corollary of �eorem 4.1, and Lemmas B.3 and B.4.

Translation. Letq ∈ EQIR such that ∅ ` q : T , q →∗ v , andv is

in normal form. If T ≡ B or T ≡ R or T ≡ R list then v { s, SQL.

By �eorem 4.1, we have: ∅ ` v : T . �us, we can apply

Lemma B.3 and deduce: v ≡ b or v ≡ r or v ≡ s . Consequently, by

Lemma B.4, we obtain: v
SQL
{ s.Finally, we apply the rule (db-op) of

our generic translation, and since the speci�c translation was able

to translate v to SQL, it is able to translate the sources of the query

(which are syntactically strict subterms of v) to SQL. �erefore, the

rule (db-op) succeeds at translating v to a term of SQL. �

C FROM R TO QIR
We give some technical details of our translation from R to QIR.

Even though we do not modify the parsing of R programs, we still

need to translate R closures into QIR λ-expressions. For instance,

given the R program:

less2000 = function (x) { x <= 2000 }

t = tableRef("employee", "PostgreSQL")

subset(t, less2000(sal))

we want to end up with the QIR term (before normalization):

(fun(less2000, t )→
Filter〈fun(r )→less2000r · sal | t〉
)(fun(x)→ ≤ (x , 2000), From〈employee〉)

which becomes, a�er normalization:

Filter〈fun(r )→ ≤ (r · sal, 2000) | From〈employee〉〉
While it seems obvious from this example that the function less2000

should be translated into the λ-term fun(x)→ ≤ (x , 2000), it is

not always sound to do so. Indeed, a variable x can be soundly

16
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γ ,σ ` c
R
{

R −−→
VAL(c)

x < γ

γ ,σ ` x
R
{ x

γ ,σ ` e1

R
{ q1 γ ,σ ` e2

R
{ q2

t fresh

{y1, . . . ,ym } = FV (e2) \ dom(σ )
q′

2
= q2{y1/t · y1, . . . ,ym/t · ym }

γ ,σ ` subset(e1, e2, c(x1, . . . , xn ))
R
{ Project〈fun(t )→{ li : t · li } | Filter〈fun(t )→q′

2
| q1〉〉

γ ,σ ` e1

R
{ q1 γ ,σ ` e2

R
{ q2

γ ,σ ` merge(e1, e2, c(x1, . . . , xn ))
R
{

Join〈fun(x ,y)→x ./ y,
fun(a,b)→∧

i a · xi = b · xi | q1,q2〉

γ ,σ ` e1

R
{ q1 . . . γ ,σ ` en

R
{ qn

γ ,σ ` c(e1, . . . , en )
R
{ [q1, . . . ,qn ]

γ ∪ {x1, . . . ,xn },σ ` e
R
{ q

γ ,σ ` function(x1, . . . , xn) {e}
R
{ fun(x1, . . . ,xn )→q

γ ,σ ` e
R
{ q γ ,σ ` e1

R
{ q1 . . . γ ,σ ` en

R
{ qn

γ ,σ ` e(e1, . . . , en )
R
{ q q1 . . . qn

γ ,σ ` e1

R
{ q1 . . . γ ,σ ` en

R
{ qn

γ ,σ ` op e1 . . . en
R
{ op (q1, . . . ,qn )

γ ,σ ` e1

R
{ q1 γ \ {x},σ ` e2

R
{ q2

γ ,σ ` (x = e1); e2

R
{ (fun(x)→q2) (q1)

x < Mod(σ , e2)

γ ,σ ` e1

R
{ q1 γ ,σ ` e2

R
{ q2 γ ,σ ` e3

R
{ q3

γ ,σ ` if (e1) e2 else e3

R
{ ifq1 thenq2 elseq3

γ ,σ ` e
R
{ �(σ , e)

otherwise

Figure 6: Translation from R to QIR terms

translated into a QIR variable x if it is not the subject of side e�ects

(in particular for function parameters), otherwise accesses to x
must be nested inside host language expressions �(σ , x) so that the

correct value for x can be retrieved.

�e set of modi�ed variables can be approximated by the Mod
function de�ned as such:

De�nition C.1 (Approximation of modi�ed variables). Let e ∈ ER
be an expression and σ an evaluation environment for R. �e set

Mod(σ , e) of modi�ed variables in e is inductively de�ned as:

Mod(σ , x) = {} if x < dom(σ )
Mod(σ , x = e) = {x} ∪Mod(σ , e)
Mod(σ , x) = {} if σ (x) , functionσ ′(. . .). . .
Mod(σ , x) = Mod(σ ′ ∪ σ , e ′)

if σ (x) = functionσ ′(. . .)e
′

Mod(σ , function(...)e) = Mod(σ , e)
Mod(σ , c) = {}

Mod(σ , e1;e2) = Mod(σ , e1) ∪Mod(σ , e2)

Mod(σ , e(e1, . . . , en )) = Mod(σ , e) ∪
⋃n
i=1

Mod(σ , ei )
...

�e �rst �ve cases of the Mod function are the most interesting

ones (the others being only bureaucratic subterm calls). First, if a

variable is used, but is not in the current scope, it is not marked

as modi�ed. If the variable is being assigned to, then it is added

to the set of modi�ed variables. If the variable is bound in the

current scope, to a value that is not closure, then it is also marked

as unmodi�ed. However, if a variable is bound to a closure, then the

body of the la�er is traversed, in an environment augmented with

the closure environment. Lastly, the body of anonymous functions

are recursively explored to collect modi�ed variables. We can now

tackle the translation from R expressions to QIR terms.

De�nition C.2. We de�ne the judgment γ ,σ ` e
R
{ q, which

means that given a set of modi�ed variablesγ and an R environment

σ , the R expression e can be translated into a QIR expression q. �e

derivation of this judgment is given by the rules in Figure 6. We

de�ne the translation
R−−→EXP(σ , e) = q as Mod(σ , e),σ ` e

R
{ q.

�is translation is straightforward and kept as simple as possible.

Constants are translated into QIR equivalents. Identi�ers that are

not modi�ed are also translated into their QIR counterpart. Anony-

mous functions are translated into QIR lambdas. More interesting is

the translation of the builtin function subset. Its �rst two arguments

are recursively translated, but the second one requires some post-

processing. Recall that in the case of subset, the second argument

e2 contains free variables bound to column names. We simulate

this behavior by introducing a lambda abstraction whose argument

is a fresh name t and replace all occurrences of a free variable x in

the translation by t · x . �e last argument is expected to be a list of

column names we use to build a lambda abstraction to project over

these names. �e merge function is similarly translated into a Join
operator. �e last interesting case is when a local variable is de�ned

in a sequence of expressions. If this variable is not modi�ed in the

subsequent expression, then we can translate this de�nition into a

lambda application. Expressions that are not handled (in particu-

lar modi�ed variables) are kept in host expression nodes that will

be evaluated either locally, in a QIR term that is not shipped to a

database, or remotely, using the R runtime embedded in a database.

Now that we have de�ned the translation of expressions in a

given scope, we can easily de�ne the translation of values from R
17
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to QIR. �e translation of constants, sequences and data frames is

straightforward. �e translation of a closure

function(x
1
, . . . , xn)σ {e} is simply the translation of the body

wrapped in a lambda: fun(x1, . . . ,xn )→R−−→EXP(σ , e).
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