N -

Static and Dynamic Semantics of
NoSQL Languages

POPL 2013, Rome, Jan. 23-25 2013

Véronique Benzaken! Giuseppe Castagna®
Kim Nguyén! Jéréme Siméon3

LRI, Université Paris-Sud, Orsay, France Sgﬁ‘?'s % ——
CNRS, PPS, Univ Paris Diderot, Paris, France i i
IBM Watson Research, Hawthorne, NY, USA

Not Only SQL?

SQL (and the Relational DBMS) are not good for everything

NoSQL is class of Database Management Systems that :
m Optimized for scalability and performances

m Often implemented on top of MapReduce* frameworks
* : distributed computations as the combination of node-local
operations (Map) and global agregation of intermediary results
(Reduce)

m Data-intensive applications

Not Only SQL?

SQL (and the Relational DBMS) are not good for everything

NoSQL is class of Database Management Systems that :
m Optimized for scalability and performances

m Often implemented on top of MapReduce* frameworks
* : distributed computations as the combination of node-local
operations (Map) and global agregation of intermediary results
(Reduce)

m Data-intensive applications

Writing applications directly with MapReduce is tedious

Introduction

NoSQL programming languages

High-level sequence operations (compiled to MapReduce)

]
m Often less expressive than SQL (no join for instance)
m Collection of tuples, key-value pairs (records), ...

(]

Flat or nested model

Introduction

NoSQL programming languages

High-level sequence operations (compiled to MapReduce)

]
m Often less expressive than SQL (no join for instance)
m Collection of tuples, key-value pairs (records), ...

(]

Flat or nested model

Problems :
m Not standard (yet) : Jaql, Pig/Latin, Sawzall, UnqL, ...
m No formal semantics = hard to reason about the code

m Weak notion of schema (data types) = hard to specify program
input/output (unusual for the DB community)

m No static typing (usual for the DB community)

NoSQL programming languages

High-level sequence operations (compiled to MapReduce)

]
m Often less expressive than SQL (no join for instance)
m Collection of tuples, key-value pairs (records), ...

(]

Flat or nested model

Problems :
m Not standard (yet) : Jaql, Pig/Latin, Sawzall, UnqL, ...
m No formal semantics = hard to reason about the code

m Weak notion of schema (data types) = hard to specify program
input/output (unusual for the DB community)

m No static typing (usual for the DB community)

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000},

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" 7},

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" 7},

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" },
empls -> filter each x (x.salary > 2000) ->

transform x with { x.*, kind:"employee" }

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" 7},

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" 7},

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" 7},
empls -> filter each x (x.salary > 2000) ->

transform x with { x.*, kind:"employee" }

)

Question : what's the type of union?

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" 7},
empls -> filter each x (x.salary > 2000) ->

transform x with { x.*, kind:"employee" }

)

Question : what's the type of union?
Va.[al — [a]l — [a] seems too restrictive. ..

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" 7},
empls -> filter each x (x.salary > 2000) ->

transform x with { x.*, kind:"employee" }

)

Question : what's the type of union?
Voa.lal — [a]l — [a] seems too restrictive. ..
[any] — [any] — [any] seems too imprecise...

Introduction

Jaqlin a nutshell
Data-model is JavaScript Object Notation (JSON)

//sequence of department records

depts = [{depnum:154, name:"HR", size:40}, ... 1;
//sequence of employee records

empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union (

depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" 7},

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what's the type of union?

Va.[a]l — [al — [a] seems too restrictive. ..

[any] — [any] — [any] seems too imprecise...

“Some sophisticated dependent type"” what about type inference ?

Introduction

Outline

Using semantic subtyping to define JSON schema

A way to precisely describe the data

Filters
Recursive combinators that implement sequence iterators

Filters (Types)

Evaluating the program over an input type to compute the output type

Disclaimer : I'm “mostly” telling the truth (details in the paper)

JSON schema using regular expression types

What type can we give to depts, employee and the result of union?

type Depts = [{size:int, name:string, depnum:int}*]
type Emp = [{name:string, depid: string, salary:int }*]

JSON schema using regular expression types

What type can we give to depts, employee and the result of union?

type Depts = [{size:int, name:string, depnum:int}*]

type Emp = [{name:string, depid: string, salary:int }*]

[({size:int, name:string, depnum:int; kind:"department" }
|{name:string, depid:string, salary:int; kind:"employee"})*]

JSON schema using regular expression types

What type can we give to depts, employee and the result of union?

type Depts = [{size:int, name:string, depnum:int}*]
type Emp = [{name:string, depid: string, salary:int }*]

[({size:int, name:string, depnum:int; kind:"department" }
|{name:string, depid:string, salary:int; kind:"employee"})*]

How can we achieve that?

Semantic subtyping 1/2

Definition (Types)

t:=int | string| ... (basic types)
| ‘nil|42] ... (singleton types)
| (t,t) (products) wT(
| {et,... 0t} (closed records) ‘nil
| {tt,... 6t,.} (open records) |({"name" : string,..},T)
| t|t (union types) ' Ereets
| t&t (intersection types))
| -t (negation type) | =
empt empty type
i ang ’ ((:Enz tzge; [{name: string, ..}*]
| uT.t (recursive types)
|)

T (recursion variable

Semantic subtyping 2/2

Definition (Semantic subtyping)

s<te[s] C[t]

[-] : set-theoretic interpretation : a type is the set of the value that
have that type

m Arbitrary reqular expressions : [char+ (int|bool)?]

m Semantic equivalence of types :
m (int,int)|(2,4) = (int,int)
m {"id":int,..}&{"here":bool,..} = {"id":int, "here":bool,..}
m {"id":int,..}|{"id":bool,..} = {"id": (int | bool),..}

m Decidable emptiness (since s < t < s&~t = empty)

m Decidable finiteness (since types are regular)

Basic expressions

Definition (Basic expressions)

e =c (constants)
| x (variables)
| (e, e) (pairs)
| {ee,.. ee} (records)
| e+e (record concatenation)
| e\/ (field deletion)
| op(e,...,e) (built-in operators)
| fe (filter application)

Example
{"age":30, "name":"Kim"} + {"age":31} ~~» {"age":31,"name":"Kim"}
{"age":30, "name": "Kim"} \ "name" ~~ {"age":30}

{strconcat("a", "ge"):30} ~» {"age":30}

Basic expression typing

[VARS] [CONSTANT] [PrROD]
lFer:th THe: b

M= x:M(x) l-c:c M- (e1, e): (t1,t2)

[FOREIGN]

lFer:th -+ Thep:t,

I+ op(ei,...,en) : type((T, x1:t1, ..., Xn:tn),0p(X1,.., Xn))

[RcD-FIN] [RCD-INF]
Fr-e:lq]--|tp THE: t lte:t THe':t t<string

M+ {ewe’}: {ta:t}] - |{n:t} Mt {ewe’}:{.} tisinfinite

Filters
Definition (Filters)

F ;=>f (ex?;itsgzi ai=x (variables)
| FIf (union) | (constan.ts)
| Fif (composition) } Ea) ¢} (rng)l:dsg
| (F,F) (product)
| {&:f,....¢f, ..} (record) _
| let X=fF (rec. definition) pi= types with .
| Xa (quarded rec.) capture variables

Definition ((Big-step) semantics of filters)

0;Y Feava F(V) ~ 1

§ : recursion variable environment
v : capture variable environment
r is either a value or Q (error)

Filters (by example)

Jaql expression Filter
Field access | e ./ e;{l:x,.}=>x
Conditional | 1T €1 then e1; ‘true=>e; | ‘false=>e3
else e3
Filter filter each x let X =
with x.size < 50 ‘nil => ‘nil
|(x,xs)=> if x.size < 50
then (x,X xs)
else X xs
t:.fansform each x let X = ‘nil => ‘nil
Transform | with " W _
{x.%,age:x. age+1} | ({"age" :/=>/+1, ..},y=>Xy)

12: 18

Typing filter application

“Evaluate the filter on the type of its argument”

Type inference

Typing filter application

“Evaluate the filter on the type of its argument”
Definition (Type inference)
MA;MbEg f(t): s
[" capture variable environment
A recursion variable environment
M memoization environment (for recursive types)

Frut/p;A;MbEgf(t):s i=1,2 T;A;Mbgfi(t):s;

A t<1pJ A
M A;MbEg p=>f(t):s M0 M b fALA(E): si]s2

MA (X = F) ;M (X, t)—= T)bg F(t):s
M A MbE, (let X=F)(t):uT.s

T fresh

t = type(l, a)
FAM by (Xa)(s): T (o= T)eM

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

Type inference

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil uwT.‘nil
| ({"age" :i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil uwT.‘nil
| ({"age" :i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Environments Output type

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let YV =‘nil =>‘nil ul.fnil
| ({"age" :i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Environments Output type

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let YV =‘nil =>‘nil ul.fnil
| ({"age" :i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Environments Output type
Y(T)— U pU.

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil uwT.‘nil
| ({"age" :i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Environments Output type
Y(T)— U pU. |

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil pT.‘nil
| ({"age" :i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Environments Output type
Y(T)— U pU.‘nil|

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil uwT.‘nil
| ({"age" :i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Environments Output type
Y(T)— U pU . nil(,)

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil uwT.‘nil
| ({"age" :i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Environments Output type
Y(T)— U pU.‘nil|({"name":string, "age": },)

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil uwT.‘nil
| ({"age" :/i=>i+ 1, ..},y=>Y y) |({"name":string, "age":int},T)

Environments Output type
Y(T)— U pU.‘nil|({"name":string, "age":int},)
[— int

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil uwT.‘nil
| ({"age" :i=>i+ 1, ..},y=>Y)) |({"name":string, "age":int},7)

Environments Output type

Y(T)— U pU.‘nil|({"name":string, "age":int},)
[— int
y—=T

Type inference m

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.aget+l }
to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil uwT.‘nil
| ({"age" :i=>i+ 1, ..},y=>Y)) |({"name":string, "age":int},T)

Environments Output type

Y(T)—~ U pU.‘nil|({"name":string, "age":int},U)
[— int
y—=T

Type inference m

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil

1(x,y)=>Y(x,(x,y)) applied to 7. ‘nil|(int, T)

Type inference

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
[(x,y)=>Y(x,(x,y))

Y(T)— U

appliedto 7. ‘nil|(int,7)

Type inference

Typing problem : Termination

What about :
let Y = ‘nil =>‘nil
[(x,y)=>Y(x,(x,y))

Y(T) = Uy
Y((int,(int, 7))) — U-
Y((int,(int,(int,(int, 7))))) — Us

appliedto 7. ‘nil|(int,7)

Type inference

Typing problem : Termination

What about :
let Y = ‘nil =>‘nil
[(x,y)=>Y(x,(x,y))

Y(T) = Uy
Y((int,(int, 7))) — U-
Y((int,(int,(int,(int, 7))))) — Us

appliedto 7. ‘nil|(int,7)

How to refuse such ill-founded filters ?

Type inference

Typing problem : Termination

What about :
let Y = ‘nil =>‘nil
[(x,y)=>Y(x,(x,y))

Y(T) = Uy
Y((int,(int, 7))) — U-
Y((int,(int,(int,(int, 7))))) — Us

appliedto 7. ‘nil|(int,7)

How to refuse such ill-founded filters ?
Assign an identifier to each (term) variable : x — i1, y +— £,

Type inference

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
|(X,y)=>Y(X,(X,y))
Y(T)— Uy

Y((int,(int, 7))) — U-
Y((int,(int,(int,(int, 7))))) — Us

appliedto 7. ‘nil|(int,7)

How to refuse such ill-founded filters ?
Assign an identifier to each (term) variable : x — i1, y +— £,
For each recursive call, build an abstract value : (/1, (/1. /4))

Type inference

Typing problem : Termination

What about :
let Y = ‘nil =>‘nil
[(x,))=>Y (x, (x,y))

Y(T) = Uy
Y((int,(int, 7))) — U-
Y((int,(int,(int,(int, 7))))) — Us

appliedto 7. ‘nil|(int,7)

How to refuse such ill-founded filters ?
Assign an identifier to each (term) variable : x — i1, y +— £,
For each recursive call, build an abstract value : (i1, (i, /2))

Apply the filter to the abstract values. Variables must be bound to
exactly one identifier : x — /i1, y +— (i1, i)

Type inference m

Notable results

Type safety (of course!)
If o, @, f(t): s, thenVv:t, ;0 k., F(v)~ rimpliesr:s
(in particular, r # Q)

Precise typing of record expressions

Summary and future work m

Notable results

Type safety (of course!)
If o, @, f(t): s, thenVv:t, ;0 k., F(v)~ rimpliesr:s
(in particular, r # Q)

Precise typing of record expressions

Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

Summary and future work m

Notable results

Type safety (of course!)
If o, @, f(t): s, thenVv:t, ;0 k., F(v)~ rimpliesr:s
(in particular, r # Q)

Precise typing of record expressions

Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

Summary and future work m

Notable results

Type safety (of course!)
If o, @, f(t): s, thenVv:t, ;0 k., F(v)~ rimpliesr:s
(in particular, r # Q)

Precise typing of record expressions

Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

Arbitrary filters are Turing-complete

Summary and future work m

Notable results

Type safety (of course!)
If o, @, f(t): s, thenVv:t, ;0 k., F(v)~ rimpliesr:s
(in particular, r # Q)

Precise typing of record expressions

Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

Arbitrary filters are Turing-complete

@ Typeable filters are more-expressive than Top-down tree
transducers with regular look-ahead

Summary and future work m

Notable results

Type safety (of course!)
If o, @, f(t): s, thenVv:t, ;0 k., F(v)~ rimpliesr:s
(in particular, r # Q)

Precise typing of record expressions

Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

Arbitrary filters are Turing-complete

@ Typeable filters are more-expressive than Top-down tree
transducers with regular look-ahead

Sound (approximate) typing of non structural operators (group_by,
join, order_by, ...)

Summary and future work m

Some thoughts...

m DB community always comes up with interesting languages :
SQL, XML query languages, NoSQL languages, RDF querying...
m Almost never a decent "safety oriented” static analysis
m Filter as type level combinators allows us to balance :
m expressivity
m decidability
m precision
B exotic use of polymorphism and subtyping
with some costs

m Not for higher-order languages
m Modularity

Summary and future work 17: 18

Summary, future work

Summary :
Precise JSON schema via regexp type via semantic subtyping
Expressive calculus of combinators to encode iterators
Precise typing of filter application

= framework for ensuring type-safety of NoSQL programs

Future work :
Relax some conditions on static analysis (allows one to express

count, average, sum and other numerical agregate functions)
let X =(c,‘nil)=>c
[(c,(x,x5))=>X (c + x, xs)

Implementation effort to integrate in the Jaql framework
Study connections between filters and the actual compilation
scheme (MapReduce)

Summary and future work 18: 18

	Introduction
	Types
	Filters
	Type inference
	Summary and future work

