
No d’ordre 9 0 1 5

Langage de combinateurs pour XML
Conception

Typage
Implantation

Thèse
présentée et soutenue publiquement

le 7 Mai 2008
par

Kim NGUYỄN

pour l’obtention du titre de

Docteur de l’Université Paris-Sud 11
mention informatique

devant le jury composé de

Mme Véronique Benzaken directrice de thèse
M. Giuseppe Castagna co-directeur de thèse
M. Haruo Hosoya rapporteur
Mme Christine Paulin-Mohring
M. Peter Thiemann rapporteur
M. Philip Wadler

Remerciements

Je tiens à remercier en premier lieu mes directeurs de thèse, Véronique Benza-
ken et Giuseppe Castagna. Véronique en m’accueillant au LRI a su encadrer

ma recherche avec la rigueur nécessaire, tout en me laissant une grande liberté de
travail. Les expériences d’enseignement que j’ai eu a ses côté ont été un plaisir et une
formation véritable et ont participé, au même titre que la recherche scientifique, à
faire de ma thèse une expérience humaine et enrichissante. Giuseppe, quant à lui,
a su prodiguer aide et conseils lorsque cela était nécessaire. C’est peu dire qu’il n’a
pas ménagé sa peine lors de mon encadrement et en particulier pour la rédaction de
cette thèse. Le travail d’encadrement accompli n’a d’égal que l’excellence du niveau
scientifique dont il a pu me faire profiter. À tous les deux, je veux dire encore une fois
merci. Le qualité scientifique, la grande humilité et honnêteté face à la recherche, le
dévouement (il n’y a pas d’autre mot) et la chaleur humaine que vous avez témoignée
lors de ma thèse sont à mes yeux sans prix. Je remercie également Alain Frisch, qui
a encadré mon stage de DEA ainsi que le début de ma thèse. C’est une grande chance
pour moi d’avoir pu poursuivre humblement les travaux qu’il a initiés avec sa thèse.

Je tiens également à remercier mes rapporteurs, Messieurs Haruo Hosoya et Pe-
ter Thiemann. Tous deux se sont acquittés de la lourde tâche de lecture du présent
manuscrit. Ils l’ont effectuée avec une diligence que j’apprécie profondément.

Christine Paulin et Philip Wadler m’ont fait l’honneur de participer à mon
jury, qu’ils en soient ici remerciés.

Je remercie mes collègues du LRI, de l’équipe BD ainsi que les membres de l’ACI
Tralala, aux côtés desquels j’ai passé ces trois (bon ok, quatre) années de thèse. Parmi
ceux avec lesquels j’ai collaboré, je tiens à remercier plus particulièrement Dario
Colazzo, instigateur du travail sur les type projectors, avec lequel j’espère continuer
à travailler dans une ambiance toujours aussi enjouée et amicale.

Je remercie finalement mes amis, Cédric, Sammy, Ignacy, Pierre-Yves, Alex, Émi-
lie, Laurence, l’autre Laurence, Bertrand, Guillaume, Matthieu, Parmi les amis,
l’un d’entre eux mérite une mention spéciale, mon vieux binôôôme Sylvain. Merci
compère, pour l’amitié, la compétition et le cabernet d’Anjou.

Finalement cette thèse ne serait pas sans le soutien des très proches. Ma Laurette,
son amour et son soutient sans faille (même pendant la rédaction, surtout pendant
la rédaction). Mes parents pour leur affection, l’éducation qu’ils m’ont donnée, qui
ont fait de moi ce que je suis et par la même de cette thèse ce qu’elle est; ainsi que
pour leur confiance tranquille dans ce que je fais, même si je n’ai pas toujours pris le
temps de leur expliquer (désolé !). Ma soeur Yohanna, à qui je dois entre autre d’avoir
utilisé la fonte Dolly pour ce manuscrit (d’ailleurs si tu as une minute, on écrit «
xml » ou « XML » ?) et qui, par sa réussite, me force à ne pas trop rester à la traîne.

À tous, un grand grand merci, vous m’êtes très chers.

v

Abstract
We study in this thesis the design of a programming language for XML. Many exist-
ing works tackle this problem: main-stream languages coupled with XML libraries
(C, Java, . . .), “standardized” languages for XML (XSLT, XQuery, XPath), specialized
languages (XDuce, CDuce, XTatic, . . .) and lastly, restricted formalisms (k-peeble
tree transducers, macro-tree transducers, regular expression filters). There are many
flaws in these current approaches : main-stream and standardized languages do not
take XML types into account (they are very lightly typed at best), specialized lan-
guages suffers from a complex type-system (requiring the programmer to heavily
annotate his/her code), do not feature type inference and provide poor code modu-
larity. Restricted formalisms, which seem to best fulfill our expectations are neither
practical (macro-tree transducers, k-peeble tree transducers) nor sufficiently expres-
sive (regular expression filters cannot encode XPath expression for instance).

Our solution consists of a restricted language of combinators, dubbed filters,
which features a precise typing policy, a type inference algorithm and are powerful
enough to express complex XML transformations (XPath encoding, XSLT transfor-
mations, . . .).

The first part of this thesis is devoted to the theoretical definition of the core
language, its semantics and its type system as well as a type inference algorithm.
In a second part, we study practical aspects of this language such as its embedding
in a full-fleged language (CDuce) and give an encoding of a non-trivial fragment of
XPath into filters. We also show how to use the typing informations to optimize the
loading of an XML document.

Résumé
Nous étudions dans cette thèse la conception d’un langage de programmation

pour XML. De nombreuses approches à ce problème existent déjà : langages géné-
ralistes avec des bibliothèques XML (C, Java, . . .), langages « standards » pour XML
(Xslt , XQuery, XPath), langages spécialisés (XDuce, CDuce, XTatic,. . .) et finale-
ment, formalismes restreints (k-peeble tree transducers, macro-tree transducers, regular
expression filters). Toutes ces approches souffrent de défauts : l’absence de discipline
de typage « sérieuse » pour les langages généralistes et standards, un typage trop
contraignant (nécessité pour le programmeur d’annoter lourdement le code, pas d’in-
férence de type, peu ou pas de modularité du code) pour les langages spécialisés. Les
formalismes restreints, qui semblent répondre au problème sont soit difficilement
utilisables en pratique (k-peeble tree transducers, macro-tree transducers) soit trop peu
expressifs pour pouvoir exprimer des programmes intéressants (regular expression fil-
ters).

Notre solution consiste en un langage restreint de combinateurs, appelés filtres,
qui possède à la fois une discipline de typage précise, de l’inférence de type et une
expressivité suffisante pour exprimer des transformations XML complexes (encodage
d’XPath, transformations Xslt , . . .).

vi

Une première partie de la thèse est consacrée à la définition théorique du langage,
sa sémantique, son système de type ainsi que la définition d’un algorithme d’infé-
rence de types. Dans une seconde partie, nous étudions des aspects pratiques, tels
que le plongement de ce langage restreint dans un langage plus généraliste (CDuce)
et donnons aussi un encodage d’un fragment non trivial du standard XPath dans
nos filtres. Nous montrons aussi comment utiliser les informations de typage pour
optimiser le chargement d’un document en mémoire.

Note : Afin d’en assurer une plus large diffusion, et en accord avec l’école doctorale
d’informatique de Paris-Sud 11, cette thèse est rédigée majoritairement en anglais. Un
résumé étendu en français des travaux se trouve en page 195.

vii

viii

Contents

Abstract/Résumé v

List of Figures xii

List of Tables xiii

List of Symbols xiv

I Introduction 1

1 Introduction 3
1.1 The XML standard . 3
1.2 Programming with XML . 5

1.2.1 Statically typed languages for XML 7
1.2.2 Statically and precisely typed are not enough! 9

1.3 A solution . 12
1.4 State of the art . 13

1.4.1 Polymorphic type-systems for XML 14
1.4.2 Hard-coded constructs . 15
1.4.3 Iterator languages . 17
1.4.4 Tree-transducers, backward type inference 18

1.5 Contributions . 19
1.5.1 Filters and their semantics (Chapter 3) 20
1.5.2 A type-system for filters (Chapter 4) 21
1.5.3 Type inference algorithm (Chapter 5) 21
1.5.4 Concrete language (Chapter 6) 22
1.5.5 XPath encoding (Chapter 7) . 24
1.5.6 Static pruning and typing of XQuery (Chapter 8) 24

2 Notations 27
2.1 Basic notations . 27
2.2 Regular trees . 29

2.2.1 Symbols . 29
2.2.2 Trees . 29
2.2.3 Explicit recursion . 32
2.2.4 Properties . 33

ix

2.3 Proofs and trees . 34
2.3.1 Inference systems, derivations 34
2.3.2 Induction and coinduction . 34

2.4 CDuce . 36
2.4.1 Values . 36
2.4.2 Types . 37
2.4.3 Patterns . 40

II Filter calculus 45

3 Filters 47
3.1 Rationale . 47
3.2 Filter calculus . 50
3.3 Operational semantics . 51
3.4 Examples . 52

3.4.1 Simple filters . 53
3.4.2 Alternative, first match policy 53
3.4.3 Recursive filters . 54
3.4.4 Composition . 54

3.5 Termination . 57

4 Static semantics 61
4.1 Type-system . 61

4.1.1 General presentation . 61
4.1.2 Typing the composition . 64
4.1.3 Typing the union . 66

4.2 Properties . 68
4.2.1 Use of the subsumption . 68
4.2.2 Subject reduction . 73
4.2.3 Monotonicity . 75

5 Type inference 83
5.1 Presentation . 83
5.2 Type-inference Algorithm . 84
5.3 Properties . 89

5.3.1 Termination . 89
5.3.2 Soundness . 91
5.3.3 Completeness . 95

III Implementation 103

6 Concrete language 105
6.1 Introduction . 106

6.1.1 Basic syntax . 106
6.1.2 XML filters . 107

x

6.1.3 Recursive filters . 108
6.1.4 Filter annotations . 108

6.2 Examples . 111
6.2.1 Pattern-matching . 111
6.2.2 Map-like filters . 112
6.2.3 Non local transformations . 114
6.2.4 Annotations . 116

6.3 Syntactic extensions . 116
6.3.1 Deletion . 116
6.3.2 Filter parameters . 118
6.3.3 Regular expression filters . 120

6.4 Type inference algorithm . 123
6.5 Compilation . 125

6.5.1 Compilation target . 125
6.5.2 Tail-recursive list traversal . 126
6.5.3 Filter specialization . 127
6.5.4 Evaluation without backtracking 128

7 XPath encoding, approximations 131
7.1 XPath-like expressions . 131

7.1.1 XPatht expression, automata 132
7.1.2 Filter encoding . 139

7.2 Type annotations . 144
7.3 XPath and XPatht . 148

7.3.1 Basic features . 148
7.3.2 Predicates . 148

8 Type-based XML projection 151
8.1 Document pruning . 152
8.2 Notations . 153

8.2.1 Data Model . 153
8.2.2 DTDs and validation . 154
8.2.3 Type projectors . 156

8.3 XPath and XPath` . 157
8.3.1 Simple paths . 158
8.3.2 Predicates . 159
8.3.3 Handling XPath predicates . 160

8.4 Static Analysis . 164
8.4.1 Type inference . 164
8.4.2 Type-Projection inference . 174
8.4.3 Adding sibling, preceding and following axes. 178

8.5 Extension to XQuery . 178
8.6 Experiments . 181

xi

IV Conclusion 185

9 Conclusion 187
9.1 Summary . 187
9.2 Future work . 188

9.2.1 Dynamic semantics, expressivity 189
9.2.2 Type-system, approximations 189
9.2.3 Concrete language, compilation 189
9.2.4 XPath encoding . 190
9.2.5 Type projectors . 190
9.2.6 To infinity. . . and beyond! . 190

Appendix 195

Résumé étendu 195
A.1 Contexte . 195
A.2 Programmer avec XML . 198

A.2.1 Langages statiquement typés pour XML 199
A.2.2 « Y’a pas que le statique et le précis dans la vie » 201
A.2.3 Une solution . 203

A.3 État de l’art . 205
A.3.1 Système de types polymorphes pour XML 205
A.3.2 Itérateurs prédéfinis . 206
A.3.3 Langages d’itérateurs . 206
A.3.4 Transducteurs d’arbres et inférence de type arrière 207

A.4 Contributions . 207
A.4.1 Les filtres et leur sémantique (chapitre 3) 207
A.4.2 Système de type (chapitre 4) 209
A.4.3 Algorithme d’inférence de type (chapitre 5) 210
A.4.4 Langage concret, implantation (chapitre 6) 210
A.4.5 Encodage d’XPath (chapitre 7) 211
A.4.6 Élagage statique et typage d’XQuery (chapitre 8) 212

A.5 Conclusion et travaux futurs . 213

Bibliography 215

xii

List of Figures

1.1 A simple XML document . 4
1.2 An example of XML type (a DTD for addressbook documents) 5
1.3 CDuce definitions for the addressbook type and a sample document. 8
1.4 A sample of CDuce+Filter code . 23

2.1 A regular tree . 31
2.2 Well formed µ-terms . 33
2.3 Typing rules for values in CDuce. 39

3.1 Operational semantics of filters . 52
3.2 Evaluation of rev([1 2 3 4]) . 56

4.1 Deduction system associated with F 63
4.2 Typing derivation for the flatten filter 65
4.3 Typing derivation for the flatten filter with an approximation 66
4.4 Typing derivation for succList applied to [Int+] 67
4.5 Syntactic and maximal product decompositions 76
4.6 Maximal product decomposition algorithm 79
4.7 Initialisation of the maximum product decomposition algorithm . . . 80

5.1 Deduction system associated with FA 86
5.2 Type inference algorithm given in pseudo-ML 87
5.3 Derivation of the algorithm on the filter succList 88
5.4 Translation functions [,]M and [,]S 102

6.1 Rewriting function Reg from regular expression filters to plain filters . 121
6.2 The Reg function in action. 122

7.1 Paths matching an XPatht expression 134
7.2 Translation from XPatht to a NFA . 136
7.3 Matching of an input sequence by an NFA 137
7.4 Determinisation procedure . 138
7.5 Transformation of an XPatht expression into a NFA and determinisation 140
7.6 Translation of a DFA into a filter . 142
7.7 Type inference algorithm for XPatht 146
7.8 Translation from predicates to types 150

8.1 Inference rules for single step queries 166

xiii

8.2 Projectors inference rules (where ancs and desc are shorthands for
ancestor and descendant) . 175

8.3 XQuery path extraction . 179
8.4 Processing time of a query on original (56MB) and pruned documents 183
8.5 Memory used to process a query on original (56MB) and pruned doc-

uments . 183

A.1 Un exemple de document XML . 196
A.2 Un exemple de type XML (une DTD pour un document addressbook) . . 197
A.3 Définitions pour le type addressbook ainsi qu’un exemple de document.200
A.4 Un exemple de code CDuce avec des filtres 212

xiv

List of Tables

1.1 Four categories of XML programming 6
1.2 appropriate types for list concatenation 10
1.3 Possible input and output types for map. 17

6.1 Precedences of filter operators . 107

8.1 Sizes (in MBytes) of the biggest document processed thanks to prun-
ing, size of its pruned version, and memory used to process the latter.
Percent of the pruned document and speedup of the execution time
for a 56MB document. 182

A.1 Types attendus pour la concaténation de deux listes. 202

xv

List of Symbols
::∪ Union of environments . 29

t|π Subtree of t rooted at π . 30

<,v (Strict) subtree relation . 30

µ Explicit recursive binder . 32

[_]∞ Infinite expansion . 33

[_]µ Recursive folding . 34

Ind(_) Inductive interpretation . 35

Co(_) Coinductive interpretation . 35

∧∧∧, ∨∨∨, ¬¬¬,××× Boolean operators on types and type constructors 37

[_] Set theoretic interpretation of types 38

≤ Semantic subtyping relation 38

i Plinth . 39

πππ(t) Product decomposition . 40

(((_,,,_))), ||| , &&& Pattern constructors . 40

v/p Pattern-matching . 41

*p+ Accepted type of a pattern . 43

;;;, (((_,,,_))),→→→, ||| Filter constructors . 50

M(t) Maximal product decomposition operator 78

fE Annotated filter . 84

d f e Stripping of annotation . 91

A f Set of mandatory annotations 97

O(D, f) Output set . 98

[f]t,D t-labelling of a filter . 98

self, child,
desc, d-o-s,
/, ::

XPatht operators . 132

Many(τ),
One(τ),
Zero(τ)

Encoding of XPath predicates into CDuce types 149

� Projection . 154

= Interpretation . 155

::t, J_Kt(_) Filtering, axis selection . 158

E Type projection inference . 175

xvi

Part I

Introduction

1

Chapter 1

Introduction

1.1 The XML standard

Since the rise of network communications in everyday computing, there has been
a real need for easy data re-use and easy inter application exchange. For example,

in the recent years, with the so-called Web 2.0 (which basically consists of web pages
with per-user customized content, sometimes called social web), it is not uncommon
to see aggregator sites. Such sites fetch data from various sources, sieve them in an
user-defined way and present them to the user in the form of a web page. Such
kind of applications, now pervasive on the Internet, are based amongst other things
on the XML (eXtensible Markup Language, [XML]) standard. In its purest form, an
XML document is just a text file, with a structured content. More precisely, it is a
textual way to describe tree-organised data. An example of XML document is given
in Figure 1.1. This document represents an addressbook. It is constituted of:

• raw text (as in 0123456789)

• markups (for example <contact group="Work" > and </addressbook>)

In a markup such as <contact group="Work" >, <contact> is called a tag (or
sometimes a label) and group is called an attribute. Furthermore, <contact> is an
opening tag, while </addressbook> is a closing tag. The standard does not impose
the names for tags and attributes: it is up to the user to name them and give them a
proper semantics.

The specification enforces indeed very few constraints on a document. Aside
from some light constraints on the encoding used for the document (XML was de-
signed with multi-byte character sets in mind, such as Unicode), the only constraint
is for a document to form a tree, that is:

• There must be one tag enclosing the whole document (e.g. <addressbook>

. . .</addressbook> in Figure 1.1) which is the root of the document,

• An opening tag must be closed by the corresponding closing tag, or equiva-
lently, tags must be well parenthesized.

Such a specification has the advantage of separating the semantics of the docu-
ment from its textual representation. Indeed, it is possible to write generic libraries

3

4 CHAPTER 1. INTRODUCTION

<addressbook>

<contact group="Work">

<name>

<first>Giuseppe</first>

<last>Castagna</last>

</name>

<phone>0123456789</phone>

<email>gc@pps.jussieu.fr</email>

</contact>

<contact group="Family">

<name>

<first>Yohanna</first>

<last>Nguyê�n</last>

</name>

<phone>0987654321</phone>

<email>yoh@yoh.org </email>

<address>

<nb>4</nb>

<street>Rue du Yahourt</street>

<zip>75000</zip><city>Paris</city>

</address>

</contact>

</addressbook>

addressbook

contact

group="Work"

name
first Giuseppe

last Castagna

phone 0123456789

email gc@pps.jussieu.fr

contact

group="Family"

name
first Yohanna

last Nguyê�n

phone 9876543210

email
yoh@yoh.org

address
nb 4

street
Rue du

Yahourt
zipcode 75000

city Paris

Figure 1.1: A simple XML document

to parse and print XML documents, without knowing anything about the meaning
of the tags or the attributes. This feature has attracted many developers and formats
based on XML are now common. For example, there is XHTML (an XML compliant
version of HTML), the SVG file-format, used to represent vector graphics, the Open-
Document format designed to store office suite files such as type-set documents,
spreadsheets or presentations, but also many configuration file formats (the Apache
and Tomcat web servers for example store their configuration in XML). Another use
of XML is in the so called Web Services, that is, network applications which accept
requests and send back their results encapsulated in XML. For example, many on-
line selling sites publish a web service which can answer queries on their catalog. A
client will make a request of the type “find all Jazz CDs that you sell”, and send it
to the web service. The request is then processed by an underlying DBMS and the
results are encapsulated in XML and sent back to the client. By using XML, all these
applications delegate the parsing and printing of data to generic libraries.

There is of course a need to put some semantic constraints on a document. For ex-
ample to specify the set of tags that can occur in a document. Fortunately, there exist
many ways to describe such constraints. Additional pieces of information, such as
DTD (Document Type Definitions, [DTD06]), Relax-NG ([Rel]) or XML-Schema ([XSc])
can be attached to an XML document. Such additional constraints can: restrain the
set of possible tags, specify the order of appearance of tags, the content of a tag (e.g.
a tag <a> must only contain elements of tag or characters) and so on. It is then
possible to check, via the use of a validator that a given document verifies its con-
straints. Figure 1.2 shows an example of such an XML type, namely, a DTD which
accepts documents similar to the addressbook presented in Figure 1.1.

1.2. PROGRAMMING WITH XML 5

<!ELEMENT addressbook (contact*)>

<!ELEMENT contact (name, (phone|email)+,address?)>

<!ATTLIST contact group CDATA #REQUIRED>

<!ELEMENT name (first,last)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT address (nb,street,zip,city)>

<!ELEMENT nb (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT city (#PCDATA)>

Figure 1.2: An example of XML type (a DTD for addressbook documents)

This type consists of a set of definitions, one for each element that can occur in
a document of that type. Definitions are conveniently represented as regular expres-
sions. For example, we can see that an <addressbook> contains a possibly empty
sequence of <contact> elements (denoted by the Kleene star *). The content of a
<contact> element is itself a sequence of a <name> element, followed by a non-empty
sequence (denoted by the +) of <phone> or <email> (alternation is noted “|”) and an
optional <address> (denoted by ?). CDATA (in the attribute definition) and #PCDATA

are raw text elements. People with knowledge of formal languages will immediately
recognise DTDs as a syntax for regular tree grammars. And while other kinds of types
such as XML-Schemas or Relax-NG are more expressive than DTDs, they all can be
cast in the formalism of regular tree grammars (or equivalently of regular expression
types which we will introduce later on). Checking that a given tree (a document) is a
production of the grammar (a type) is then easy. For example it is shown in [SV02]
that for some DTDs the document can be validated in linear time (with respect to the
size of the document) and constant memory and that it can be done in the general
case in linear time and logarithmic memory (by keeping a stack the size of which is
at most the depth of the document).

1.2 Programming with XML

Specifying documents is one thing, but the core of the XML technology is the ma-
nipulation of such documents. Indeed, as XML documents are but a way to organise
pieces of information, one needs to query the document to extract information, pro-
cess the information to produce a result which then need to be published.

The simplest way to do so is to consider the XML document in its roughest form:
a text file. This technique shows rapidly its limits as hand-writing a parser can be
error prone and nullify the advantages of a generic format. Besides, document con-

6 CHAPTER 1. INTRODUCTION

types\values – +
– C, Java, C], OCaml, Haskell, PHP,. . . XQuery, XSLT, XPath, . . .
+ OCaml (Ocsigen), JAXB, Scala, . . . XDuce, Xtatic, CDuce,

XHaskell,
OCamlDuce,XAct. . .

Table 1.1: Four categories of XML programming

straints (which we will from now on call the type of the document) are not consid-
ered, let alone enforced by such a low level of programming. It is doubtful that any
serious XML-based program can be written in such way.

If we consider XML programming at a higher level then, in the same way as XML
documents are twofolds —the brute content and its type— we can consider two
aspects of a programming language, with respect to XML: whether or not it provides
syntactical support to process XML documents (value side) and whether or not it can
enforce document constraints (type side).

Both the type-system and the semantics of a programming language can be either
of strong or weak flavour with respect to XML programming, as shown in Table 1.1.

The first category, is the one of generic programming languages. On the value
side, those languages do not have any specific support for XML. They therefore rely
on external libraries to perform the parsing, the manipulation and the printing of
XML documents. Note that if it is possible to write any XML transformation in
those languages, the best that can be done to ensure the validity with respect to
a set of constraints is to use a validating parser to load a document and to validate
every generated document afterwards, to ensure its correctness with respect to its
type. Such development might lead to tedious debugging efforts as it is difficult in
general to link an error in a generated document to the corresponding faulty line of
code in the program.

Amongst the members of the second category, one finds for example the stan-
dards specified by the W3C. As surprising as it might seems, while the specifications
for both types (DTD, XML-Schema,. . .) and languages (XPath, XQuery, . . .) are very
detailed, no typing policy is given for those languages which are often very lightly
typed. However, as they provide syntactic supports for XML data as well as highly
declarative constructs inherited from database programming languages, they offer a
more comfortable way to code XML transformations.

The third category may puzzle the reader. How can a language which was not
designed for XML (a generic language) have an XML aware type-system? The an-
swer is that many languages have a type-system expressive enough to encode some
XML type constraints thus giving added safety to the use of the previously men-
tioned XML libraries. For example, the Ocsigen project [Bal06, OCS] is a framework
for developing web pages written in OCaml. Within this framework, XHTML type
constraints are encoded into OCaml’s polymorphic variants (via the clever use of
phantom types: types that carry extra information unrelated to the values of this

1.2. PROGRAMMING WITH XML 7

types to guide the type inference algorithm and to help it enforce extra constraints).
Other tools (such as JAXB [JAX] or Castor [CAS] for example), create a mapping from
a DTD (or a Schema) to a Java class. In a nutshell, they automatically generate a Java
class hierarchy. This permits to use the type system of the language to enforce XML
type constraints. However such technique (known as data-mapping) is limited, first
in the sense that it lacks some flexibility (one has to regenerate a new class when
the corresponding XML type is modified) and more importantly a type system that
wasn’t designed for XML might not be able to provide the necessary precision (it is a
“better than nothing” approach).

Finally the last (but not least) category, is the one of statically typed languages
designed for XML processing. As this category is the foundation on which we base
our work, we present it more thoroughly.

1.2.1 Statically typed languages for XML

The safest (and in our opinion most elegant) way to program with XML is to “take
types seriously”. Indeed, in a type-system which is fully XML-aware, if one can check
that a transformation (a function) has type t → s then it is guaranteed that the out-
put of the transformation will always have type s, for any input of type t. In the case
where s is an XML type (say the XHTML DTD for example), then the type-system en-
sures that the program will always output a valid XHTML document, without the
need of further validation. This is the trend that has been initiated with Haruo
Hosoya’s work ([Hos00, HP01]) which led to the development of the XDuce language.
In this work, Hosoya explains that DTD, Relax-NG or XML-Schema are all some con-
crete representations of regular expression types. Regular expression types are nothing
else than regular tree languages and as such, have nice properties of closure under
Boolean connectives, decidability of emptiness, membership and all the operations
required to forge a type system (see for example [CDG+97] for a complete survey on
tree languages processing and recognition).

In XDuce, documents are first class values and types are regular expression types.
We can see in Figure 1.3 a sample of code, defining a type and a document of that
type (the same we used to introduce the syntax for XML documents and DTDs)1.
The only novelty with respect to XML documents in this example is the use of the
square-bracket notation to denote sequences of elements and the absence of closing
tag (the end of an element being marked by the closing square bracket). With respect
to types, we see that the name of the type can be different from the tag of the element
thus allowing two different type definitions to share the same tag (with different
contents). This distinction is absent from DTDs but is present in XML-Schemas for
which XDuce types can be viewed as a formal representation.

In this setting, the first major contribution of XDuce, is the definition of regular
pattern matching, a generalisation of pattern-matching as found in many (but mostly
functional) programming languages, such as SML, OCaml or Haskell, which selects
efficiently sub-parts of an input document in a precisely typed way. The other con-
tribution of paramount importance is the definition of the so-called semantic sub-

1This code is actually CDuce code, the syntax of which is close to the XDuce’s one and which we
use throughout the rest of this manuscript.

8 CHAPTER 1. INTRODUCTION

type city = <city>[Char*]

type zip = <zip>[Char*]

type street = <street>[Char*]

type number = <nb>[Char*]

type address = <address>[number street zip city]

type email = <email>[Char*]

type first = <first>[Char*]

type last = <last>[Char *]

type name = <name>[first last]

type data = <contact group=String>[name (phone|email)+ address ?]

type addressbook = <addressbook>[data*]

<addressbook>[<contact group="Work">[

<name>[

<first>['Giuseppe']

<last>['Castagna']

]

<phone>['0123456789']

<email>['gc@pps.jussieu.fr']

]

<contact group="Family">[

<name>[

<first>['Yohanna']

<last>['Nguyê�n']

]

<email>['yoh@yoh.org']

<address>[

<nb>['4']

<street>['Rue du Yahourt']

<zip>['75000']

<city>['Paris']

]

]

]

Figure 1.3: CDuce definitions for the addressbook type and a sample document.

typing, which is uniquely suited to finely check constraints on XML documents (we
formalize both notions in Chapter 2).

XDuce has been further extended, in many different directions. First of all, one
that is singularly apart from the others in that it embeds XDuce features in an object
oriented language is the work by Benjamin Pierce et al. on Xtatic, which consists of
the addition of XDuce regular expression types and regular expression patterns to
C] (see [GLPS05]). While being of great benefit for a C] programmer and having
led to several works on efficient implementation of pattern matching, the merge
between XDuce notion of subtyping and C] presents no conceptual difficulty, since
C] subtyping relation is rather poor (inheritance) and defined by the programmer;
when a class inherits from another, both classes are added to the subtype relation.

Another extension of interest, in the context of which this thesis is placed, is the

1.2. PROGRAMMING WITH XML 9

CDuce language defined by Alain Frisch in his thesis [Fri04b]. In his work, Alain
Frisch extends the notion of (semantic) subtyping to arrow types, and add (amongst
other things), higher-order and overloaded functions to XDuce (in which functions
were not first class values). He also generalized the notion of regular pattern match-
ing, exposing all Boolean connectives to the programmer (intersection and negation
of patterns and types, while XDuce only provides union to the user). Furthermore, he
defined an efficient execution model for patterns, based on special kind of automata
(dubbed NUA, for Non-Uniform Automata) enriched with type information [Fri04a].
In particular, these automata compute the matching of a value by a pattern without
backtracking and by doing as few operations as possible.

All these languages achieved their goal to provide a way to statically and precisely
type XML transformations. One may then wonder: is there anything left to do? Yes,
there is.

1.2.2 Statically and precisely typed are not enough!

With the exception of Xtatic, all the previously cited languages are functional. For
example, a seasoned ML programmer will use CDuce with ease. . . except in one as-
pect: the lack of polymorphism. Indeed, while some degree of polymorphism can be
achieved via the use of overloaded functions (ad-hoc polymorphism) a more general
notion of polymorphism is completely missing from CDuce. This is also true for
XDuce2 or even Xtatic for which the interaction between regular expression types
and the kind of parametric polymorphism introduced by generics is yet to be studied.
The lack of polymorphism leads to an heavily annotated code: every function has to
be manually typed by the programmer. While this is certainly a cumbersome task,
a greater issue is that it has a great impact on modularity and code reuse. How-
ever, before blaming the creators of these languages, we must ask ourselves, what is
polymorphism, what kind of polymorphism do we need in the context of XML? Let
us illustrate it with a paradigmatic example: list concatenation. Consider a concat

function which concatenates two lists. In a type-system with parametric polymor-
phism, such as the one used in ML, such a function usually has type:

concat : α list→ α list→ α list

where the α list type is inductively defined3 as:

type α list = (α× α list)|[]

As usual, these types are universally quantified over the type variable4 α , meaning
that a list is either the empty list [] or the pair of an element of type α and α list.
Such type variables can later (in the program) be instantiated with a type e.g. lists
of integers with the type expression int list. While this definition of lists is satis-
factory in the context of general programming, it is rather inadequate for the XML

2Or rather was true when XDuce first started. We present briefly in Section 1.4 the latest work on
XDuce with polymorphism.

3We use the popular OCaml syntax, which is shared by many functional languages.
4We recall that such a type is to be red, ∀α.(α× α list)|[], with the so called prenex quantification.

10 CHAPTER 1. INTRODUCTION

type of x type of y type of concat x y
[Any∗] [Any∗] [Any∗]
[Int∗] [Char∗] [Int ∗ Char∗]
[Int∗] [Int Bool?] [Int+ Bool?]

.

Table 1.2: appropriate types for list concatenation

programmer. In the context of XML, one wants indeed to have heterogeneous se-
quences, containing elements of different types. For example, in the type definition
of Figure 1.3, we see that the content of a <contact> element is the heterogeneous
sequence [name (phone|email)+ address ?]. Unfortunately, in the case of ML,
the α variable forces all elements to be of the same type. Such polymorphism is
then too restrictive to be used for typing (even simple) XML operations. Of course
a more general form of polymorphism coupled with subtyping (System F with sub-
typing for instance), could provide a more general type schema but for such systems
type-checking is known to be undecidable ([Wel99]).

The situation for regular expression types is hardly better. Indeed, in the absence
of polymorphism, one has to type the concat function as such:

concat : [Any∗]→ [Any∗]→ [Any∗]

In the above type expression, Any is the upper bound of all types (with respect to
the subtyping relation). A basic property is that any value has type Any. While
heterogeneous sequences are available in XDuce, CDuce, . . . the only way to write
a generic concatenation function is to assume that the type of every element of the
input lists is Any. This allows the programmer to pass any pair of lists as argument
to concat but has the rather annoying effect of losing all type information, giving
a result of type [Any∗]. The behaviour of the type system which would really be
wanted in our example is illustrated in Table 1.2. The first line in this table represents
the instance where both arguments are generic, of type [Any∗]. Of course in that
case, the only sensible type for the concatenation is [Any∗]. More interestingly, if
we consider the second line, we see that in the case where the first argument is of type
[Int∗] and the second one of type [Char∗], then the most precise result is the set of
lists that contain first a sequence of integers and then a sequence of characters and
only that. This set is exactly the type: [Int∗ Char∗]. The third example illustrate
what kind of precision we expect from our type-system. In the case of concatenating
a sequence of integers with a sequence of exactly one integer followed by an optional
Boolean, then the result is a non-empty list of integers with the trailing optional
Boolean.

As we explained, such a kind of polymorphism is well beyond what currently ex-
ists. It cannot be handled by parametric polymorphism (either implicit à la ML or ex-
plicit à la System F) because it is precisely the opposite of parametricity which leaves
polymorphic elements untouched. It cannot be handled by subtyping polymorphism

1.2. PROGRAMMING WITH XML 11

because the least upper bound of transformations such as those at issue here is the
completely uninformative type of all XML documents. This kind of polymorphism
resembles very much to the application of an overloaded function (since to different
and possibly unrelated input types correspond different and precisely defined output
types), the so-called ad hoc polymorphism. However, since such polymorphism must
be able to cope with a potentially infinite set of different input contexts, it is out of
reach of the ad hoc polymorphism too.

A knowledgeable reader could however argue that CDuce or XDuce have proposed
a precisely typed concatenation since the beginning. CDuce does so by providing an
hard-coded and specifically typed @ (read “concat”) operator, which is not a function
and has no meaning per se. An expression of the shape x@y is nevertheless very
precisely typed (with the behaviour sketched in Table 1.2) by evaluating the operator
on the type of its inputs, thus reflecting in its output type the precise computation that
will be done at run-time. This is the key observation and the main basis of our work:
when the semantics of an operator is known, it can be typed very precisely and the
typing can be tailored for every specific input type. So to say, it performs an abstract
execution of the operator on the input type.

This is what is done in languages such as Xtatic, CDuce, and XDuce which all pro-
vide several built-in iterators for sequences and XML-trees. But this approach soon
shows its limits: while for an operation as simple as changing a tag, a predefined op-
erator that iterates a given expression on an XML tree is available (e.g. xtransform in
CDuce, map in XDuce, foreach and iterate in Xtatic,. . .), for slightly more complex
—but fairly standard— manipulations (e.g. context sensitive document pruning, or
the cleaning of XHTML documents to cope with “XHTML-deprecated” elements) this
is not the case. The programmer is then left with two choices. Either ask the lan-
guage maintainers to add more of these iterators, which at one point, the language
maintainers will refuse to do for obvious reasons5, or hand-write its own iterators as
recursive functions, hence typing them explicitly and thus losing in modularity and
code reuse. For what is worst, XML types can sometimes be huge, and writing down
such a type might not be an easy task. If we consider the transformation which re-
moves every hypertext link from an XHTML page, we see that even if a programmer
wishes to type this function by hand, (s)he finds itself in the situation where (s)he
must:

• first create the type corresponding to the XHTML DTD. Granted that it is a
fairly common type, we can assume that the type is already defined somewhere
in a library;

• secondly, the programmer must create a type XHTML_MINUS_A which is the
same type as XHTML without any occurrence of the <a> element. As this type
is not very common, the programmer has no choice but to enter it by hand (the
XHTML DTD defines around 300 different elements).

5Indeed, adding a new iterator means interfering with all parts of the language: its syntax (adding
new keywords to a language is always an hassle as it might break existing code), obviously the type-
checker which must be extended with the new specific typing rules and of course the code generation
process, in which the addition of new features can have intricate consequences on previous optimiza-
tions, the whole thing transforming a compiler into a maintenance nightmare.

12 CHAPTER 1. INTRODUCTION

The programmer is then left with two bad options. (S)he can give its function the
type XHTML→XHTML, which is simple to write but will not reflect in the type of
the function the fact that the output document is <a>-free. If the code of the function
is buggy and leaves at some place an <a> tag, the type-system will not detect it. The
programmer can also give the function the type: XHTML →XHTML_MINUS_A, in
which case (s)he must write by hand the output type, which can be error-prone and
not realistic if one considers larger types (the DocBook DTD for example).

1.3 A solution

A possible solution, along the lines of which we present this thesis, is to define a
small language of combinators, expressive enough to write complex operations over
XML documents but simple enough to type them precisely. Differently said, a lan-
guage of non first-class operators which are not typed (or are just lightly typed) at
their definition but, rather, are very precisely typed at the places of their application.
Such technique has been explored by Haruo Hosoya by adding regular expression filters
([Hos04]) to XDuce . In such a framework, the combinator language is parametrized
by the expressions and the patterns of the host language. This allows a program-
mer to iterate a particular expression, in a customized way, and to capture variables
during the process which can be further used to compute the result.

While such a solution might seem simple and natural, designing such a language
is not. Indeed, the language must meet the following conditions:

1. It must be able to call any expression of the host language and therefore its
design must be independent from a particular host language.

2. It must be statically typed. This has two consequences on the type system
which must be able (i) to associate a domain type to each iterator, that is a
set of expressions for which the iterator will not fail (so that, say, an iterator
for lists cannot be applied to an XML tree) and (ii) it must be able to deduce a
precise type for the output by running the iterator on the type of the input.

3. A consequence of (ii) in the previous point is that the language must define
only iterators that always terminate even when applied on (infinite) types. More
precisely, the abstract execution of any iterator on an (input) type —thus the
type checking phase— is required to terminate (therefore the application of
an iterator to some data may diverge only either because it called a diverging
expression of the host language or because it was applied to infinite data).

4. It must be expressive enough to define common sequence and tree opera-
tors such as concatenation, reversal, map-functions, various tree-explorations,
XPath expressions, and so on.

5. It must not come at the cost of modularity and code reuse.

Of course there is a clear tension between requirements 3 and 4: expressive power
and termination are contrasting requirements, therefore a trade-off must be found
between them. Indeed between simple map-like iterators (that is applying a local
transformation to every node of a tree or a list) and Turing-completeness there are
a whole lot of possible class of transformations to choose from. Considering that

1.4. STATE OF THE ART 13

map-like iterators were insufficient to deal with XML, we state that the minimal re-
quirement for such a language is to be able to flatten a tree, that is return the list
of all its content. With this minimal requirement, we must however accept that
forward type-checking cannot be exact. Indeed, it is a well known property of tree
languages (i.e. our types) that they are not closed by homomorphism (see [CDG+97]).
As an example, let us consider the following recursive type:

type T = [] | [<a>[] T []]

This type is a sum (or union, noted |) of either the singleton [] or a list of three
elements, the first being the singleton <a>[], the third the singleton [] and the
second T itself. Such a type is regular. However, when applying the flattening op-
eration to a value of this type, the exact set of values that contains all the possible
results (and nothing else) is the set: S = {[<a>[]n []n]|n ≥ 0} which is not
regular. Also of interest is the fact that there is not, in general, a better regular ap-
proximation for such types. For example, the previously mentioned set of values can
be approximated by the Si types hereafter where Si+1 is strictly more precise than Si:

type S0 = [<a>[]* []*]

type S1 = [] | [<a>[] []] | [<a>[] <a>[]+ [] []+]
...

type Sn = [] | [<a>[] []]| ...| [<a>[]n<a>[]+ []n[]+]
...

As a side note, even the use of pattern matching cannot be exactly typed in the
presence of set-theoretic subtyping . Indeed, while patterns themselves can be ex-
actly typed (as in the case of CDuce’s patterns), the whole match with constructs
yield an approximation. Consider the expression:

match e with

x -> (x,x)

which returns a pair where both component are the input expression e. If e has
type Int, then the compiler will compute an exact type for the pattern x which is
Int but will compute the type (((Int××× Int))) for the expression (x,x), which is only
an approximation of the exact set of values returned by this expression. The exact
output type in that case would be {(n, n)|n ∈ Int} which is not a regular set (it is
not a regular tree language). This approximation is however sufficient in practice.

1.4 State of the art

In this thesis, we define a small language of combinators, dubbed filters6 which are
expressive enough to write complex transformations but simple enough to allow
precise type inference. Filters are then grafted into the CDuce language —pretty

6We borrowed the term “filter” from Hosoya, and the similarities do not end here.

14 CHAPTER 1. INTRODUCTION

much like Hosoya’s filters are embedded into XDuce—7, and allow the programmer
to define its own polymorphic and precisely typed iterators. It should be noted that
comparison between our work and Hosoya’s work on regular expression filters are
numerous in this thesis, as it is the formalism closest to ours.

In order to better describe the contributions of our thesis (see Section 1.5), let
us first quickly overview existing formalisms for XML whose design targets expres-
siveness, modularity, and type precision. The solutions proposed in the literature to
mediate among these characteristics can be roughly divided in four categories.

1. Languages with polymorphic types for XML

2. Languages with hard-coded operators

3. Languages with generic XML iterators

4. Languages based on tree automata theory

1.4.1 Polymorphic type-systems for XML

There exist various attempts to mix XML types and parametric polymorphism. The
parametric polymorphism currently available in XDuce mixes explicit type anno-
tations with well-localised type reconstruction [HFC05]. Indeed, the key point in
mixing parametric polymorphism with regular expression types is the interaction
between pattern-matching and polymorphic values. The approach taken by [HFC05]
relies on value marking. In a nutshell, if a value inhabits a certain polymorphic type,
the sub-parts of the value corresponding to the type variables are marked with those
type variables. Pattern-matching and more generally the language semantics are de-
fined so as to preserve the marking of values. The type-checking of a function (with
polymorphic input and output types) can then be performed as follows: verify that
given a value marked according to the input, the body of the function would result in
a value whose marking corresponds to the polymorphic output type. This technique
nicely fits the semantics of XDuce for which pattern matching can perform run-time
type checks. Here, a polymorphic value can be visited via pattern-matching provided
that it is sufficiently annotated.

Of similar flavour, but following a completely different approach, is the work
by Jérôme Vouillon [Vou06] where explicit polymorphism is designed so that pattern
matching does not break parametricity. While it seems more restrictive than the pre-
vious approach, as one cannot inspect a polymorphic value, it ensures that pattern
matching can be compiled statically, without requiring any run-time type-check. It
also impacts the internal representation of data, as in this system the boxing of values
(marking of a value so as to know its type at run-time) is unnecessary thus yielding
an efficient data model.

7The key point is that, to be usable in practice, XML document processing must be done in a full-
fledged language. This implies that, besides being Turing complete, the language must provide many
facilities such as pretty-printing, error detection, access to external libraries, access to input/output
devices and network, etc. This is why our filter language is meant to be grafted on a host language
rather than used stand-alone.

1.4. STATE OF THE ART 15

A different approach consisting in the coexistence or juxtaposition of both XML
and ML type systems in a same language [Fri06] is available and actively maintained
for OCaml. While this eases the writing of polymorphic functions on XML values,
this solution does not solve the problem of writing precisely typed operators. Indeed,
both type systems (ML and XDuce) are kept apart, and a value is either seen as on
the ML side—and can then be polymorphic—or on the XDuce side—and can then be
precisely typed (with XDuce pattern matching for example). Considering the exam-
ple of the concat function presented in Section 1.2.2, in OCamlDuce, one can specify
either that it has type α list→ α list→ α list, thus being on the OCaml side, or
type [Any∗]→ [Any∗]→ [Any∗] and therefore on the XDuce side. Simply put,
it does not allow the programmer to express more than either XDuce or OCaml but
only regroups both of them in a coherent framework.

Finally, in the same spirit of combining two type systems, a more general ap-
proach was defined by Martin Sulzmann and Kevin Zhuo Ming Lu [SL06a] for Haskell
where the authors mix Haskell type classes with XDuce regular expression types
into a system called XHaskell [SL06b]. They provide a semantics via a type-directed
rewriting of the language into System F. While the decidability of the general ver-
sion is not clear, some restrictions make it tractable and lead to an implementation
of this work using the GHC Haskell compiler as a back-end. Type safety is granted,
but the programmer is required to heavily annotate the code: in particular, every
polymorphic variable that is instantiated with a regular expression type has to be ex-
plicitly annotated. A common trait in all those approaches is that a polymorphic
value either is never visited (through pattern matching for example) and so is never
precisely typed, or if it is visited then it loses its polymorphic nature and becomes
monomorphic and precisely typed. While this eases the writing of generic function
over XML values it does not address the problem we study here, that is to have both
precision and polymorphism.

1.4.2 Hard-coded constructs

As previously mentioned, CDuce, XDuce, and Xtatic rely on hard-coded constructs
to perform XML transformations. We briefly review the generic iterators found in
these languages, explain their semantics, and show why they are insufficient. First
of all, an operation of interest, pervasive in the functional world as well as in the
XML world is list mapping, which applies a transformation to every elements of a list
and returns the list of results. To that end, CDuce, XDuce, and Xtatic all provide an
iterator over sequences, named map (or foreach in the case of Xtatic). This iterator
provide a very precise typing of sequence transformations, in particular with respect
to their size. For example, in CDuce, the following expression

map l with

| x -> string_of x

applies the string_of function to every element of the list l. The string_of func-
tion is an universal conversion function which transforms any value into its string
representation. If l has type [Int∗] then the output type for the transformation
will be [String∗], but if the l has type [Int∗ Bool? Char], then the output type

16 CHAPTER 1. INTRODUCTION

will be [String+] (since there is at least one element in l, the one with type Char).
The counterpart of this precise typing is that elements of the input sequence cannot
be “ignored” and discarded while the transformation is iterated over the input se-
quence. This operation, known as list filtering, is however quite important. CDuce
proposes another construct, transform, which allows one to discard elements of the
input sequence if none of the patterns in the transformation matches an element.
The inconvenience with transform is that, while its semantics is quite close to the
one of map, it needs to be typed a bit differently, requiring the addition of a specific
typing rule in the language.

Programming with XML also requires iterators that can explore a document (a
tree) in depth. CDuce generalizes the notion of transform to XML trees with the
xtransform iterator. As with map and transform, xtransform iterates on an XML
document a transformation given by a list of branches of the form p → e where p
is a pattern and e an expression. There are two cases encountered during the evalu-
ation of an xtransform. Either a pattern matches an element which is transformed
according to the corresponding expression, or the element is not matched, in which
case, the transformation is recursively applied to its children. While this iterator can
be of certain use, it fails to cover many interesting cases because the recursion stops
at the first match. For example, the following expression:

xtransform [<a>[<a> []]] with

| <a>x -> [x]

transforms any <a> into a but stop at the first match (in depth) hence giving the
result [[<a>[]]]. Writing a transformation which would give the expected
result [[[]]] is not possible in CDuce, without resorting to a recursive
function and hence having to type it explicitly.

Of particular interest, in this respect, is the iterate construct of Xtatic. This
construct is based on an ambiguous interpretation of XDuce’s patterns. Usually, in
order to bind a variable to an exact sub-tree of the input, pattern matching is defined
so as to be unambiguous. The observation made by Vladimir Gapeyev and Benjamin
Pierce in [GP04] is that, instead of a single-match policy where exactly one sub-tree
is associated to a variable, one can consider a collect-all-match policy where all the
possible matchings for a given variable are accumulated (in a sequence). This makes
it possible to provide an encoding of XPath expressions into patterns and to use them
in a typed context. An example of Xtatic expression using the iterate construct is
for example:

iterate (doc) matching x at path [[a//b/c]] {

print(x);

}

This code binds the variable x, in turn, to any sub-tree <c> in doc that matches
the XPath expression a//b/c. While this powerful construct allows one to precisely
type an XPath expression, which is a most wanted feature, its semantics is to collect
elements and then operate on them, not to map a tree into another.

To conclude with hard-coded operators, it should also be noted that they do not
cope well with code reuse. Consider the following CDuce expression:

1.4. STATE OF THE ART 17

type of l output type
[Int+] [Bool+]

[Bool∗] [(0|||1)∗]
.

Table 1.3: Possible input and output types for map.

map l with

| (x&Int) -> x != 0

| `true -> 1

| `false -> 0

which, when applied to a sequence of either integer or Boolean values, replaces any
non-null integer by `true, zero by `false and conversely replaces `true by one and
`false by zero. Table 1.3 describes the possible types for l and for this expression. If
this transformation has to be used at several places in the code, then it must be du-
plicated every time. Indeed, it cannot be encapsulated into a function, which would
have to be typed explicitly, with e.g. the type [(Int|Bool)∗] → [(0|1|Bool)∗].
Code written this way is clearly harder to maintain and debug. This is one of the
main downsides of hard-coded iterators, making them an unsatisfactory solution
for large pieces of code.

1.4.3 Iterator languages

Our solution to propose a sub-language that can be precisely typed and merged with
a generic language (CDuce in our implementation), raises the question of what sub-
language to use. Indeed, there are many specialized sub-languages already available
in the XML field. First of all, XPath ([XPa]), is the standard language to navigate in
an XML tree. However XPath is merely a query language and does not allow one to
transform a document into another, but only to extract part of it. It can be seen as
the counter-part of XDuce’s patterns. Another, more powerful language is XQuery
([XQu]), based on the FLWR (For Let Where Return) paradigm. XQuery provides ba-
sic constructs to select sub-parts of a document (by the use of XPath expressions),
iterate through them (by using the for construct) and construct new values based
on the extracted data. As such it seems to be a good candidate for a transforma-
tion language. However XQuery is also very tied to the XML data model, which
for example specifies that each node in a document has a unique ID. It also allows
(through XPath) to navigate from a node to its parent, siblings, descendants and
so on, making the internal representation of the XML document a cyclic structure.
These features do not fit the data model used in functional languages such as CDuce
or XDuce, where XML documents are trees (and not graphs) and in which only for-
ward navigation is allowed (from a node to its children). The concept of a query lan-
guage grafted in a functional language has nevertheless been studied, particularly
by Cédric Miachon who proposed CQL in his thesis ([BCM05, Mia06]). CQL couples
the select-from-where iterator (popular SQL idiom, similar in spirit to XQuery’s for-

18 CHAPTER 1. INTRODUCTION

let-where-return) with CDuce pattern matching (as opposed to XPath expressions in
XQuery). CQL also provides syntactical support for XPath like expressions, which
are rewritten into patterns. While providing a highly declarative and optimized (by
the intensive use of CDuce’s efficient patterns) construct to manipulate XML data,
CQL suffers some flaws. First of all, while fulfilling its duty as a “query” language,
it is still a very strict and hard-coded construct. The programmer cannot change the
order of traversal of the document, nor can (s)he use it to perform non-local trans-
formations like swapping two unrelated sub-trees of a given document. Secondly,
the XPath encoding is limited to one-step paths while general XPath expressions are
composed of many steps. It does not also strictly respect the semantics of XPath (e.g.
the same sub-tree can be returned twice in the result set, which is forbidden by the
XPath specification).

1.4.4 Tree-transducers, backward type inference

Drifting away from the standards, we find a quite rich literature of combinators
for XML, mainly from the tree automata theory. Most of them have the appealing
property to be exactly typable by the so-called backward type-checking technique. In
this technique, given a transformation f and an output type s, one computes the
largest (in the sense of inclusion) type t such that (with informal notations):

f (t) ⊆ s

In practice, this consists in computing:

t = f−1(s)

As tree languages are closed under inverse homomorphism, it is guaranteed that
such an input type is always regular (thus solving the “flattening” problem described
in Section 1.3). This technique was introduced, in the context of XML, with the
k-pebble tree transducers, for which Tova Milo et al. exhibited a type-cheking al-
gorithm [MSV03]. This effort was later pursued by Akihiko Tozawa [Toz01] who
proposed a backward type-checking algorithm for XSLT0, a subset of XSLT without
XPath expression nor reference (variables). More recently, Macro Tree Transducers
(MTT), have been of particular interest in the context of XML processing. Intro-
duced by Joost Engelfriet ([EV85]), MTTs have proved to be a suitable formalism to
encode XML transformations. Indeed, Helmut Seidl et al. have developed a back-
ward type checking algorithm for MTTs ([MBPS05]). The appealing side of MTTs
is that, although they are not Turing-Complete (as they are tree-transducers —tree
automata that not only recognise a tree but also output a value— which are not
Turing-Complete) they are quite expressive due to their use of accumulators. The
common trait in all these techniques is that they are exact and do not require type
annotations (except for the original output type which must be given). The down-
side is the high complexity of the type-checking process, which makes it impossible
to use in practice. Some progress has however been made recently. Of notable in-
terest are the contributions of Helmut Seidl, Thomas Perst and Sebastian Maneth
([MPS07]) where MTTs are shown to be typable in polynomial time provided some

1.5. CONTRIBUTIONS 19

(rather heavy) restrictions on their accumulators. The recent work of Alain Frisch
and Haruo Hosoya [FH07] provides a more general enhancement as well as an effi-
cient implementation allowing to type-check small MTTs on real life types (such as
the XHTML DTD). However, practical implementations that allow to tackle realistic
transformations (such as complex XPath expressions or full sized XSLT style sheets)
are yet to be seen. Another problem, in the context of backward type inference is the
integration in a generic language, the latter being typed in the “forward” direction.
The interaction of both types of inference is unclear.

One may then wonder (again), why a new algebra? Why didn’t we used forward
type-checking on MTTs or XSLT0? Well, we did actually. While our filters are derived
and were designed as an extension of CDuce’s pattern matching operators, they are
nothing but top-down tree transducers, and provide, as we will see in the presentation
of the semantics, the same standard actions as MTT, XSLT0 terms or Hosoya’s regular
expression filters, that is:

• the ability to reconstruct a value,

• the ability to conditionally execute an action based on the tag of the input,

• the ability to iterate through the children of an element,

• the ability to perform recursive calls.

The main difference between our approach and the others being that in our case, the
lack of accumulators (as those found in MTTs) is balanced by the presence of both:

• the use of CDuce pattern matching (allowing in-depth capture of sub-trees,
testing for complex condition on a sub-tree and so on)

• a controlled use of composition, which allows us to encode XPath expressions as
well as flattening of trees or non-local transformations (which XSLT0 or regular
expression filters cannot perform)

We also provide a precise (while unfortunately not exact) way to type our filters and
an implementation in the CDuce compiler.

1.5 Contributions

The thesis consists in the study of the filters sketched at the end of the previous
section, and is organized as follows. The rest of Part I contains a chapter devoted
to notations. Part II presents the formal algebra of filters, their semantics as well as
a type-system and a type inference algorithm. Part III presents the implementation
as well as some interesting extensions to the core algebra. Finally, Part IV concludes
the study with a discussion on possible extensions and future work. The contents of
Part II and Part III are sketched hereafter.

20 CHAPTER 1. INTRODUCTION

1.5.1 Filters and their semantics (Chapter 3)

Starting from CDuce patterns [FCB02] (which, as previously mentioned, are an ex-
tension of XDuce patterns defined in [HP01]), we generalize them to combinators,
thus allowing the programmer to iterate patterns and expressions over documents.
More precisely, as pattern are used to decompose and capture parts of a value, we
design filters to decompose and transform a value. If we think of patterns as tree au-
tomata (which is indeed the compilation target for patterns), then filters are nothing
but tree transducers: they are used both to recognize (iterate) over an input and to
transform it into a new value.

The calculus of combinators we devise is expressive enough to perform: generic
operations on sequences and XML trees (reversal, concatenation, flattening, map-
ping,. . .) but also to encode a forward fragment of XPath (i.e. with only descendant
and child axes), as well as XSLT like transformations. This is achieved by the use of
a composition operator. Such an operator is completely absent from Hosoya’s filters
which can thus only express map-like transformations. To see exactly where we are
headed, let us give a flavour of filters, namely the concatenation filter:

Example 1.1
The concatenation filter:

concat = (((x,,,y)))→→→ (x;;; f)
f = `nil→→→ y

||| (((z→→→ z,,, f)))

is equivalent to the following OCaml function:

let concat (x,y) =

let rec f l = match l with

`nil -> y

| (z,tail) -> (z, aux tail)

in f x

While the filter expression for concat may seem a little cryptic, it is best under-
stood in the light of the behaviorally equivalent OCaml function. Filters are applied
to a unique input value. The first filter, (((x,,,y))) →→→ (x;;; f), is a pattern filter for which
the left-hand side of the arrow is a CDuce pattern, here (((x,,,y))), and the right-hand
side a filter. It should be noted that the scope of the variables in the left-hand side
pattern extends to the whole right-hand side, hence x and y are available in f . Equiv-
alently in the OCaml code, the function f is nested in the definition of concat, and
consequently x and y are visible in f. The right-hand side of the pattern filter is
the composition, denoted by “;”, of two filters. Let us break this down into several
steps. The composition of two filters, f1; f2, applied to a value v, merely consists
in the computation of f2(f1(v)). Although it is a natural construct to think of, we
will see that composition must be handled with care so as to ensure termination of
filters. Back to our examples, the two composed filters are an expression filter, x

1.5. CONTRIBUTIONS 21

and the filter f , which we are recursively defining. An expression filter is simply an
expression of the host language, used to output a value. The whole composition here
is equivalent to the application f x found at the end of the OCaml function. As for
the recursive filter f , it consists of the union “|” of two filters; this pretty much re-
sembles the two branches of the pattern matching found in the OCaml version of the
function. The first branch of the union is the base case of the recursion: if the input
is the empty list `nil, then it returns the second list y. If the input is a pair (CDuce
sequences are encoded as nested pairs), then z→→→ z is applied to its first component
(the head of the list) , f is recursively applied to the second component. z →→→ z is
just the identity. At the end, the pair of the two results is returned.

This small example presents the whole algebra of filters: ground expressions,
pattern capture, pair deconstruction and reconstruction, composition, alternation
and regularity (recursive call).

1.5.2 A type-system for filters (Chapter 4)

As sketched previously, the typing policy for filters is quite uncommon. Rather than
typing the definition of a filter, as one would do with a function, we type them at
the place of their application. Besides, the precise type of their output is computed
by an abstract evaluation (in the sense of abstract interpretation [CC77]) of the filter
on the type of its input. The main problem with this approach is that, for some
filters, the exact set of output values is not a regular type. Instead of choosing a
particular approximation, we first present a type-system which, given an filter and
an input type, infers all the possible regular approximations of the output type. More
precisely the type-system is given as a set of inference rules that prove judgments of
the form:

Γ ` f (t) = s

stating that in a type environment Γ, the filter f applied to an input of type t returns
a result of type s. If we take the example of the concatenation given in the previous
section, our system is able to infer:

∅ ` concat(((([Int∗]××× [Bool∗])))) = [Int ∗ Bool∗]

We show the type safety of filters equiped with this type-system, that is, that a well
typed application of a filters to a value never fails. We also show how some variations
of the type system impact on the precision of the inferred output types. In particular
we show that not only our filters are more expressive than Hosoya’s regular expres-
sion filters, but also that they are typed more precisely.

1.5.3 Type inference algorithm (Chapter 5)

The downside of the precise type-system we devised for filters is that it cannot be
directly turned into an algorithm. Indeed, as mentioned at the end of Section 1.3, for
some filters an input type, there might not exist a best regular approximation. While
in our type-system all of these regular approximations can be derived, an algorithm

22 CHAPTER 1. INTRODUCTION

would have to pick one (that is in practice, we want to return one output type for a
given input).

We address this problem by adding type annotations to filters, that is we decorate
the syntactic tree of the filter with type expressions. For instance, to specify that the
output of the concat filter must be of type [Int∗]:

Example 1.2

concat = (((x,,,y)))→→→ (x;;; f{[Int∗]})
f = `nil→→→ y

||| (((z→→→ z,,, f)))

Of course, in this case, an annotation is not needed as the algorithm can infer the
exact output type, but when it cannot, we let the programmer specify which approx-
imation to use, by the mean of a type annotation. We present an algorithm which
given an input type and an annotated filter computes the output type. We show that
it is sound, with respect to the type-system and complete up-to annotation, that is if
the type-system is able to infer a type and if we annotate the filter accordingly, then
the algorithm will find the exact same type.

We also pinpoint precisely where annotations are needed so as to keep them as
minimal as possible. We show that in practice, annotations are very light and needed
only in a few particular (alas interesting) cases.

1.5.4 Concrete language (Chapter 6)

The motivation for the formal calculus of filter is ultimately, to provide a practical
language to deal with XML transformation. To achieve this, we study (and provide a
prototype of) the integration of filters into CDuce. First of all, we provide a concrete
syntax for filters. The following example illustrates how the concat filter is written
in CDuce:

Example 1.3
let filter concat =
$ (x,y) -> (�{x} ; (

let filter f =

$ [] -> �{ y }

| ($ z -> �{ z }, f)

in f))

Besides the syntactic delimiters, $ and ~, used only to disambiguate patterns,
filters and expressions, the novelty is a let filter binding, used to define recursive
filters in a very natural way (pretty much like a recursive function).

1.5. CONTRIBUTIONS 23

Of course one of the key point is the specification of the annotations. While
decorating the syntactical tree of the filter is acceptable for the formal study, it is not
acceptable in the concrete language. Indeed, while annotations are (in our opinion)
very light, marking the code of the filter itself with type annotation would break
the modularity and reusability we aim at, since different input type might require
different annotations. Our idea is to perform “late annotations” in the same sense as
we perform “late typing”: annotations (and typing) are performed at the place of the
application. A sample of CDuce+Filter code is given in Figure 1.4. Even if not clearly
understandable right now, it allows us to shed some light on the matter at hand.

type T = [] | [<a>[] T []]

type S = [<c>[] <d>[]] | [<c>[] S <d>[]]

let filter flatten =

$ [] -> �{ [] }

| $ ([Any*] ,_) -> ((flatten ,flatten);concat)
| ($ x & (Any r[Any*]) ->�{ x } , flatten)

let v1 = (∗ some value of type T ∗)
let v2 = (∗ some value of type S ∗)
(∗

... other definitions
∗)

let r1 = apply flatten to v1 where {| flatten = [<a>[]* []*] |}
let r2 = apply flatten to v2 where {| flatten = [<c>[]+ <d>[]+] |}

Figure 1.4: A sample of CDuce+Filter code

At the beginning of the code, one sees the type T presented in Section 1.3, and a
variation S. Below the type definition, one finds the concrete syntax for the concat

filter, introduced in Section 1.5.1. Next, the problematic flatten filter is defined. The
latter is an example of filter for which annotations are needed. Surprisingly, we can
see that its definition is annotation-free. If the filter was annotated to deal with
inputs of type, say T then it would not be possible to use it on a value of type S

and vice versa. The solution we propose is to specify the annotations at the place
of the application, i.e. at the place of the apply_to construct. More precisely, the
clause where provides a mean to bind a filter name to a type annotation. In our
example, the flattening of a value of type T is annotated by [<a>[]* []*] while
the flattening of a value of type S, which cannot be the empty sequence, is annotated
by [<a>[]+ <d>[]+]. As we see, two completely different annotations can be given
without code duplication.

24 CHAPTER 1. INTRODUCTION

Rather than simply implementing our core filter algebra into CDuce, we extend
it and use it as a mean of studying many language design issues. For instance, to
enhance code modularity, we introduce macros filters or filters taking other filters
as argument (without nevertheless providing true higher-order filters with respect
to typing). We also introduce regular expression filters à la Hosoya and add some
more “atomic” filters, such as the first and second projection of a pair which allow
the programmer to write more filters without composition, and thus without any
annotations.

We also discuss the behaviour of the typing algorithm in practice for fairly com-
plex types (such as the DTDs of XHTML or DocBook) and transformations. In par-
ticular, the specific CDuce constructs we described in Section 1.4.2 such as map,
transform and xtransform can be typed without annotations hence simplifying the
type-checking part of the CDuce compiler by removing their specific typing rules.
Finally, we describe our compilation scheme and some minor run-time optimiza-
tions.

1.5.5 XPath encoding (Chapter 7)

XPath expressions are a most wanted feature for the adoption of a language by XML
programmers. We provide an encoding of a forward fragment of XPath with pred-
icates into filters. We show that filters can be used to statically type-check XPath-
based queries. Indeed, even if the encoding of an XPath expression into a filter re-
quires an annotation, we show that we can derive this annotation from the XPath
expression and the input type. The algorithm, unsurprisingly performs an abstract
evaluation of the XPath expression over the input type and compute an approxima-
tion of the result. Using this technique to infer the annotation for the filter, we
provide a completely automatic way to type forward XPath expressions. We also show
that, using a clever rewriting, many conditions can be statically checked by pushing
them into CDuce patterns.

1.5.6 Static pruning and typing of XQuery (Chapter 8)

Encoding XPath expressions into filters results in an interesting byproduct: the
annotation-inference algorithm. We show that by applying the strategy of “comput-
ing the output type by executing a transformation on an input type” we can gather
information that optimises the loading of XML documents. We present a a more
complex version of the annotation inference algorithm and use it to prune XML doc-
uments according to XQuery queries: given a DTD and a query, we can statically
apply the latter on the former (that is make a symbolic computation of the query on
the type, as we do for filters) and produce a projector. Projectors are operators that
are used at run-time to determine which part of a document to load in memory. The
interest of this technique is to leverage the complexity (in memory) of XML query
engines that rely on the DOM data-model. Indeed in many current implementations,
even for small documents (for instance 50 MB), the in-memory representation of
the document may amount to several hundreds of megabytes sometimes and this
makes it impossible to evaluate even a simple query. We use type projectors to help a

1.5. CONTRIBUTIONS 25

query engine to retain only the part of the document which is necessary to compute
the query and nothing else. We focus on the projector inference algorithm and its
implementation as well as experimental results. This chapter is based on the work
published in [BCCN06], initiated by Dario Colazzo. Our contributions in this work
consists of the implementation and experimental results, the proofs of the main the-
orems as well as the design of the type inference algorithm.

Publications

Chapter 3 to 6 are an extended version of [CN08]. The content of Chapter 8 was
presented in [BCCN06].

26 CHAPTER 1. INTRODUCTION

Chapter 2

Notations

This chapter resumes the notations necessary to further devel-
opments. We summarize here common definitions and prop-
erties and point to the relevant items of the bibliography for
further precisions.

Contents
2.1 Basic notations . 27

2.2 Regular trees . 29

2.2.1 Symbols . 29

2.2.2 Trees . 29

2.2.3 Explicit recursion . 32

2.2.4 Properties . 33

2.3 Proofs and trees . 34

2.3.1 Inference systems, derivations 34

2.3.2 Induction and coinduction 34

2.4 CDuce . 36

2.4.1 Values . 36

2.4.2 Types . 37

2.4.3 Patterns . 40

2.1 Basic notations

These first definitions are very common and widely used in language theory. We
refer the reader to the litterature for their precise definitions.

27

28 CHAPTER 2. NOTATIONS

Definition 2.1 (Notations)
We use the following symbols, with their canonical meaning unless otherwise specified:

≡ : syntactical equivalence. We denote its negation by≡/.

= : equality, both terms are equal modulo some theory that is clear from the context. We
denote its negation by 6=.

∅ : the empty set

⊆ : subset inclusion

⊂ : strict subset inclusion

∪,∩,r : union, intersection and difference of sets

Dom(f) : the domain of a function f

N : the set of positive integers

N+ : the set of strictly positive integers

i..j : the set of integers: {i, i + 1, . . . , j}

≤N : natural ordering on positive integers

(o1, . . . , on)lex : lexicographic order based on orders o1,. . . ,on.

Definition 2.2 (Substitution)
A substitution is a mapping (a partial function) from variables to terms. We use the nota-
tion: {x1 7→ t1, . . . , xn 7→ tn} when the domain is finite.

We use the notation t{x ← t′} to denote the term t into which every occurence
of the variable x has been replaced by the term t′.

Definition 2.3 (Typing environment)
A typing environment is a substitution from variables to types. We use the capital greek
letter Γ to range over type environments.

Definition 2.4 (Evaluation environment)
An evaluation environment is a substitution from variables to values. We use the lower case
greek letter γ to range over evaluation environments.

2.2. REGULAR TREES 29

Note It is often useful, especially when presenting an algorithm (that is, a well-
defined deterministic process) to take into account the order in which elements are
inserted in environments. It is quite common to consider environments as stacks,
and implicitly have an ordering over their elements corresponding to their order of
addition in the environment. This is why we introduce the following definition of
the union of two environments:

Definition 2.5 (Union of environments)
Given two environments Γ1 and Γ2 we define their union Γ1 ::∪ Γ2 as:

• (Γ1 ::∪ Γ2)(x) = Γ1(x) if x ∈ Dom(Γ1).

• (Γ1 ::∪ Γ2)(x) = Γ2(x) otherwise.

2.2 Regular trees

All the definition and properties found in this section are taken from the survey by
Bruno Courcelle [Cou83].

2.2.1 Symbols

Definition 2.6 (Ranked alphabet)
A ranked alphabet is a pair (Σ, |_|), were Σ is a countable set of symbols and |_| : Σ 7→N

a mapping from symbols (of Σ) to positive integers. | f | is called the arity of the symbol f .

Definition 2.7 (Path)
A path is a sequence of strictly positive integers such that:

• the empty sequence ε is a path.

• if π is a path, i ∈N+, π, i is a path.

• the concatenation of two paths π and π′ is a path, and is noted: π · π′

We note Π the set of all paths.

2.2.2 Trees

In the following chapters, we will manipulate both finite and infinite (albeit regular)
trees, to represent types or terms. We use the following general definitions which

30 CHAPTER 2. NOTATIONS

regroup both types of trees.

Definition 2.8 (Tree)
Given a ranked alphabet (Σ, |_|), a tree is a partial function t : P 7→ S where P ⊆ Π and
S ⊆ Σ, with the following properties:

• t(ε) is defined.

• if t(π · π′) is defined so is t(π) (i.e. Dom(t) is prefix-closed).

• t(π, i) is defined if and only if |t(π)| ≥ i.

From the definition of tree derives the definition of sub-tree:

Definition 2.9 (Subtree)
Let t be a tree. Let π ∈ Dom(t) be a path. We call the sub-tree of t rooted at π, and we note
t|π the tree t′ defined by:

• Dom(t′) = {π′ | π · π′ ∈ Dom(t)}

• ∀π′ ∈ Dom(t′), t′(π′) = t(π · π′)

We note: Subtree(t) = {t|π | π ∈ Dom(t)}

We say that a tree is finite if its domain is finite and infinite if its domain is infinite.
A tree t is regular if Subtree(t) is finite. Moreover, as trees will be used later on to
represent iterators, we will say —by an abuse of terminology— that a tree is recursive
if and only if it is regular and infinite.

Definition 2.10 ((strict) subtree relation, equivalence)
Letv and < be the relations defined by:

• t′ v t if and only if Subtree(t′) ⊆ Subtree(t)

• t′ < t if and only if Subtree(t′) ⊂ Subtree(t)

If t′ < t we say that t′ is a strict sub-tree of t. We denote by t �= t′ the fact that t v t′ and
t′ v t.

This sub-tree relation is well suited for our theoretical developments, but is rather
peculiar. Indeed, it should be noted that, in general, with regular trees, we cannot
rely on a structural ordering. For instance, let us consider the tree ta, represented in
Figure 2.1. The ellipsis and dashed arrow denote the regularity of this infinite tree.

2.2. REGULAR TREES 31

ata =

btb = ctc =

a

b c

. . .

Figure 2.1: A regular tree

This regular tree has three distinct sub-trees: ta itself, which is ta|(21)n , ∀n ≥ 0, tb

which is ta|(21)n1
, ∀n ≥ 0 and tc, which is ta|(21)n2

, ∀n ≥ 0. Within this tree, the

following properties hold:

• tb < ta

• tb < tc

• ta
�= tc

The most important property is the third one. Surprisingly, while ta and tc are
distinct sub-trees, they are equivalent with respect to the sub-tree relation, since
they are sub-trees of one another. While this seems odd for trees seen as syntactical
objects, it becomes relevant in the context of trees seen as iterators (or terms which
are evaluated). Indeed, this property states that whenever a “step c” is evaluated, then
a “step a” is evaluated afterwards. Hence, if the program (our regular tree) loops and
repeats infinitely many c, then it will repeat infinitely many a and conversely. On the
contrary, tb < ta would informally mean that no “a” can occur after a “b” step. In
other words, the sub-tree relation is a well-founded order for all sub-trees of a given
regular tree.

Lemma 2.11 (Well-founded order on regular trees) Let t be a regular tree. Then v is
a well-founded order on Subtree(t).

32 CHAPTER 2. NOTATIONS

Proof Let us show that v is a well-founded order, that is, (i.) that v is a
partial order and that (ii.) < is a well-founded relation.

i. A partial order is a reflexive, antisymmetric and transitive relation.
We can remark that: ∀ta, tb, tc ∈ Subtree(t), we have:

reflexivity: ta v ta, because ta ≡ ta|ε.

antisymmetry: if ta v tb and tb v ta then ta
�= tb, by definition.

transitivity: If ta v tb, then there exists a path π such that tb|π ≡ ta.
Likewise, if tb v tc, then there exists a path π′ such that
tc|π′ ≡ tb. Thus, we have that tc|π′·π ≡ ta and consequently
that ta v tc. Note that transitivity also holds for < (by taking π
and π′ distinct from ε).

ii. To show that < is well founded, we must show that there is no infinite
chain t0 < . . . < tn . . . in Subtree(t). First of all, since t is supposed
regular, then by definition Subtree(t) is finite. Since Subtree(t) is
finite, in any infinite chain of elements of Subtree(t), then there is at
least one t′ which occurs infinitely many time. Thus an infinite chain
has the form: . . . < t′ < . . . < t′ < Hence by transitivity, we have
t′ < t′ which is a contradiction since (t′, t′) /∈< (by Definition 2.10).
Hence there is no such infinite chain and consequently, < is a well-
founded relation.

Finally, let us remark that v is not a well-order since it is not total. For instance
all the leaves in a tree (symbols of arity 0) are not comparable.

2.2.3 Explicit recursion

While infinite trees are a convenient way to reason about recursive terms, another
notation is often needed to finitely represent such terms. Indeed, we want to have
a machine-representable (hence finite) representation for such terms (particularly if
we aim to write algorithms on those terms). We use the well-known µ notation.

Definition 2.12 (Explicit binder)
Let (Σ, |_|) be a ranked alphabet. Let V be a countable set of symbols called variables such
that V ∩ Σ = ∅ and ∀X ∈ V , |X| = 0. Let µ be a symbol such that µ /∈ Σ and |µ| = 2. A
term τ is a term with explicit recursive binder if τ is a finite tree of (Σ ∪ V ∪ {µ}, |_|)
such that:

(i) ∀π ∈ Dom(τ), if τ(π) = µ, then τ(π, 1) ∈ V ;

(ii) ∀τ′ ∈ Subtree(τ), if τ′ = µ(X, µ(X1, . . . , µ(Xn, σ))) then σ 6= X.

2.2. REGULAR TREES 33

(X,⊥) ∈ Γ
(var.)

Γ
 X
(cst.) if | f | = 0

Γ
 f

{(X,⊥)} ::∪ Γ
 τ
(µ.)

Γ
 µX.τ
Γ
 τ1 . . . Γ
 τn(func.) if | f | > 0

Γ
 f (τ1, . . . , τn)

Figure 2.2: Well formed µ-terms

Notation We denote the tree µ(X, τ) by µX.τ. µ is called a binder and X is a bound
variable.

The condition (ii) in Definition 2.12 is known as contractivity and rules out meaning-
less terms such as µX.X which cannot be associated to any tree. We define a notion
of well-formed closed µ-term which characterizes the scope of a binding in type:

Definition 2.13 (Closed µ-term)
A µ-term is closed if the judgement∅
 τ is derivable with the rules of Figure 2.2.

Note the use of the ::∪ operators which ensures the well-formedness of types with
identical nested variables, such as “µX.(((X,,,µX.(((t,,,X))))))”.

2.2.4 Properties

It is clear that for every µ-term, there is a regular tree (its infinite unfolding) and
conversely that to every regular tree we can associate a µ-term. More precisely, as
stated by Roberto Amadio and Luca Cardelli in [AC93], the notation µX.τ is used to
denote a canonical solution of the regular equation X = τ (see again [Cou83] for a
proof that such (systems of) equations have a unique solution, which is regular, and
also the tutorial by Pierce et al. [GLP03]).

Consider a fixed ranked alphabet (Σ, |_|). We use the following functions to con-
vert a regular tree to and from µ-term.

Definition 2.14 (Infinite expansion)
Let τ be a µ-term. The infinite expansion (or unfolding) of τ, noted [τ]∞ is defined by the
coinductive process:

• [f (τ1, . . . , τn)]∞ = f ([τ1]∞, . . . , [τn]∞), for f ∈ Σ

• [µX.τ]∞ = [τ{X ← µX.τ}]∞

Conversely, there exists a notion of recursive folding:

34 CHAPTER 2. NOTATIONS

Definition 2.15 (Recursive folding)
Given a regular tree t we note [t]µ its canonical µ notation.

2.3 Proofs and trees

A common way to represent type-systems, evaluation rules or algorithms is by giv-
ing a set of inference rules which proves a judgement. Various works present inference
systems and proofs techniques such as induction and coinduction (e.g. see [Pie02],
[GLP03], [Acz77]). Surprisingly, to the best of our knowledge, it is only recently that
a proof-theoretic approach to coinduction was published ([Gra03], [Ler06], [LG07]).
These works bridge the gap between inference systems and coinductive terms, al-
lowing one to reason and prove easily properties of infinite regular trees. Most of the
definitions and theorems of this section are taken from [Gra03] and [LG07].

2.3.1 Inference systems, derivations

Definition 2.16 (Inference system)
Let U be a set and let us call its elements judgments. An inference system φ is a set of rules
over judgements. A rule is a pair (A, z) whereA ⊆ U and z ∈ U . Elements of A are called
the premises of the rule and z is called the goal of the rule.

The classical notation for an inference rule (A, z) is Az .

Definition 2.17 (Derivation)
A derivation (or proof tree) of a judgement z within an inference system φ is a tree d such
that:

• d(ε) = z

• ∀π ∈ Dom(d), ∃({a1, . . . , ak}, j) ∈ φ such that : d(π) = j and ∀i ∈
1..k, d(π, i) = ai

A derivation is conveniently written bottom-up:
a
b c

d
e

z
. z is called the

conclusion of the derivation.
A derivation is well-founded if it is finite. Otherwise it is called ill-founded.

2.3.2 Induction and coinduction

An inference system φ is associated to an inference operator, Fφ : P(U)→ P(U)
defined as: Fφ(S) = {z ∈ U|∃A ⊆ S, (A, z) ∈ φ}. The inductive and coinductive in-

2.3. PROOFS AND TREES 35

terpretations of an inference system φ are defined as the least fixed point and greatest
fixed point of its inference operator Fφ:

• Least fixed point:
⋂{S|Fφ(S) ⊆ S}

• Greatest fixed point:
⋃{S|S ⊆ Fφ(S)}

The proof-theoretic approach to induction and coinduction, define equivalently
the inductive and coinductive interpretation of an inference system φ as follows:

Definition 2.18 (Inductive interpretation)
The inductive interpretation of an inference system φ is the set Ind(φ) of conclusions of
well-founded derivations.

The associated induction principle states that to prove that every judgement in
the inductive interpretation is in some set S, it is sufficient to show that for every
judgement z, if z is the conclusion of a derivation d and if for all conclusion j of
a strict sub-derivation of d, j is in S, then z is in S (structural induction on the
derivation of z).

This technique can be used to show that all inductively defined terms have a
certain property (of which S is the characteristic set).

As we consider regular (infinite) tree for types and terms, we would like to use
regular derivations of such terms. This is exactly the definition of the coinductive
interpretation:

Definition 2.19 (Coinductive interpretation)
The coinductive interpretation of an inference system φ is the set Co(φ) of conclusions of
arbitrary derivations.

In particular, the coinductive interpretation contains conclusions of ill-founded
derivations. The associated coinduction principle is stated as follows: To prove that
all judgments in a set S are in the coinductive interpretation, build a system of re-
cursive equations between derivations, with unknowns (xj) for j ∈ S. Each equation
is of the form:

xj1 . . . xjnx =
j

and must correspond to an inference rule: ({j1, j2, . . .}, j) ∈ φ. These equations are
guarded: there are no equation of the form xj = x′j. It follows that the system has
a unique solution ([Cou83]), and this solution σ is such that for all j ∈ S, σ(xj) is a
valid derivation that proves j. Therefore, all j ∈ S are also in Co(φ). This technique
is particularly useful to show that a particular infinite derivation is a valid derivation
of some inference system φ. More precisely, this principle gives a way to build such
a derivation.

36 CHAPTER 2. NOTATIONS

As a last observation, it should be noted that Courcelle’s results are not restricted
to finite ranked alphabet but also hold for infinite countable sets of symbols. Hence
the previous results on induction and coinduction are also valid in the presence of de-
duction schemas instead of deduction rules (an example of deduction schema is given
in Figure 2.2 where the schemas (func.) and (cst.) denote sets of rules, one for each
symbol in the alphabet).

2.4 CDuce

We succinctly describe the CDuce language, its type-system and pattern algebra. The
interested reader can refer to [CF05, FCB02, BCF03] for more detailed definitions of
the various concepts presented hereafter.

2.4.1 Values

We consider here the maximal subset of values which are not lambda-abstractions.
Indeed, in what follows, values will essentially represent documents, hence the re-
stricted definition:

Definition 2.20 (Values)
Values are the terms inductively defined by the following grammar:

v ::= c c ∈ C, constants
| (v, v) pairs

Note The set of constants consists of 0-ary symbols such as integers —0, 1, . . . —
characters — 'a','b','U'— and atoms (also known as variants) which are back-
quoted symbols — `A, `B, `Foo33.

These values are enough to encode XML documents. For example in CDuce, lists
are encoded, à la Lisp, as nested pairs, the empty list being represented by the atom
`nil. An XML document is the pair of its tag, represented by an atom and the list of
its children (its content).

Notation We use the square brackets notation as syntactic sugar for lists:
[v1 . . . vn] = (v1, (. . . , (vn, `nil)))

For XML1 documents we use the notation:
<tag>[v1 . . . vn] = (`tag, (v1, (. . . , (vn, `nil))))

which represents the document:

1We exclude attributes from the formal treatment. They do not pose any difficulty and are pre-
sented with the concrete syntax in Chapter 6

2.4. CDUCE 37

<tag>

v1
...

vn
</tag>

Character strings in CDuce are just lists of characters. We use however the standard
notation for strings:

"c1 . . . cn" = (c1, (. . . , (cn, `nil)))

2.4.2 Types

We define here CDuce types and their subtyping relation.

Definition 2.21 (Types [CF05])
A type is a possibly infinite term produced by the following grammar:

t ::= t∧∧∧ t | t∨∨∨ t | ¬¬¬t | c (Boolean connective)
c ::= (((c××× c))) | a (Type constructor)
a ::= b | Empty | Any | t (Atomic types)

with two additional requirements:

1. (regularity) the term must be a regular tree;
2. (contractivity) every infinite branch must contain an infinite number of product nodes

(((_××× _))).

Notation We use the notation: t1rrr t2 as syntactic sugar for t1∧∧∧¬¬¬t2. We denote by
T the set of all types.

We use b to range over basic types, while Empty and Any respectively denote the
empty type and the type of all values. Besides, there are product (((t1××× t2))), union
(t1∨∨∨ t2), intersection (t1∧∧∧ t2), and negation (¬¬¬t) types. We tighten here the contrac-
tivity condition introduced in Definition 2.12 to rule out meaningless regular trees,
such as¬¬¬(¬¬¬(¬¬¬ . . .)). Both conditions are standard when dealing with recursive types
(e.g. see [AC93]). Amongst basic types, one finds the type Int of integers, the type
Char of the characters but also, for each value v in the language a singleton type v in-
habited only by this constant. We use the notation

∨
i∈1..n

ti to denote the finite union

t1∨∨∨ . . .∨∨∨ tn. Finally it is possible to represent intervals of integers using the notation
i..j which is syntactic sugar for the finite union of singleton types: i∨∨∨ i + 1∨∨∨ . . .∨∨∨ j.

Notation As for values, these types are enough to denote XML types. The CDuce
syntax for XML types and documents we sketched in the introduction is related to the

38 CHAPTER 2. NOTATIONS

type algebra as follows. Sequences are denoted by nested pairs and Boolean connec-
tives and recursive types are used to encode regular expression types. For instance:

type Book = <book>[Title (Author+|Editor+) Price?]

defines a type Book that types elements tagged by <book> and that contain a title
followed by either a non-empty list of authors or a non-empty list of editors and pos-
sibly ended by an optional price (with sensible definitions for Title, Author, Editor
and Price). The declaration of Book above can be considered as syntactic sugar for
the following equations:

Book = (((`book××× (((Title××× X∨∨∨ Y))))))
X = (((Author××× X)))∨∨∨ (((Author××× Z)))
Y = (((Editor××× Y)))∨∨∨ (((Editor××× Z)))
Z = (((Price××× `nil)))∨∨∨ `nil

where `nil and `book are singleton types. Note that inside regular expressions, we
use “|” instead of “∨∨∨” to denote the union.

The semantics of types is expressed in terms of values. In the framework of XML pro-
cessing languages, values are XML documents and, following Hosoya et al. [HVP00],
an XML type is (interpreted as) the set of XML documents that have that type, which
leads to the following definitions:

Definition 2.22 (Type of a value)
We define the judgment v : t, where v is a (non-functional) value and t a type. We say that
v has type t if the judgement v : t can be derived by the rules given in Figure 2.3.

This definition of typing is sufficient for the restricted subset of values we con-
sider: atoms and products. To type lambda-abstractions one needs to define a type
system for all the expressions of the language and thus needs to define the subtyping
relation beforehand (which itself relies on the typing relation). While defining such a
type-system —despite the circular definitions of typing/subtyping/semantics of the
language is possible— it is out of the scope of this thesis, and extensively discussed
in [Fri04b] and [FCB02].

Definition 2.23 (Set of values)
We define the set-theoretic interpretation of a type t as: [t] = {v|v : t}.

Definition 2.24 (Subtyping)
A type t is a subtype of a type s, and we note t ≤ s if and only if: [t] ⊆ [s]. We denote by
t � s the fact that: [t] ⊂ [s].

2.4. CDUCE 39

Positive rules
v ∈ t, for t ∈ b(i-basic) v : t

v1 : t1 v2 : t2(i-prod)
(v1, v2) : (((t1××× t2)))

v : t(i-ul) v : t∨∨∨ s
v : s(i-ur) v : t∨∨∨ s

v : t v : s(i-i) v : t∧∧∧ s (i-any) v : Any

Negative rules

v /∈ t, for t ∈ b(n-basic) v : ¬¬¬t
v : t(n-n) v : ¬¬¬¬¬¬t (n-empty) v : ¬¬¬Empty

v ≡/(v1, v2)(n-p)
v : ¬¬¬(((t1××× t2)))

v1 : ¬¬¬t1(n-p1)
(v1, v2) : ¬¬¬(((t1××× t2)))

v2 : ¬¬¬t2(n-p2)
(v1, v2) : ¬¬¬(((t1××× t2)))

v : ¬¬¬t v : ¬¬¬s(n-u)
v : ¬¬¬(t∨∨∨ s)

v : ¬¬¬s(n-il)
v : ¬¬¬(t∧∧∧ s)

v : ¬¬¬t(n-ir)
v : ¬¬¬(t∧∧∧ s)

Figure 2.3: Typing rules for values in CDuce.

Since the use of subsumption makes two equivalent types (that is, two types denot-
ing the same set of values) operationally indistinguishable, then we will always work
up to type equivalence and consider, e.g. t∨∨∨ t, Any∧∧∧ t and t as the same type.

When working with types, it is sometimes required to have an order relation
much finer thanv, which is only a syntactic ordering and does not take into account
Boolean equivalence for example. For this purpose, we reuse the notions presented
in [Fri04b] (where the reader will find the relevant proofs):

Definition 2.25 (Plinth)
A plinth i ⊂ T is a set of types with the following properties:

• i is finite

• i contains Any, Empty and is closed under Boolean connectives (∧∧∧,∨∨∨,¬¬¬)

• for all types t = (((t1××× t2))) in i, t1 ∈ i and t2 ∈ i

One of the reasons why it is not always easy to use v on types is that a type
t ≤ (((Any××× Any))) does not necessarily have the form (((t1××× t2))) for some types t1 and
t2 but is rather a finite union of products:

∨
i∈1..n

(((ti
1××× ti

2))) for some n. There are many

ways to decompose such a type t in a finite union of products. We therefore use the
following:

40 CHAPTER 2. NOTATIONS

Definition 2.26 (Product decomposition)
Given a type t ≤ (((Any××× Any))), we define a set of pair of types πππ(t) as:

• t =
∨

(((t1×××t2)))∈πππ(t)

(((t1××× t2)))

• ∀(((t1××× t2))) ∈ πππ(t), t1 6= Empty, t2 6= Empty

• if i is a plinth such that t ∈ i, then:∀(((t1××× t2))) ∈ πππ(t), t1 ∈ i, t2 ∈ i

To make proper use of the Definition 2.25 and 2.26 one need the following theo-
rem:

Theorem 2.27 ([Fri04b]) Every finite set of types is included in a plinth.

As stated in [Fri04b], the existence of a plinth and a product decomposition for a
type t are crucial. Indeed, we already know that for a regular type t the set Subtree(t)
is finite. The definitions of the plinth and of the product decomposition ensure that
the closure of Subtree(t) under Boolean connective is also finite. This is used for
instance to show the termination of algorithms working on types.

2.4.3 Patterns

As many functional languages (such as Ocaml, SML or Haskell), CDuce relies on
powerful pattern operators. Informally, patterns are just types in which capture vari-
ables may occur in a controlled way.

Definition 2.28 (Patterns)
Patterns are possibly infinite term produced by the following grammar:

p ::= t (type)
| (((p,,,p))) (product)
| p|||p (union)
| p&&&p (intersection)
| x (variable)

with the following restrictions:

1. (regularity) the term must be a regular tree;

2. (contractivity) every infinite branch must contain an infinite number of product nodes
(((_,,,_))).

2.4. CDUCE 41

3. (variables) for every pattern p1&&&p2 (resp. p1|||p2) the set of variables occuring in p1
and p2 must be disjoint (resp. equal).

The set of well formed patterns is noted P.

Definition 2.29 (Capture variables)
The set Var(p) of capture variables of a pattern is defined as:

Var(x) = {x}
Var(t) = ∅

Var((((p1,,,p2)))) = Var(p1) ∪ Var(p2)
Var(p1&&&p2) = Var(p1) ∪ Var(p2)
Var(p1|||p2) = Var(p1) = Var(p2)

The semantics of patterns is given in terms of matching.

Definition 2.30 (pattern-matching)
The matching of a value v by pattern p, noted v/p is either a substitution from capture
variables to values or the special value Ω, denoting an error; and is defined as follows:

v/x = {x 7→ v}

v/t =
{ ∅

Ω
if v ∈ [t]
else

v/(((p1,,,p2))) =
{ v1/p1 ⊕ v2/p2

Ω
if v = (v1, v2)
else

v/p1&&&p2 = v/p1 ⊕ v/p2
v/p1|||p2 = v/p1|1v/p2

where:

γ|1r = γ
Ω|1γ = γ
r⊕Ω = Ω
Ω⊕ r = Ω
γ1 ⊕ γ2 = {x 7→ γ1(x)|x ∈ Dom(γ1)rrrDom(γ2)}

∪ {x 7→ γ2(x)|x ∈ Dom(γ2)rrrDom(γ1)}
∪ {x 7→ (γ1(x), γ2(x))|x ∈ Dom(γ2) ∩Dom(γ1)}

For the two basic cases —variable binding and type-checking— the definition of
matching is straightforward. For a binding pattern, the substitution from the vari-
able to the captured value is returned. For a type check, the pattern succeeds if and
only if the matched value inhabits the considered type, and in that case, the empty

42 CHAPTER 2. NOTATIONS

substitution is returned. The rules for the union, intersection and products are sub-
tler. For the union, the substitution returned is the “first-match union” (denoted by
“|1”) of the result of both patterns, thus reflecting the first-match policy of CDuce’s
pattern matching. The rule for intersection and product use a special kind of union,
the cumulative union denoted by ⊕. The simple case is the one for the intersection
where, by definition, the set of variables in p1 and p2 are disjoint. In this case, the
⊕ operator simply acts as a disjoint union. For the product pattern however, the
same variable may appear in both components of the pattern. In this situation, the
semantics is to bind the common variable to the pair resulting of the values matched
on each component of the product. This allows to accumulate subsequences along
a recursive pattern. Let us illustrate the practical interest of this feature by some
examples:

Example 2.31
(0,"foo")/x&&&(((Int&&&y,,,z))) = {x 7→ (0,"foo"), y 7→ 0, z 7→ "foo"}

"bar"/x&&&Char = Ω
[1 2 3 4 5]/(((x,,,(((Any,,,(((x,,,(((Any,,,(((x,,,x))))))))))))))) = {x 7→ [1 3 5]}

[1 `true `false `true 5 6]/
p where (x&&&`nil)|||((((x&&&Int)|||Bool,,,p))) = {x 7→ [1 5 6]}

The first pattern is an intersection where the whole value is captured in x and
where the first and second projections are captured in y and z with the added con-
straint that the first projection must be an integer.

The second pattern fails because it must match something that is a character,
while the argument here is a string.

The third pattern illustrates cumulative unions. We recall that lists are encoded
as nested pairs, the special atom `nil denoting the empty list. In this pattern, the
first element of the list, as well as the third, the fifth and the trailing `nil are bound
to the variable x. Following the semantics, the pattern returns a substitution binding
x to the nested pairs: (((1,,,(((3,,,(((5,,,`nil))))))))).

The last example illustrates cumulative union and recursive patterns. The special
construct “p where . . .” creates a binding for a recursive pattern p. This pattern
matches either the empty sequence (and binds it to x) or a pair, in which case, the
first component can be an integer and is captured by x or a Boolean (and is just
checked). The second component is the recursive pattern p itself, thus allowing it to
match any sequence of integers or Boolean. Again, the cumulative semantics of the
⊕ operator allows the pattern to capture the subsequence (((1,,,(((5,,,(((6,,,`nil))))))))). CDuce
actually provides some syntactic sugar, with regular expression patterns for such
cases:

Example 2.32
match [1 `true `false `true 5 6] with

[((x::Int)|Bool)*] ->x

2.4. CDUCE 43

Actually, CDuce exposes both the exact intersection (denoted by &&&) and the cumu-
lative one (denoted by ::). In the above piece of code, all elements of type Int are
accumulated in x.

Types are sets of values, but of course not every set of values is a type. However
there are some useful sets of values that happen to be types. These are the sets
formed by all and only those values that make some pattern succeed:

Theorem 2.33 (Accepted type [FCB02]) For all p ∈ P, the set of all values v such that
v/p 6= Ω is a type. We call this set the accepted type of p and note it by *p+.

The fact that the exact set of values for which a matching succeeds is a type is not
obvious and is of utmost importance for a precise typing of pattern matching. In
particular, given a pattern p and a type t contained in *p+, it allows us to compute
the exact type of the capture variables of p when it is matched against a value in t:

Theorem 2.34 (Type environment [FCB02]) There exists an algorithm that for all p ∈
P, and t ≤ *p+ returns a type environment t/p ∈ Var(p) → T such that [(t/p)(x)] =
{(v/p)(x) | v : t}.

44 CHAPTER 2. NOTATIONS

Part II

Filter calculus

45

Chapter 3

Filters

The goal of this chapter is to formally present the filters, give
their dynamic semantics as well as termination properties. The
use of filters is illustrated through various simple example. A
more comprehensive (and realistic) list of filter-based programs
is given in Chapter 6.

Contents
3.1 Rationale . 47

3.2 Filter calculus . 50

3.3 Operational semantics . 51

3.4 Examples . 52

3.4.1 Simple filters . 53

3.4.2 Alternative, first match policy 53

3.4.3 Recursive filters . 54

3.4.4 Composition . 54

3.5 Termination . 57

3.1 Rationale

As already said in the introduction, our goal is to define a way to precisely type it-
erators over XML documents and more generally tree-like data structures. Such

iterators are meant to be added to a more generic host language and inherit its se-
mantics in order to evaluate expressions of the host language on the iterated data.

This language of iterators must be carefully designed, so as to comply with the
following requirements:

expressivity : we need to encode complex XML transformations

47

48 CHAPTER 3. FILTERS

normalization : the evaluation of an iterator must always terminate

integration : the iterator language must blend seamlessly with the host language.

These three aspects guide the design of the language. While we would like our
iterators to be completely independent from any particular host language, their de-
sign is actually tightly related to both Hosoya’s regular expression filters and CDuce’s
patterns. The first trait we want for our language is expressivity. We want to express
complex operations over XML documents. The connection with CDuce’s patterns is,
in this respect, quite tempting. Indeed, as previously described, CDuce’s patterns
allow one to express two things:

• Complex conditions on an XML document

• Capture arbitrary subparts of an XML document.

We recall that CDuce’s patterns are nothing else but types with capture variable.
This is however only a syntactical similarity: patterns (even without capture vari-
ables) have a semantics: to iterate over a value, checking along conditions on sub-
trees and optionally capturing some of them. From this point of view, the pattern
algebra seems more than well suited to design the filter algebra. Let us recall the
basic patterns:

type : t, checks that the matched value inhabits t

variable : x, binds the matched value to x

product : (((p1,,,p2))), recursively apply p1 and p2 to the first and second projection of
the input value

union : p1|||p2, return the matching of p1 if it succeeds and the matching of p2
otherwise

recursion : patterns are regular, i.e. they can be iterated on an input value

intersection : p1&&&p2, both p1 and p2 must match.

This small algebra allows a pattern to iterate over any XML document. Starting
from this, we design the filter algebra as follows. As the basic case for a pattern is a
type check, the basic case for a filter is the transformation which consumes its input
and produces a value. However, this value must be a value of the host language. Indeed,
filters are meant to be part of an host language and are applied to input values from
the host language, they should therefore return values from this host language. The
most straightforward way to do so is by executing an expression of the host language.
Our basic filter is then the expression filter, e where e is an expression of the host
language.

Of course, an expression filter is only useful if it can output part of the input
value. As patterns provide capture variables, filters provide a pattern filter, p →→→ f
where p is a pattern provided by the host language and f a filter. When applied to an
input value v, a p→→→ f filter captures subparts of v thanks to p and then evaluates f .

3.1. RATIONALE 49

The key point is that now, capture variables can occur in an expression filter e, thus
allowing it to copy part of the input in the output. For instance, a filter x→→→ x + 1 is
a pattern filter, with pattern x, for which the sub-filter is the expression x + 1. This
filter simply increments its input.

Similarly to patterns, filters can descend into a product constructor. This is the
aim of the product filter, (((f1,,, f2))). As we explained in Chapter 2, the semantics of a
pattern of the form (((x,,,x))) applied to a value (v1, v2) is to return the substitution
{x 7→ (v1, v2)}. This trait allows patterns to capture sub-sequences of an input
sequence (encoded as nested pairs), or differently said, to iterate over an input se-
quence and return matching sub-elements. The product filter uses the same tech-
nique to iterate over a product. Given an input value (v1, v2), if we apply it to a filter
(((f1,,, f2))) then, the filters are applied component-wise and the result is returned as the
pair of the two partial results. This aspect coupled with recursion makes it possible to
encode list mapping and more generally Hosoya’s regular expression filters.

Filters also feature an alternation operator, f1||| f2, which conditionally continues
the evaluation of a filter. Its semantics is the well known first-match policy, specify-
ing that if the evaluation of f1 fails on the input value, then f2 is evaluated on the
input. A typical example of failure is when one applies a product filter to a value
which is not a pair.

As filters are used to iterate through unbounded trees and sequences, it is natural
to consider regular filters. This will be reflected in the concrete syntax (presented in
Chapter 6) by the possibility to write recursive filters. Of course we need well founded
recursion and the usual properties of well-foundness of regular terms are present in
the formal definition for filters.

If we only considered the previously mentioned constructs, we would roughly
end up with Hosoya’s regular expression filters translated to CDuce instead of XDuce.
A feature that as not been explored is pattern intersection, which makes little sense
in the case of a filter which returns a value. Instead, we introduce a composition
operator for filters, f1;;; f2. Informally, the result of f1;;; f2 applied to v is nothing else
but f2(f1(v)). However unguarded composition is way too powerful as it opens the
door to Turing-completeness (or at the very least to non-terminating filters). We
will see how we restrict composition so as to enforce termination of filters on any
input value while retaining enough expressive power to encode the desired iterators.
We will also see in Chapter 5 that this composition seriously complicates the type
inference process.

All along this work we made, some implicit (and, we think, reasonable) assump-
tions on the properties of the host and filter languages: typically but not only, that
the two languages share the same XML types, share the same variables, and that pat-
tern matching is or can be defined on the values of the host (i.e. it has a constructor
for pairs). When dealing with the static semantics we will also assume that given
a typing environment Γ, we can deduce the type t of the expression e (of the host
language). CDuce is an example of such a suitable language. Indeed, the operation
defined in Chapter 2 are the only one needed here. However it is clearly not the only
possible host language as all of its feature can be found in other generic language
with of course different behaviours.

50 CHAPTER 3. FILTERS

3.2 Filter calculus

Definition 3.1 (Filters)
A filter f is a regular tree co-inductively generated by the following production rules (where
e ranges over expressions of the host language)

f ::= e expression
| p→→→ f pattern, p ∈ P

| f ;;; f composition
| (((f ,,, f))) product
| f ||| f union

and that satisfies the following conditions:

1. (contractivity) for every infinite branch of f , there the number of occurrences of the
pair constructor (_, _) is infinite.

2. (composition) for every sub-term f ′ of f , if f ′ is of the form f1;;; f2, then f ′ is not a
sub-term of f2.

The condition on contractivity is the usual one which rules out meaningless terms.
The condition on composition is however rather new and involved. In a nutshell,
it states that a recursive filter cannot cross a “;;;”. This ensures the termination of
the evaluation of a filter on a finite value (as we will illustrate after giving the se-
mantics) as well as the termination of the type inference algorithm (as we explain in
Chapter 5). Henceforward we use F to denote the set of (well-formed) filters.

As for patterns, we define the sets of free and capture variables for filters, as
an extension of free and capture variables for expressions and patterns of the host
language.

Definition 3.2 (Capture variables)
We define the set of capture variables of a filter f , Var(f) as:

Var(e) = ∅
Var(f1;;; f2) = Var(f1) ∪ Var(f2)
Var(f1||| f2) = Var(f1) ∪ Var(f2)
Var((((f1,,, f2)))) = Var(f1) ∪ Var(f2)
Var(p→→→ f) = Var(p) ∪ Var(f)

3.3. OPERATIONAL SEMANTICS 51

Definition 3.3 (Free variables)
We define the set of free variables of a filter f , FV(f) as:

FV(f1;;; f2) = FV(f1) ∪ FV(f2)
FV(f1||| f2) = FV(f1) ∪ FV(f2)
FV((((f1,,, f2)))) = FV(f1) ∪ FV(f2)
FV(p→→→ f) = FV(f)r Var(p)

We assume that FV(e) and Var(p) are defined for the host language.

3.3 Operational semantics

We define a big step operational semantics for filters and show the termination of
the evaluation of filters f on every finite value v. The dynamic semantics is given
by the inference rules for the judgement γ `e f (v) ; r in Figure 3.1 and describes
how the evaluation of the application of filter f on a value v in an environment γ
yields an object r where r is either a value or Ω. The latter is a special value which
represents a runtime error: it is raised either because a filter did not match the form
of its argument (e.g. (e-prod-err2)) or because some pattern matching failed (e.g.
(e-patt-err)).

The semantics of filters is quite straightforward and inspired of the semantics of
patterns. The expression filter discards its input and evaluates (rather, asks the host
language to evaluate) the expression e in the current environment (e-expr). It can be
thought of as the right-hand side of a branch in a match with construct.

The product filter expects a pair as input, applies its sub-filters component-wise
and returns the pair of the results (e-prod-ok). This filter is used in particular to
express sequence mapping, as the first component f1 transform the element of the
list and f2 is applied to the tail. In particular, it is often the case where f2 is a
recursive filter, allowing to iterate on arbitrary lists and stopping when the input is
`nil. If the input is not a pair, the filter fails (e-prod-err{1,2}).

The pattern filter first matches its pattern p against the input value v; if it fails it
raises an error (e-patt-err), otherwise it evaluates its sub-filter in the environment
augmented by the substitution v/p (e-patt-ok).

The alternative filter follows a standard first match policy: If the filter f1 succeeds,
then its result is returned ((e-union-1)). If f1 fails, then f2 is evaluated against the
input value. This filter is particularly useful two write the alternative of two (or
more) patterns filters, allowing to conditionally continue a computation based on the
shape of the input.

Finally, the composition allows us to pass the result of f1 as input to f2. The com-
position filter is of paramount importance. Indeed, without it, our only way to iter-
ate (deconstruct) an input value is to use a product filter, which always rebuild a pair
as result. As already said, this limits us to map-like filters (like in Hosoya’s regular
expression filters). Our composition allows to combine an intermediate result and
thus perform more complex operations such as flattening. It should be noted that

52 CHAPTER 3. FILTERS

(e-expr)
γ `e e(v) ; r r = eval(γ, e)

(e-prod-ok) γ `e f1(v1) ; r1 γ `e f2(v2) ; r2
γ `e (((f1,,, f2)))(v1, v2) ; (r1, r2)

if r1 6= Ω and r2 6= Ω

(e-prod-err1) γ `e f1(v1) ; r1 γ `e f2(v2) ; r2
γ `e (((f1,,, f2)))(v1, v2) ; Ω

if r1 = Ω or r2 = Ω

(e-prod-err2)
γ `e (((f1,,, f2)))(v) ; Ω

if v ≡/(v1, v2)

(e-patt-ok) γ ::∪ v/p `e f (v) ; r
γ `e (p→→→ f)(v) ; r if v/p 6= Ω

(e-patt-err)
γ `e (p→→→ f)(v) ; Ω if v/p = Ω

(e-comp-ok) γ `e f1(v) ; r1 γ `e f2(r1) ; r2
γ `e (f1;;; f2)(v) ; r2

if r1 6= Ω

(e-comp-err) γ `e f1(v) ; Ω
γ `e (f1;;; f2)(v) ; Ω

(e-union1) γ `e f1(v) ; r1
γ `e (f1||| f2)(v) ; r1

if r1 6= Ω

(e-union2) γ `e f1(v) ; Ω γ `e f2(v) ; r2
γ `e (f1||| f2)(v) ; r2

Figure 3.1: Operational semantics of filters

composition must result in a well-founded filter, in the sense of the second condi-
tion of Definition 3.1. The condition prevent a filter from building an infinitely large
value (or equally of looping infinitely on an input), as illustrated in the Examples
Section hereafter.

3.4 Examples

We illustrate here the semantics of untyped filters. The typing of such filters will be
discussed in the next chapter.

3.4. EXAMPLES 53

3.4.1 Simple filters

We start by defining some simple filters. First of all, the identity filter:

Example 3.4

id = x→→→ x

It is a simple pattern filter for which the pattern is the capture variable x and
the sub-filter is the expression x of the host language. In the same vain, we can
define two filters π1 and π2 which extract the first and second component of their
arguments:

Example 3.5

π1 = (x, _)→→→ x π2 = (_, y)→→→ y

Now a succ filter which increments its argument can be written:

Example 3.6

x→→→ x + 1

where again x + 1 is an expression of the host language.

3.4.2 Alternative, first match policy

The following neg filter emulates the behaviour of an overloaded function:

Example 3.7

neg = (x&&&Bool→→→ not x) ||| (x&&&Int→→→ −x)

From its definition, it should not be difficult to understand what this filter does:
when applied to a Boolean, it returns its negation (via the not function of the host
language) while when applied to an integer, it returns its opposite. We can general-
ize this concept and see that the well-known pattern-matching operators of the ML

54 CHAPTER 3. FILTERS

language family (such as “match with” of OCaml or “case of” of Haskell) can be
encoded by a filter:

Example 3.8

match v with

p1 → e1

|
...

| pn → en

becomes:
(p1→→→ e1||| . . . |||pn→→→ en)(v)

3.4.3 Recursive filters

Infinite (regular) filters encode recursive transformations. For example, one can
write a simple iterator over lists:

Example 3.9

succList = `nil→→→ `nil|||(((x→→→ x + 1,,,succList)))

In this filter, if the argument is the constant `nil, denoting the empty list, the result
is the empty list. If the argument is a pair (head,tail), then head is incremented and
the filter is recursively applied to the tail. Afterwards, the pair of the two results is
returned. The recursive call being on the second component is only due to the fact
that lists are encoded as nested pairs. There is of course no problem putting a recur-
sive call on the first component, allowing to iterate on arborescent data structures.

3.4.4 Composition

Recursive filters, when coupled with the reconstructing product filters are enough to
encode any exact mapping (in the sense of mapping exactly one element of the input
to one element of this output, both having thus the same length). It is however
impossible to encode two important features such as almost copying of a list (or tree),
that is deleting some of its elements based on a choice and more generally fold-like
iterators which operate on an accumulated result. To express such operations by
filters, one can use the composition operator “;;;”. The first example we give is the one
of list concatenation. In XML languages, concatenation is always given as an hard-
coded operator1 so as to type it precisely. List concatenation can easily be defined as
a filter:

1Some XML transformation languages provide flat sequences, hence the “,” is both the cons and
concat operation of functional languages: if l1 = [v1 v2 v3] and l2 = [v4 v5 v6] then l1, l2 =

3.4. EXAMPLES 55

Example 3.10

@ = (((x,,,y)))→→→ (x;;; f) where f = `nil→→→ y|||(((z→→→ z,,, f)))

The filter @ takes as input the pair of the two lists to concatenate. The first ar-
gument is captured in x, and the second in y. Then, the filter f is applied, through
composition to the expression x, under the scope of the capture variable y (we will see
in the concrete syntax presented in Chapter 6 more a convenient way to write such
filters). The filter f simply iterates on the sequence x until it reaches the end, at
which point it replaces it by the second list y and rebuilds the whole list.

Another example where the composition is more involved is the list reversal, rev.
While this is a very common operation on lists, neither CDuce nor XDuce provide
an hard-coded list reversal operator, which we can define with filters as follows:

Example 3.11

rev = x→→→ f ;;;(y, _)→→→ y
f = `nil→→→ (`nil, x)|||((((z→→→ z,,, f)));;;recomp)

recomp = (_, (acc, (head, tail)))→→→ ((head, acc), tail)

This more complicated filter first binds the whole list to x, then iterates through
the list with f . Note that x is in scope in the definition of f . The latter can be
seen as a local recursive function. As soon as f reaches the end of the list, it builds
the reversed list bottom up while returning from the recursive calls. The last step
((y, _)→→→ y) discards the auxiliary argument that was used to build the reversed list.
Figure 3.2 gives an example of evaluation of rev on the finite list [1 2 3 4]. In this
figure, evaluation steps are ordered (circled label below the filter expression). First,
the list is traversed, (Steps 1 to 5). When the end of the list is reached, an empty
accumulator and the whole list are returned (Step 6). Then the accumulator is filled
up at each tail of a recursive call (Steps 7 to 11). Finally, only the accumulator is
returned (Step 12). Due to the restriction on the composition, if one wants to per-
form more than list mapping (reversal in our example), one has to resort to using
the TABA programming paradigm, as presented by Olivier Danvy and Mayer Gold-
berg (see “There and back again” [DG05]). In a nutshell, computations occur after
returning from a recursive call. While the programming scheme seems unnatural, it
has many benefits as Danvy and Goldberg pointed out. In particular, such functions
can be efficiently implemented in a continuation passing style. We will further detail
this aspects when introducing the compilation scheme for filters in Chapter 6.

[v1 v2 v3], [v4 v5 v6] = v1, v2, v3, v4, v5, v6 = [v1 v2 v3 v4 v5 v6]. This is the case of XDuce but
also of XSLT, XQuery and other W3C standards. CDuce on the contrary uses a more classical view of
lists as nested pairs and provides both cons and @ (also hard-coded).

56 CHAPTER 3. FILTERS

(x→→→ f ;;;(x, _)→→→ x)([1 2 3 4])

1

(((z→→→ z,,, f)))([1 2 3 4]);;;recomp

2

(z→→→ z)(1) = 1

(z)(1) = 1

(((z→→→ z,,, f)))([2 3 4]);;;recomp

3

(z→→→ z)(2) = 2

(z)(2) = 2

(((z→→→ z,,, f)))([3 4]);;;recomp

4

(z→→→ z)(3) = 3

(z)(3) = 3

(((z→→→ z,,, f)))([4]);;;recomp

5

(z→→→ z)(4) = 4

(z)(4) = 4

(`nil→→→ (`nil, x))(`nil) ;;;(`nil, [1 2 3 4])

6

;;;recomp(4, (`nil, [1 2 3 4])) ;;;([1], [2 3 4])

7

;;;recomp(3, ([1], [2 3 4])) ;;;([2 1], [3 4])

8

;;;recomp(2, ([2 1], [3 4])) ;;;([3 2 1], [4])

9

;;;recomp(1, ([3 2 1], [4])) ;;;([4 3 2 1], `nil)

10

;;;((x, _)→→→ x)([4 3 2 1], `nil)

11

;;;[4 3 2 1]

12

Figure 3.2: Evaluation of rev([1 2 3 4])

Now that we have given some insight of how composition works, we can illustrate
the restriction on composition we gave in Definition 3.1. Consider for example the
following filter which is not well-formed:

Example 3.12

f = (((x→→→ (x, x),,,x→→→ (x, x))));;; f

On every infinite branch of the filter there is an infinite number of (((,,,))) constructors
(contractivity), but the second part of the composition, is a sub-term of the whole
filter f (as it is f itself). The evaluation of such a filter diverges for every input:

f ((0, 0)) ; f ((0, 0), (0, 0))
f ((0, 0), (0, 0)) ; f (((0, 0), (0, 0)), ((0, 0), (0, 0)))

f (((0, 0), (0, 0)), ((0, 0), (0, 0))) ; . . .

The problem with this filter is that even if we ensured that the input is always de-
structured (contractivity), a bigger input is recreated and passed back as argument
to the filter. The filter, then loops and creates bigger and bigger values. Let us keep
in mind that, for the type inference phase to terminate, filters must always terminate
too as they are (abstractly) evaluated on types.

3.5. TERMINATION 57

3.5 Termination

As stated before, thanks to the restriction on composition, the evaluation of a fil-
ter on a finite value always terminates. To prove termination, we first introduce a
particular measure of the filter:

Definition 3.13
We define the function c : F→N as:

c(f) = 0 if (((f1,,, f2))) /∈ Subtree(f) for some f1 and f2.
c(p→→→ f1) = 1 + c(f1)
c(f1||| f2) = 1 + max(c(f1), c(f2))
c(f1;;; f2) = c(f1)
c((((f1,,, f2)))) = 0

To understand why this measure c is useful, it should first be noted that our
set of rules does not enjoy the subformula property. First, in the rule (e-comp-ok),
the intermediate result r1 in the first premise is not a sub-term of the goal of the
rule. The condition on the “;;;” operator ensures the termination for this case. As for
the other rules, the filter(s) in the premise(s) might not be a sub-tree of the filter in
the goal as the latter can be recursive (i.e. infinite and regular). However there is a
well founded order based on both the syntactic tree of the filter and the input value.
Intuitively c(f) = 0 if either the filter f is finite or if f is a product filter. Let us
consider the following example:

Example 3.14
Let f be the recursive filter defined as:

f = `nil→→→ `nil

||| [Int+]→→→ (((x→→→ x,,, f)))

And let us consider its application to a value v = [1] (which is syntactic sugar for
(1, `nil). We have the following derivation steps:

filter after reduction step rule c
f ([1]) ; [Int+]→→→ (((x→→→ x,,, f)))([1]) (e-union2) 2

[Int+]→→→ (((x→→→ x,,, f)))([1]) ; (((x→→→ x,,, f)))([1]) (e-patt-ok) 1
(((x→→→ x,,, f)))([1]) ; x→→→ x(1) (e-prod-ok) 0

x→→→ x(1) ; (x)(1) (e-patt-ok) 0
(x)(1) ; 1 (e-expr) 0

(((x→→→ x,,, f)))([1]) ; f ([]) (e-prod-ok) 0
...

58 CHAPTER 3. FILTERS

To show the normalization theorem, we want to proceed by induction. There are
three cases to consider. First, if the filter is finite (such as x→→→ x or `nil→→→ `nil in
the previous example), the evaluation trivially terminates: each filter in the premises
of a rule is a strict-subtree of the filter in the goal of the rule.

Secondly, if a filter (((f1,,, f2))) is applied to a value v ≡ (v1, v2), then the evaluation
continues with f1(v1) and f2(v2). As values are finite, v1 and v2 are strict subterms
of v. We can use this and show that the size of the input decreases strictly. How-
ever, this is only true for product filters. For example, starting from [Int+]→→→ (((x→→→
x,,, f)))((1, `nil)) and applying one step of reduction, resulting in (((x→→→ x,,, f)))((1, `nil))
the input is still (1, `nil). Moreover, as the filter is recursive (in the example, f is
a subtree of itself), neither the size of the filter nor the size of the input decrease
during this step. This is why we use the special measure c, which represents the
contractivity condition for filters. Simply put, c(f) is the depth between the current
node in the syntactic tree of f and the next product node (which forces the destruc-
turation of the input). This number is finite even for an infinite filter (thanks to the
contractivity condition), allowing us to prove the finiteness of the evaluation. We
can now state the normalization theorem:

Theorem 3.15 (Termination of filtering) Let v be a finite value of the language and f
a well-formed filter, in which every expression sub-term terminates for all well-typed substi-
tution. Then the evaluation of f (v) terminates.

Proof We use an induction on the triple (f , v, c(f)) equiped with the well
founded order (v,v,≤N)lex. The idea is to prove that at each step of the
evaluation:

• either we evaluate a strict sub-term of f . The number of distinct
subterms of a regular tree being finite, the evaluation terminates;

• or we decompose a pair in its two component (and as values are finite,
the evaluation terminates);

• or we get closer to a (f1, f2) filter strictly which will either destruc-
turate a value or fail if this value is not a pair.

By case analysis on the evaluation rules:

(e-eval): Trivial as we have assumed that all expressions terminate.

(e-prod-ok): Here the measure decreases strictly in v because we decon-
struct the pair v1, v2 (and of course, f1 v (((f1,,, f2))) and f2 v (((f1,,, f2))),
so the first component of our order does not increase). By induction
hypothesis, the two premises terminate and so does the goal of this
rule.

(e-prod-err1): here the evaluation terminates directly on Ω (no premises).

3.5. TERMINATION 59

(e-prod-err2): like the previous case.

(e-patt-ok): Either f contains an (((_,,,_))) in which case c(f) <N c(p→→→ f),
or it does not and is therefore finite (because an infinite filter would
contain an infinite number of (((_,,,_))) nodes). In the first case, the order
decreases in c(f), in the second case, as the filter is finite, we have
f < p →→→ f hence the measure decreases on the first component. In
both cases we can apply the induction hypothesis.

(e-patt-err): the evaluation terminates with Ω

(e-comp-ok): for the second premise, f2 is a strict sub-term of f1; f2 by
definition, hence the evaluation of f2(r1) terminates, by induction
hypothesis. For the first premise:

• either f1 contains an (((_,,,_))) in which case the third component
decreases strictly: c(f1) <N c(f1; f2).

• or f1 does not contain any product filter and is therefore finite.

in both cases, it terminates.

(e-comp-err) : terminates with Ω

(e-union1) : let us consider a filter f1||| f2(v) where f1(v) is applied. Either
f1 does not contain any (((_,,,_))) and it is therefore finite. If this is not the
case, then again, c(f1) <N f1||| f2(v), and by induction hypothesis,
the evaluation terminates.

(e-union2) : symmetric of the previous case.

Of course, as one can clearly see in Theorem 3.15, if one of the expression sub-
filters does not terminate, then the whole filter may diverge. However this only
means that the non termination is decided by the programmer because either (s)he
applied it to a cyclic value or used a diverging expression. In both cases it is not
inherently due to the iterating part of the filter. ev

60 CHAPTER 3. FILTERS

Chapter 4

Static semantics

This chapter is devoted to the presentation of the type-system
for filters. We explain the design choices we made while devis-
ing this system and prove that it satisfies the subject reduction
property.

Contents
4.1 Type-system . 61

4.1.1 General presentation . 61

4.1.2 Typing the composition . 64

4.1.3 Typing the union . 66

4.2 Properties . 68

4.2.1 Use of the subsumption . 68

4.2.2 Subject reduction . 73

4.2.3 Monotonicity . 75

4.1 Type-system

4.1.1 General presentation

Given than filters are computational objects, it is natural to want to associate
them with a domain and a co-domain. However, since our goal is to type those

objects more precisely than functions, given a subset of their domain, we want to
compute an approximation of the image which is much more precise than the co-
domain.

61

62 CHAPTER 4. STATIC SEMANTICS

Our first attempt is to extend the notion of accepted type of a pattern, *p+ to the
accepted type of a filter which would be its “domain”. Since *p+ is co-inductively de-
fined on the (regular) structure of the pattern p (see [Fri04b]), let us try this approach
on filters, seen as regular terms:

Definition 4.1 (Accepted type)
For every filter f ∈ F we define the type * f + as follows:

*e+ = Any

*(((f1,,, f2)))+ = (((* f1 +××× * f2 +)))
* f1||| f2+ = * f1 +∨∨∨ * f2+
*p→→→ f + = *p +∧∧∧ * f +
* f1;;; f2+ = * f1+

Lemma 4.2 (Necessary inclusion) Let v be a value and f a filter. If v /∈ *f + then
f (v);Ω.

Proof This is immediate since the definition of *f + matches the side con-
ditions of the rules in Figure 3.1. If v /∈ *f + then the side conditions do not
hold and consequently, f (v) ; Ω.

Being in * f + is a necessary condition for the evaluation to succeed. Unfortunately,
it is not sufficient. For instance, the accepted type of Any→→→ 3 ;;; (((_××× _)))→→→ 5 is
Any, but every application of this filter fails, since it tries to match 3 against a pair
pattern. The problem lies, as one would expect, in the composition operator f1;;; f2.
Indeed, a necessary condition is that the output type of f1 is a subtype of the input
type of f2. To ensure type safety, we need to infer the output type of the filter f1, that
is, an approximation of the image set. To that end we define the inference rules of
Figure 4.1. The system proves judgements of the form Γ ` f (t) = s meaning that
in a type environment Γ a filter f applied to an expression of type t returns a value
of type s. We call F the associated deduction system and only consider (possibly
infinite) regular derivations of this system.

The rules in F are motivated by our need to be as precise as possible. Indeed,
one basic case of type inference is when the input type t of a filter f is a singleton
type {v}, where v is a value of the language. In this case, we expect the type system
to infer an output type s ≡ {u} where ∅ `e f (v) ; u. Our intuition is that, to be
precise, the output type of the filter must be computed by an evaluation of the filter
on the input type. A type is however not a value: a type is at the same time less precise
then a value (it denotes a set of values) and may be infinite (values cannot).

The infinite aspect of types is handled in our system by considering regular deriva-
tions, co-inductively defined by the set of rules instead of a more classical inductive

4.1. TYPE-SYSTEM 63

(t-expr)
type(Γ, e) = s

Γ ` e(t) = s

(t-patt)
t/p ::∪ Γ ` f (t) = s t ≤ *p +∧∧∧ * f +

Γ ` (p→→→ f)(t) = s

(t-prod)
πππ(t) = {(((t1

1××× t1
2))), . . . , (((tn

1 ××× tn
2)))} Γ ` f1(ti

1) = si
1 Γ ` f2(ti

2) = si
2

Γ ` (((f1,,, f2)))(t) =
∨

i∈1..n (((si
1××× si

2)))

(t-union)

t ≤ * f1 +∨∨∨ * f2+
t1 = t ∧∧∧ * f1+
t2 = t rrr * f1+ Γ ` f1(t1) = s1 Γ ` f2(t2) = s2

Γ ` (f1||| f2)(t) =
∨
{i|ti 6=Empty} si

(t-comp)
t ≤ * f1+
s1 ≤ * f2+ Γ ` f1(t) = s1 Γ ` f2(s1) = s2

Γ ` (f1;;; f2)(t) = s2

(t-subs)
Γ ` f (t) = s′ s′ ≤ s

Γ ` f (t) = s

Figure 4.1: Deduction system associated with F

definition. This allows us to express only by six rules the complexity we sketched
in the introduction, in particular to take any valid regular approximation of a non-
regular type into account. We will show, in Chapter 5, that forcing an inductive
presentation, i.e. an algorithmic system, does not provide such flexibility (and that
indeed, a particular regular derivation is to be chosen in that case). We reflect this
co-inductive nature in our syntax by using a double bar to separate the premises and
the goal of a rule.

To achieve a precise computation in the presence of less precise objects —types in-
stead of values— we model each rule on the corresponding evaluation rule, presented
in Chapter 3, and add specific side-conditions in order to maintain precision.

Regularity both for filters and for deductions prevents Γ from growing indefi-
nitely (regularity of filters guarantees that the number of distinct variables on an
infinite branch is finite and regularity of deductions ensures that these variables can
be assigned only to finitely many types).

Most of the rules require that the input type is compatible with the accepted type
of the considered filter. To type an (host language) expression,the rule (t-expr) relies
on the type system of the host language with the current environment.

To type a product (rule (t-prod)) we use the decomposition πππ introduced in Def-
inition 2.26. For each pair in the decomposition, we apply the sub-filters f1 and f2
respectively to the first and second projection of the product and rebuild a product

64 CHAPTER 4. STATIC SEMANTICS

of the result. Finally, the union of every sub-product is returned. Typing products
hence depends on the very nature of the decomposition. We will only assume the
properties described in Definition 2.26 to prove subject reduction. However, as we
will see in Section 4.2.3 the way products are decomposed has a direct impact on
type precision. We will present a particular case of interest, the maximal product
decomposition (see Definition 4.8), together with its properties.

Typing a pattern filter p→→→ f merely consists in typing f under an environment
enriched with t/p; the latter —defined by Theorem 2.34— is the type environment
that assigns to each capture variable in p the most precise type that can be deduced
for it when the pattern is matched against a value of type t.

The three remaining rules are subtler: the composition rule, (t-comp), while
simple in appearance, shows its power when coupled with the subsumption rule
(t-subs). As for the typing of the union, the rule (t-union) exhibits some of the
details one needs to be aware of to achieve precise type inference. We devote the
next two subsection to describe these rules.

4.1.2 Typing the composition

As explained in the previous section, our aim is to evaluate a filter on a type (rather
than on a value) in order to deduce an output type. In this respect, the rule (t-comp)
which allows us to type the composition seems quite straightforward. Given an input
type t, we apply the first filter f1 on it, deduce an intermediary type s1 onto which we
can apply the second filter f2 to deduce the output type s2. While simple in principle,
the effects of this rule on the type-system are quite deep.
To see why this is the case, let us consider the flatten filter, defined as follows:

Example 4.3

flatten = `nil→→→ `nil

||| ((([Any*]→→→ flatten,,, flatten)));;;@
||| (((x→→→ x,,, flatten)))

In this definition, @ denotes the concatenation filter defined in Example 3.10. The
semantics of this filter is natural: if its argument is the empty list, it returns the
empty list. If its argument is a list the first element of which is also a list, then it
recursively flattens this first elements,then the tail and concatenates them both. If
the first argument is not a list, it recursively flattens the tail of the list. As already
said, if this filter is applied to the type t = `nil∨∨∨ (((`a××× (((t××× (((`b××× `nil))))))))) (which
in concrete syntax writes: t = `nil∨∨∨ [`a t `b]), then the most precise output type
is the set of values: {[`an `bn]|n ≥ 0} which is not a regular set1. To see why the
“non-regularity” can really arise in the presence of composition, let us try to derive
∅ ` flatten(t) =?, without using the subsumption rule. We see in Figure 4.2 that the

1We recall that `a denotes the singleton type whose only inhabitant is the atom `a.

4.1. TYPE-SYSTEM 65

...
∅ ` flatten(t) = X1

...
∅ ` flatten((((`b××× `nil)))) = (((`b××× `nil)))

∅ ` ((([Any*]→→→ flatten,,, flatten)))((((t××× (((`b××× `nil))))))) = (((X1××× (((`b××× `nil))))))
...

3©
∅ ` ((([Any*]→→→ flatten,,, flatten)));;;@((((t××× (((`b××× `nil))))))) = . . .

type(∅,`nil)=`nil
1©
∅ ` (`nil)(`nil) = `nil

∅ ` (`nil→→→ `nil)(`nil) = `nil

type({x 7→ `a},x)=`a

{x 7→ `a} ` (x)(`a) = `a
2©

∅ ` (x→→→ x)(`a) = `a
∅ ` (. . .) = . . .

∅ ` (((x→→→ x,,, flatten)))((((`a××× (((t××× (((`b××× `nil)))))))))) =

∅ ` flatten(t) = X0

Figure 4.2: Typing derivation for the flatten filter

output type of the flatten filter applied to t is (in informal notation):

flatten(t) = `nil∨∨∨ (((`a××× (flatten(t)@(((`b××× `nil)))))))

The `nil and (((`a××× . . .))) come from Steps 1 and 2 of the derivation (circled). However
the latter part is much more tricky. Indeed, it involves the rule (t-comp), (Step 3)
which behaves as a logical cut: it introduces an intermediary type. In this case, the
worse situation happens as, to be able to type this filter, the only acceptable output
for flatten(t) is {[`an `bn]|n ≥ 0}. Indeed if we take X1 = {[`an `bn]|n ≥ 0},
then at Step 3, the output type is the concatenation of X1 and (((`b××× `nil))), which
is {[`an `bn+1]|n ≥ 0}. Then, at the end of Step 2, we prepend `a to this type to
obtain: {[`an+1 `bn+1]|n ≥ 0}. Finally, the use of the (t-union) rule together with
the result `nil of Step 1 gives as final result: `nil∨∨∨ {[`an+1 `bn+1]|n ≥ 0} which
is nothing else but {[`an `bn]|n ≥ 0}. What happens here is that this derivation
yields to precise a type, the output type for flatten(t) must verify:

flatten(t) = `nil∨∨∨ (((`a××× (flatten(t)@(((`b××× `nil)))))))

which only has a non-regular exact solution.
With a derivation such as the one in Figure 4.2, it is not possible to derive an

approximation of {[`an `bn]|n ≥ 0}. Indeed, the system, as it is, is too precise to
account for regular approximation. For instance, let us try to type this filter with
the (reasonable) approximation [`a* `b*] as output type, that is, let us make the as-
sumption that ∀i, Xi = [`a* `b*]. Then the result of Step 3 is to append (((`b××× `nil)))
to X1 thus yielding the intermediary type [`a* `b+]. At Step 2, `a is prepended to
the intermediary result, giving an output type of [`a+ `b+]. Finally, the (t-union)
rule is applied and give as final output type X0 = `nil∨ [`a+ `b+] which is strictly
more precise that [`a* `b*], which was the assumption we made. Indeed, the sys-
tem returned a more precise type, that is a subtype of our approximation. The prob-

66 CHAPTER 4. STATIC SEMANTICS

lem with the derivation of Figure 4.2, is that whatever regular type we use as X1, we
always end-up with X0 � X1 (X0 is a strict subtype of X1).

Fortunately the subsumption rule allows us to loosen this precision a bit, provid-
ing a regular derivation for a regular approximation of flatten(t). This is illustrated
in Figure 4.3 where the output type is approximated by the regular type [`a* `b*].
The important part in this figure are Step 1 and Step 2, which are the same node

...
2©
∅ ` flatten(t) = X1

...
∅ ` flatten([`b]) = [`b]

∅ ` ((([Any*]→→→ flatten,,, flatten)))((((t××× [`b])))) = (((X1××× [`b])))
...

∅ ` ((([Any*]→→→ flatten,,, flatten)));;;@((((t××× [`b])))) = . . .

type(∅,`nil)=`nil
∅ ` (`nil)(`nil) = `nil

∅ ` (`nil→→→ `nil)(`nil) = `nil

type({x 7→ `a},x)=`a

{x 7→ `a} ` (x)(`a) = `a

∅ ` (x→→→ x)(`a) = `a
∅ ` (. . .) = . . .

∅ ` (((x→→→ x,,, flatten)))([`a t `b]) =

∅ ` flatten(t) = `nil∨∨∨ [`a+ `b+]
1©

∅ ` flatten(t) = [`a* `b*]

Figure 4.3: Typing derivation for the flatten filter with an approximation

in the infinite regular proof tree. If, at Step 2, we take X1 = [`a* `b*], then we
end-up at Step 1 with an output type of `nil ∨ [`a+ `b+], as previously. However,
now that we have inserted a subsumption rule as “correcting lens”, we can check
that `nil ∨ [`a+ `b+] ≤ [`a* `b*] and then type the filter with the output type
[`a* `b*]. Thanks to this rule, we have X1 = X0 = [`a* `b*] or said differently,
the filter is typed by a regular derivation.

4.1.3 Typing the union

Typing the union filter should be, at first glance quite easy. For example consider the
simplified rule:

t ≤ * f1 +∨∨∨ * f2+
t1 = t ∧∧∧ * f1+
t2 = t rrr * f1+ Γ ` f1(t1) = s1 Γ ` f2(t2) = s2(t-union-simple)

Γ ` (f1||| f2)(t) = s1 ∨ s2

Is not this rule enough? It does not seem unsafe (and it is not) but it may yield to
rather imprecise typing. Consider the filter succList, presented in Section 3.4.3. A

4.1. TYPE-SYSTEM 67

type derivation using the rule (t-union-simple) for this filter applied to the type
[Int+] (which is t = (((Int××× t)))∨∨∨ (((Int××× `nil)))) is given in Figure 4.4. As we can

type(∅,`nil)= `nil

∅ ` (`nil)(Empty) = `nil

∅ ` (`nil→→→ `nil)(Empty) = `nil

...
∅ ` (x→→→ x + 1)(Int) = Int

...
∅ ` succList(t) = s

∅ ` (((x→→→ x + 1,,,succList)))(t) = (((Int××× s)))

∅ ` (`nil→→→ `nil|||(((x→→→ x + 1,,,succList))))(t) = `nil∨∨∨ (((Int××× s)))

where s = `nil∨∨∨ (((Int××× s))).

Figure 4.4: Typing derivation for succList applied to [Int+]

see, the output type is less precise that one would expect: the system built this way
infers: [Int*] instead of [Int+]. There was a loss of precision due to the fact
that we took into account unnecessary branches of a union filter. Indeed, if the input
type for one branch is empty (t1 or t2 in rule (t-union)), we know statically that this
branch will not be taken. This explain the check for emptiness of the input type
in the rule (t-union). In our example, if at run-time a value is in the type [Int+],
then it can never be `nil, and therefore the first branch is never taken. The type-
system must reflect this behaviour and does so by not including the output type
of the considered branch to the whole output type. This illustrates an interesting
aspect of this type-system: during a typing derivation the same filter (e.g. succList
in Figure 4.4) can be applied to many different input types (it is nevertheless done
finitely many times. This property is crucial for the termination of a type inference
algorithm for example and will be proven in Chapter 5). Retyping a filter during
a typing derivation is a fundamental difference between our approach and Hosoya’s
regular expression filters. We will compare in Chapter 6 both approaches on concrete
examples and show that ours returns a much more precise output type. Finally this
refinement can be used to warn the user of redundant alternatives in a filter. For
example in the filter:

Example 4.4

red = `nil→→→ `nil

||| (((x→→→ x + 1,,,red)))
||| (((x→→→ x + 2,,,red)))

the third branch is unnecessary and will never be taken, whatever the input type
is. This technique is quite similar to the one used to type overloaded functions in the
presence of union types (e.g. in the case of CDuce as defined in [Fri04b]).

68 CHAPTER 4. STATIC SEMANTICS

4.2 Properties

As explained in Section 4.1.2, the use of the subsumption rule is necessary to take
regular approximations into account. More surprisingly, it is also the only case where
subsumption is really needed. Indeed, like for the simply typed lambda calculus
with subtyping, we can remove all applications of the subsumption rules but those
used to prove the first premise of a composition rule. By doing so, we can show
that we always obtain a valid derivation which proves a more precise judgement: if
Γ ` f (t) = s can be proven in the type-system by a derivation D, then a derivation D′

obtained by removing the “unnecessary” subsumptions from D proves a judgement
Γ ` f (t) = s′ where s′ ≤ s. We devote the first part of this section to the proof of
this property.

Once this property is proven, we can prove more easily that subject-reduction
holds and, consequently, that adding typed filters to an host language does not com-
promise its safety. We also consider a particular decomposition of products, called
maximal product decomposition, and show that by using it, we obtain a property of
monotonicity with respect to subtyping for filters. Informally, it states that given a
filter f and two types t and s such that s ≤ t, we have “ f (s) ≤ f (t)”. The interest of
such a property in terms of programming is that if a data-type t (onto which we ap-
ply the transformation f) is refined later on into a type s (making it more restrictive)
then the whole program will still type-check and in particular that there will be no
need to modify the definition of f .

4.2.1 Use of the subsumption

Before proving the subject-reduction property, we need to prove an important prop-
erty of the typing derivations in our system, which will also be later used in Chap-
ter 5, for the conception of the typing algorithm. This property (again very similar
to what is found for the simply typed lambda calculus with subtyping), that we call
subsumption erasure states that the only places where the subsumption rule plays a
crucial rule (i.e. is mandatory to type a filter) are:

• if it is at the bottom of the derivation.

• if it is used to prove the first premise of a composition rule.

Such cases are, for instance, those in Figure 4.3. Before proving this property, we
need the following lemma:

Lemma 4.5 Let f be a filter, Γ a typing environment and t and s two types such that
Γ ` f (t) = s is derivable with a regular derivation D. Then there exists a regular derivation
D′ for which any application of the rule (t-subs) is preceded by an application of a rule other
than (t-subs) and followed by an application of a rule other than (t-subs) or no other rule.

4.2. PROPERTIES 69

Proof Let us call P the property we want to prove. We supposed that
the derivation D is regular, hence it has a finite number of distinct sub-
derivations. This has two consequences:

i. Every infinite sequence of successive applications of (t-subs) has the
form (note the reflexivity):

...(t-subs)
Γ′ ` f ′(t′) = s′ s′ ≤ s′

(t-subs)
...(t-subs)

Γ′ ` f ′(t′) = s′ s′ ≤ s′
(t-subs)

...

ii. There is a finite number n(D) of distinct sequences of successive ap-
plications of (t-subs) in D which do not verify P.

We prove the lemma by induction on n(D).

Basic case: The derivation has no such sequence of consecutive applica-
tions of (t-subs). The lemma is trivially true with D′ ≡ D.

Inductive case: Let us consider a sequence d of successive applications of
the rule (t-subs) in the derivation D. d can be an infinite sequence
of applications of (t-subs) as in point (i) and we can suppress it alto-
gether (since it does not contribute to the computation of the output
type).

• d has the form:

d =

d2(t-subs)
Γ′ ` f ′(t′) = s′ s′ ≤ s′

(t-subs)
...(t-subs)

Γ′ ` f ′(t′) = s′ s′ ≤ s′
(t-subs)

d1
where d1 and d2 are not applications of the rule (t-subs). Let us

call d′ = d2

d1
. Let us consider the derivation D′ = D[d ← d′],

i.e. D where we collapsed the unneeded sequences of applica-
tions of (t-subs). We have now that d′ verifies P, hence that
n(D′) < n(D), since we removed exactly one sequence of con-
secutive applications of (t-subs), thus the induction hypothesis
holds.

70 CHAPTER 4. STATIC SEMANTICS

• d has the form:

d =

d1(t-subs)
Γ′ ` f ′(t′) = s′ s′ ≤ s′

(t-subs)
...(t-subs)

Γ′ ` f ′(t′) = s′ s′ ≤ s′
and we take d′ = d1. We can apply the induction hypothesis on
D′ = D[d← d′] as in the previous case.

Another case is the one where d is an interleaving of infinite se-
quences and finite numbers of uses of the rule (t-subs) where the
output type in the premise is a strict subtype of the output type in
the conclusion of the rule:

• d has the form: d =

d2(t-subs)
...(t-subs)

Γ′ ` f ′(t′) = s′k s′k ≤ s′k(t-subs)
Γ′ ` f ′(t′) = s′k s′k ≤ s′k−1(t-subs)

...(t-subs)
Γ′ ` f ′(t′) = s′1 s′1 ≤ s′0(t-subs)

...(t-subs)
Γ′ ` f ′(t′) = s′0 s′0 ≤ s′

(t-subs)
d1

By using the transitivity of the subtyping relation, we have that:
s′k ≤ s′k−1 ≤ . . . ≤ s′0 ≤ s′. We can form an equivalent deriva-
tion by collapsing all the applications of (t-subs) into one. Let

d′ =

d2

Γ′ ` f ′(t′) = s′k s′k ≤ s′

Γ′ ` f ′(t′) = s′

d1

. The property P holds for d′.

If we consider D′ = D[d ← d′] then n(D′) < n(D), so the
induction hypothesis holds for D′.
• The last case is the one for which:

d =

d2(t-subs)
...(t-subs)

Γ′ ` f ′(t′) = s′k s′k ≤ s′k(t-subs)
Γ′ ` f ′(t′) = s′k s′k ≤ s′k−1(t-subs)

...(t-subs)
Γ′ ` f ′(t′) = s′1 s′1 ≤ s′0(t-subs)

...(t-subs)
Γ′ ` f ′(t′) = s′0 s′0 ≤ s′

4.2. PROPERTIES 71

We can use d′ =
d2

Γ′ ` f ′(t′) = s′k s′k ≤ s′

Γ′ ` f ′(t′) = s′
and apply the induction hypothesis on the derivation D′ =
D[d← d′].

Our next goal is to prove that the only places in a derivation where (t-sub) rules
are needed are:

• to prove the first premise of a composition

• at the very bottom of the proof

Indeed, using this property, we can then assume without loss of generality that any
derivation in the system can be rewritten so as to meet the above conditions. Doing
so effectively reduces the number of cases we have to prove for subject reduction to
hold.

Lemma 4.6 Let f be a filter, Γ a typing environment and t and s two types such that
Γ ` f (t) = s is derivable with a regular derivation D. There exists D′ such that, D′ is a
valid regular derivation of Γ ` f (t) = s and:

i. D′ =
D′′

Γ ` f (t) = s′ s′ ≤ s

Γ ` f (t) = s

ii. an application of the rule (t-subs) in D′′ is immediately followed by an application
of the rule (t-comp)

Proving such a lemma would not be difficult if we were in the standard situation
of finite typing derivations. However we are in the context of co-inductive derivations,
hence using an induction on some well founded order on the derivation would be
cumbersome and inelegant. In this case, using the co-induction principle is much
cleaner. We use the “proof theoretic” approach to the co-induction principle, recalled
in Chapter 2 and developed in [LG07].

Proof First of all, by Lemma 4.5, it is sufficient to consider a derivation
D such that an application of (t-subs) is immediately followed by a rule
other than (t-subs). To apply the co-induction principle, we need to build
a finite system of guarded recursive equations (see Chapter 2, Section 2.3.2).
This system has a unique solution which is a regular derivation that proves
Γ ` f (t) = s. To that end, we define a generating function E from typing
derivations to systems of equations over derivations. If d is a regular typing
derivation, then E(d) is a set of equations of unknowns xj, where js are
judgments occuring in the derivation d. There are three cases:

72 CHAPTER 4. STATIC SEMANTICS

i. The goal of the derivation is a composition whose first premise is a
subsumption:

E(

d1

j′1(t-subs)
j1

d2

j2(t-comp)
j

) = {xj =
xj1 xj2(t-comp)

j
}∪

{xj1 =
xj′1(t-subs)
j1
}∪ E(

d1

j′1
)∪

E(d2

j2
)

ii. The goal of the derivation is a subsumption:

E(
d

Γ′ ` f ′(t′) = s′s′ ≤ s′′
(t-subs)

Γ′ ` f ′(t′) = s′′
) = E(d

Γ′ ` f ′(t′) = s′
)

iii. The goal of the derivation is neither a subsumption nor a composi-
tion:

E(
d1

j1 . . .
dn

jn
(rule)

j

) = {xj =
xj1 . . . xjn(rule)

j
}∪

E(
d1

j1
) ∪ . . . ∪ E(

dn

jn
)

rule 6= (t-subs) or rule 6= (t-comp)

First of all, note that since the argument of E is a regular derivation d, E(d)
is a finite set of equations (E generate at most one equation for each dis-
tinct sub-derivation of d). We know that D is a valid regular derivation of
Γ ` f (t) = s. Let us consider the system of equations E(D). By construc-
tion, we know that each equation in E(D) is guarded, that is there is no
trivial equation x = x′. By [Cou83] we know that this system has a unique
solution, ∆. Furthermore, for every judgement j in the derivation D such
that xj is defined, ∆(xj) is a valid typing derivation that proves j. Let us
consider D. There are three cases:

• D has the following shape:

D =
d1(t-subs)
j1 d2(t-comp)

j

where j ≡ Γ ` f (t) = s. By construction,

∆(xj) is a valid derivation for Γ ` f (t) = s without subsumptions
rules others than on the first premise of a composition rule. The
derivation we seek is then:

D′ =
∆(xj)

Γ ` f (t) = s s ≤ s
(t-subs)

Γ ` f (t) = s

4.2. PROPERTIES 73

• D ends by a subsumption rule:

D =
d
j s′ ≤ s

(t-subs)
Γ ` f (t) = s

where j ≡ Γ ` f (t) = s′. By construction, (case ii.), ∆(xj) is a valid
typing derivation for j. We can then take:

D′ =
∆(xj)

Γ ` f (t) = s′ s′ ≤ s
(t-subs)

Γ ` f (t) = s

as the desired derivation.

• The last case is similar to the first one:
D = d1 . . . dn

j
where j ≡ Γ ` f (t) = s. By construction,

∆(xj) is a valid derivation for Γ ` f (t) = s without subsumptions
rules others than on the first premise of a composition rule. The
derivation we seek is then:

D′ =
∆(xj)

Γ ` f (t) = s s ≤ s
(t-subs)

Γ ` f (t) = s

4.2.2 Subject reduction

Traditionally (at least for simply-typed lambda calculi), type safety is shown in two
steps. The first one is to prove type preservation (or subject reduction), that is if a
term t has type s then after one step of reduction, the resulting term t′ has type s.
The second step is to prove the progress property, which states that a well typed term
t is either a value or can be reduced to different term t′. In our framework however,
we favored a big step semantics to formalise the evaluation of filters. Furthermore,
we showed that the evaluation of any filter terminates. Consequently, we only need
to prove a variant of type preservation, adapted to our big step semantics.

Theorem 4.7 (Subject reduction) Let f , Γ, t and s be such that Γ ` f (t) = s. For every
γ : Γ and v : t, we have that γ `e f (v) ; v′ implies v′ : s

Proof To simplify the proof, we can use Lemma 4.6 and consider a typing
derivation of Γ ` f (t) = s where the subsumption can only occur on the
first premise of a composition rule. Without loss of generality, we can also
consider that the derivation of Γ ` f (t) = s does not end by a subsumption
rule (if it does, then we can consider the judgment Γ ` f (t) = s′ with s′ ≤ s
and the value v′ : s′). This allows us to avoid distributing the subsumption
rule to every case (as the subsumption rule can occur anywhere in a well
formed typing derivation), thus simplifying the proof.

74 CHAPTER 4. STATIC SEMANTICS

We use an induction on the derivation of γ `e f (v) ; v′ which is finite.

• Base of the induction:

(e-expr) : we know that the filter is well-typed, hence the type of e
is s. The evaluation of e gives us a value v′ of type s (we rely on
subject reduction for the target expression language).

(e-*-err) : None of the error cases can occur since the filter is sup-
posed to be well typed, and the side conditions in the typing
rules ensures that erroneous cases cannot occur.

• Induction:

(e-prod-ok) : f ≡ (((f1,,, f2))) and v ≡ (v1, v2). By hypothesis, (v1, v2)
has type t '

∨
(ti

1,ti
2,)∈π(t)

(ti
1, ti

2). Therefore, there exists i, such

that v1 : ti
1 and v2 : ti

2. We know that the filter is well-typed,
hence the premises of rule (t-prod) hold:

Γ ` f1(ti
1) = si

1

and by induction,

γ `e f1(v1) ; v′1 with v′1 : si
1.

The same applies for γ `e f2(v2) ; v′2 with v′2 : si
2. Conse-

quently, v′ ≡ (v′1, v′2) : si
1 × si

2. We can finally remark that:

si
1 × si

2 ≤
∨

i∈1..rank(t)

(si
1 × si

2)

and so:
v′ ≡ (v′1, v′2) :

∨
i∈1..rank(t)

(si
1 × si

2)

(e-patt-ok) : thanks to Theorem 2.34, we know that if v : t then
v/p : t/p. Hence, by hypothesis, the premise of this rule holds:
t/p ::∪ Γ ` f (t) = s; and, by induction hypothesis, v/p ::∪ γ `e
f (v) ; v′ and v′ : s so γ `e (p→ f)(v) ; v′ and v′ : s.

(e-comp-ok) : We know that the filter is well typed. There are two
cases for the first premise. Either it is proven by a rule other
than (t-subs), in which case the derivation for Γ ` f1(t) = s1
does not end by (t-subs), and we can apply the induction hy-
pothesis: γ `e f1(v) ; v′ and v′ : s1. If Γ ` f1(t) = s1 is proved
using (t-subs), then there is a derivation for Γ ` f1(t) = s′1 with
s′1 ≤ s1 which does not start by (t-subs). We can apply the in-
duction hypothesis and find that γ `e f1(v) ; v′ and v′ : s′1.
Finally, by definition of the subtyping relation, if v′ : s′1 and

4.2. PROPERTIES 75

s′1 ≤ s1, then v′ : s1. For the second premise, Γ ` f2(s1) = s2,
and by induction hypothesis γ `e f2(v′) ; v′′ and v′′ : s2.
Hence, γ `e (f1; f2)(v) ; v′′ and v′′ : s2.

(e-union1) and (e-union2): These two rules must be proved to-
gether. Indeed, we know that v : t1 ∨ t2. But, since v is a value,
we can refine by saying that either v : t1, or v : t2 r t1. If v : t1
then, we apply (e-union1) and γ `e f1(v) ; v′ with v′ : s1 (in
particular, v′ 6= Ω). Otherwise, (e-union2) applies. If v : t2r t1,
we have indeed that v /∈ *t1+ (by definition), so γ `e f1(v) ; Ω,
and, v : t2 so γ `e f2(v) ; v′ with v′ : s2 (by induction hypoth-
esis). Hence, either v′ : s1 or v′ : s2. Since s1 ≤ s1 ∨ s2 and
s2 ≤ s1 ∨ s2,then we get the expected result: v′ : s1 ∨ s2 ≡ s

Let us emphasize the importance of the elemination of the subsumption rule
here. Without the elimination of the subsumption, a filter of the form (((f1,,, f2))) is not
necessarily proved by the rule (t-prod) but can also be proven by a rule (t-subs). This
would have made the proof much more tedious, duplicating each case in two, as it is
done for the composition rule.

4.2.3 Monotonicity

Typing of Cartesian products (i.e. rule (t-prod)) can be further refined by carefully
choosing the decomposition function πππ. Indeed, while every subtype of (((Any××× Any)))
can be decomposed into an union of products, the decomposition is not unique.
However, there exists a decomposition (that we dub maximal product decomposition)
given by the operatorM that has better properties (with respect to subtyping)2. Typ-
ing Cartesian products can be tricky since not every decomposition of a product in
a finite union of Cartesian products is stable with respect to the subtyping relation.
Stability with respect to subtyping would give as the monotonicity property pre-
sented hereafter. Let us illustrate this on an example involving interval types (the
notation of which was given in Section 2.4.2). Consider the following filters:

f1=0..3→→→ A|4..7→→→ B f2=0..4→→→ C|0..6→→→ D f =(((f1,,, f2)))

and the types t and s:

t = (((0..3××× 0..4)))|||(((4..7××× 0..6))) s = (((2..5××× 1..3)))

It is clear that s ≤ t: by drawing all intervals on a plane, as in Figure 4.5, it is easy to
check that the rectangle s is contained in the “ ”-shaped t. However, s overlaps the
two rectangles which form t without being completely contained in any of them. If
we decompose naively (i.e., syntactically) both types and compute the result type of f
by separately applying the filter on each component of the obtained decomposition,
then we have:

∅ ` f (t) = (((A××× C)))|||(((B××× D)))
2This Japanese character is pronounced [pi:] (as for “pea”), which is the French spelling for the

Greek letter π. Globalization has an impact, even on function names.

76 CHAPTER 4. STATIC SEMANTICS

but also:

∅ ` f (s) = (((A|||B ××× C|||D)))

the latter being a super-type of the former. Indeed, in f1, a value in 4..6 can match
either 0..4 or 5..8 (and likewise for f2), hence the necessity of returning the union of
the output type of the two branches, reflecting in the type the fact that at run-time
either branch can be taken. Therefore, we would have s ≤ t but f (s) � f (t), which

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

t

s

Two disjoint components: (((0..3××× 0..4))) and
(((4..7××× 0..6))). s overlaps both.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

t

s

Two non-disjoint components: (((0..7 ×××
0..4))) and (((4..7 ××× 0..6))). s is included in
(((0..7××× 0..4))).

Figure 4.5: Syntactic and maximal product decompositions

jeopardises subject reduction. The problem is solved by choosing a decomposition
that is stable with respect to the subtyping relation, that is which ensures that if s ≤
t then f (s) ≤ f (t). One such decomposition is the maximal product decomposition,
notedM, which we define as follows:

Definition 4.8 (Maximal product decomposition)
Let t be a type such that t ≤ (((Any××× Any))). Then, there exists n ∈N such that:

t '
∨

i∈1...n

(((ti
1××× ti

2)))

and that:

i. ∀s1, s2, (((s1××× s2))) ≤ t =⇒ ∃i∈{1, .., n}, (((s1××× s2))) ≤ (((ti
1××× ti

2)))

ii. ∀i ∈ {1, .., n}, ∀k ∈ {1, .., n}, i 6= k =⇒ (((ti
1××× ti

2))) � (((tk
1××× tk

2)))

iii. For all plinth i, t ∈ i =⇒ ∀i ∈ {1, .., n}, ti
1 ∈ i and ti

2 ∈ i

4.2. PROPERTIES 77

While Definition 4.8 states the property of a maximal product decomposition, it
is not straightforward that such a decomposition is unique. Furthermore, it does not
give a way to effectively compute it. We first prove the unicity of the decomposition:

Although the definition above is not immediate, the intuition it formalises is
quite simple: the maximal decomposition of a type is the one formed only by (possi-
bly overlapping) rectangles that are as large as possible. The right-hand side of Fig-
ure 4.5 shows the maximal decomposition of t, the one of s being s itself. Formally,
the maximality of the components is specified by condition (i.): every rectangle con-
tained in t is contained in a rectangle of its maximal decomposition (in our example,
s is a subtype of the (((0..7××× 0..4))) component of t). Condition (ii.) instead ensures
that only maximal components are used, by ruling out redundant ones (in our ex-
ample {(((0..7××× 0..4))), (((4..7××× 0..6))), (((5..7××× 0..4)))}, which satisfies (i.), would not be a
maximal decomposition because of the extra (((5..7××× 0..4)))). Finally, condition (iii.)
is the same as in Definition 2.26, and is there to ensure the termination of the algo-
rithms. The key property of our maximal decomposition is that if one product type
is smaller than another, then every component of the maximal decomposition of the
former is contained in at least one component of the maximal decomposition of the
latter.

Lemma 4.9 (Uniqueness of maximal product decomposition) Let t be a type such
that t ≤ (((Any××× Any))). The maximal product decomposition of t is unique.

Proof We use reductio ad absurdum to prove this lemma. Let us suppose
that there exist T and S, two maximal product decompositions of t:

• T = {(((t1
1××× t1

2))), . . . , (((tk
1××× tk

2)))}

• S = {(((s1
1××× s1

2))), . . . , (((sl
1××× sl

2)))}

We call the elements of T and S maximal rectangles. We have three cases:

k =N l: Since we suppose that T and S are differents and that they have
the same number of elements, then at least one element of T is not
an element of S:

∃i ∈ 1..k such that ∀j ∈ 1..l, (((ti
1××× ti

2))) 6= (((sj
1××× sj

2)))

Let us consider such a rectangle (((ti
1××× ti

2))). We have that (((ti
1××× ti

2))) ≤ t.
But since S is a maximal product decomposition, condition i. of Def-
inition 4.8 gives:

∃j ∈ 1..l such that (((ti
1××× ti

2))) � (((sj
1××× sj

2)))

But by applying condition i. of Definition 4.8 to T which is also a
maximal product decomposition, we have that:

∃i′ ∈ 1..k, i′ 6= i, such that (((sj
1××× sj

2))) ≤ (((ti′
1 ××× ti′

2)))

78 CHAPTER 4. STATIC SEMANTICS

Hence, by transitivity of subtyping, we have: (((ti
1××× ti

2))) � (((ti′
1 ××× ti′

2))),
which means that (((ti

1××× ti
2))) is not a maximal rectangle which contra-

dicts the supposition that T is a maximal product decomposition.

k <N l: Since there are strictly more rectangles in S than in T, we have
that at least two rectangles of S are contained in the same rectangle
of T:

∃j, j′ ∈ 1..l, j 6= j′, such that ∃i ∈ 1..k, such that:

{
(((sj

1××× sj
2))) ≤ (((ti

1××× ti
2)))

(((sj′
1 ××× sj′

2)))≤ (((ti
1××× ti

2)))

Consequently, we have (((sj
1××× sj

2))) � (((ti
1××× ti

2))) (because the elements of

(((sj′
1 ××× sj′

2)))rrr (((sj
1××× sj

2))) are in (((ti
1××× ti

2))) but not in (((sj
1××× sj

2)))). We can
now apply condition i. to S:

∃j′′ ∈ 1..l, j′′ 6= j such that (((ti
1××× ti

2))) ≤ (((sj′′
1 ××× sj′′

2)))

and by transitivity of subtyping: (((sj
1××× sj

2))) � (((sj′′
1 ××× sj′′

2))) which means
that (((sj

1××× sj
2))) is not a maximal rectangle, which contradicts the as-

sumption that S is a maximal product decomposition.

k >N l: Symmetric argument of the previous case.

Definition 4.10 (Maximal product decomposition operator)
Given t ≤ (((Any××× Any))) and its maximal product decomposition:

{(((t1
1××× t1

2))), . . . , (((tn
1 ××× tn

2)))}

where the ti
js are defined according to Definition 4.8, we write:

• M(t) = {(((t1
1××× t1

2))), . . . , (((tn
1 ××× tn

2)))}

• Mi
j(t) = ti

j

• rank(t)= n.

and callM the maximal product decomposition operator.

We can now prove the existence of such a decomposition by giving an algorithm
which computes it. The algorithm maxprod which is given in Figure 4.6 uses well-
defined operations on Cartesian products which where documented in [Fri04b] and
implemented in [CDuce]. The algorithm in Figure 4.6 is quite naive. First of all, the
algorithm accepts as input any decomposition (in the sense of Definition 2.26 of a
type t ≤ (((Any××× Any))). This can be for instance, the syntactic decomposition, that

4.2. PROPERTIES 79

Input: any product decomposition P = {(((t1
1××× t1

2))), . . . , (((tn
1 ××× tn

2)))}

Output: maximal product decomposition M = {(((s1
1××× s1

2))), . . . , (((sm
1 ××× sm

2)))}

1 let max_prod P =

2 let t =
∨

(((ti
1×××ti

2)))∈P

(((ti
1××× ti

2))) in

3 let T1 = disjoint_first P in

4 let T2 = disjoint_second P in

5 let G ={(((tx××× ty))) | (((tx××× _))) ∈ T1, (((_××× ty))) ∈ T2, (((tx××× ty))) ≤ t} in
6 do

7 old_G := G;

8 foreach tx such that ∃(((tx××× _))) ∈ old_G
9 foreach ty such that ∃(((tx××× ty))) ∈ old_G

10 if (((tx××× ty))) /∈ G
11 then G := G ∪ {(((tx××× ty)))

13 foreach ty such that ∃(((_××× ty))) ∈ old_G
14 foreach tx such that ∃(((tx××× ty))) ∈ old_G
15 if (((tx××× ty))) /∈ G
16 then G := G ∪ {(((tx××× ty)))

18 until G = old_G
19 return {s | s ∈ G, ∀s′ ∈ G, s′ 6= s⇒ s′ � s}

Figure 4.6: Maximal product decomposition algorithm

is the type t as given by the programmer. The function max_prod,defined at Line 1
computes the maximal product decomposition of t. This function takes as input a
set of products, P which is a decomposition of the type t (Line 2). Then, starting
from P, we use the function disjoint_first to compute a decomposition of t where the
first component of the products are pair-wise disjoint. This decomposition is doc-
umented in [Fri04b] and is used for the efficient compilation of pattern-matching.
Then, it computes T2, the symmetrical decomposition where all second projections
of the products are pair-wise disjoint. Based on T1 and T2, the algorithm builds the
set G, of pair-wise disjoint rectangles, the union of which is exactly t. Let us call each
element of G a “unit” rectangle (see Figure 4.6). The following steps (Lines 6 to 18) are
repeated until the set G is saturated. For each rectangle in G, merge it with another
rectangle of G which has the same first projection (Lines 8 to 11) or the same second
projection (Lines 13 to 16). Lastly, (Line 19) the set G is sieved to keep only products
which are not included in any other of the computed products.

Finaly, we can study the monotonicity for filters, namely that if one refines the
input type of a filter (with respect to a previously used input type), then the output

80 CHAPTER 4. STATIC SEMANTICS

0 1 2 3 4 5 6 7 80

1

2

3

4

5
6

Input: P = {(((0..4××× 2..5))), (((3..7××× 0..3)))}

0 1 2 3 4 5 6 7 80

1

2

3

4

5
6

X1

X2 X3

T1 = {(((X1××× _))), (((X2××× _))), (((X3××× _)))}
Pair-wise disjoint on the first projec-
tion.

0 1 2 3 4 5 6 7 80

1

2

3

4

5
6

Y1

Y2

Y3

T2 = {(((_×××Y1))), (((_×××Y2))), (((_×××Y3)))}
Pair-wise disjoint on the second pro-
jection.

0 1 2 3 4 5 6 7 80

1

2

3

4

5
6

X1

X2 X3

Y1

Y2

Y3

G = {(((X1×××Y1))), (((X1×××Y2))), (((X2×××Y1))), (((X2×××Y2))), (((X2×××Y3))), (((X3×××Y2))), (((X3×××Y3)))}
Partition of t in rectangles.

Figure 4.7: Initialisation of the maximum product decomposition algorithm

type will be more precise:

Lemma 4.11 (Stability of filtering) For every filter f , types s and t, and type environ-
ment Γ, if s ≤ t and Γ ` f (t) = t′, then Γ ` f (s) = s′and s′ ≤ t′.

4.2. PROPERTIES 81

The proof uses the following observation, which is a direct consequence of the set-
theoretic interpretation of types:

Fact 4.12 Let s, t and u be types such that: s ≤ t. We have:

• s∧∧∧ u ≤ t∧∧∧ u

• s∨∨∨ u ≤ t∨∨∨ u

Proof (Stability of filtering) Let s ≤ t, we want to show that s′ ≤ t′, or,
equivalently, that ∀γ : Γ and ∀v : s, γ `e f (v) ; v′, we have v′ ∈ J f (t)K.
With this presentation, we exhibit the value v. We can now reuse the tuple
(f , v, c(f)) equiped with the well founded order (<, <, <N)lex, and prove
the lemma by induction:

• e: we know that type(Γ,e)= t′ and also that type(Γ,e)= s′ so, here,
s′ = t′ hence s′ ≤ t′.

• (f1, f2): Let us remark that we have s ≤ t, and

t '
∨

(ti
1,ti

2)∈M(t)

(ti
1, ti

2)

So:
s '

∨
(sj

1,sj
2)∈M(s)

(sj
1, sj

2)

By definition of the maximal product decomposition, we know that
for all j, there is i such that: (sj

1, sj
2) ≤ (ti

1, ti
2), with sj

1 ≤ ti
1 and

sj
2 ≤ ti

2. We can apply the induction hypothesis on f1, sj
1 and ti

1 (resp.
on f2, sj

2 and ti
2) and we get: f1(sj

1) ≤ f1(ti
1) (resp. f2(sj

2) ≤ f2(ti
2)),

and therefore f (s) ≤ f (t)

• f1| f2: using Fact 4.12, and the typing rule (t-union):

s ∧ * f1+ ≤ t ∧ * f1+
s ∧ ¬ * f1+ ≤ t ∧ ¬ * f1+

So, by induction hypothesis:

f1(s ∧ * f1+) ≤ f1(t ∧ * f1+)
f2(s ∧ ¬ * f1+) ≤ f2(t ∧ ¬ * f1+)

hence:

f1(s ∧ * f1+) ∨ f2(s ∧ ¬ * f1+) ≤ f1(t ∧ * f1+) ∨ f2(t ∧ ¬ * f1+)

82 CHAPTER 4. STATIC SEMANTICS

• p→ f ′: direct application of the induction hypothesis: f ′(s) ≤ f ′(t),
and so f (s) ≤ f (t).

• f1; f2: Let f1(s) = s1 and f1(t) = t1. By induction, s1 ≤ t1. Therefore
, f2(s1) ≤ f2(t1), and so f (s) ≤ f (t).

Chapter 5

Type inference

In this chapter, we present an algorithm for the previously de-
fined type inference system. We extend the notion of filters to
annotated filters. Based on this formalism, we define a type in-
ference algorithm. We show the termination of the algorithm,
its soundness with respect to the non-algorithmic system de-
vised in Chapter 4. We also define and prove a property of com-
pleteness up to annotations, which gives some insight on the
use of this algorithm in practice and illustrate the interactions
between the type-system and the user-defined annotations.

Contents
5.1 Presentation . 83

5.2 Type-inference Algorithm . 84

5.3 Properties . 89

5.3.1 Termination . 89

5.3.2 Soundness . 91

5.3.3 Completeness . 95

5.1 Presentation

In the previous chapter we presented a type-system for the filter algebra which
enjoys the desired properties of type-safety and precision. However, in its present

state, the system does not translate directly into a typing algorithm. There are two
reasons for that:

i. to one filter and input type t there might correspond an infinite number of
valid regular derivations. There is hence a need to pick one.

83

84 CHAPTER 5. TYPE INFERENCE

ii. we made some basic assumptions on the host language, such as the existence of
a type algebra and the associated operators for subtyping or type decomposi-
tion (e.g. πππ to decompose product types).

We have already lengthily discussed point (i.), but let us emphasize that there are
not only an infinite number of possible output types, but also that there is not a

most precise – i.e. principal– one. In the absence of a principal type, even if the algo-
rithm was to choose a particular approximation, there would always be contexts for
which the chosen type would not be precise enough. For such cases, the programmer
needs a mean to guide the algorithm (which of course still performs a type-checking
operation, thus validating or refuting the annotation).

Point (ii.) reflects the fact that we devised filters so that their algebra and type-
system is parametrized by the host language. While it is true that we made rather
strong assumptions on the host language, such as the “shape” of its type algebra and
the related high-level operations (such as subtyping, type-inference for expressions,
and so on), we believe that these assumptions are very reasonable. Indeed, not only
CDuce, our host language of choice for the implementation, satisfies these require-
ments, but also XDuce or even various dialects of ML would qualify as relevant host
languages for filters. However the extent of the operations (particularly on types)
that we can expect from the type algebra is limited. As we will see, typing a filter
without annotations, even for some cases where there exists a regular output type
may lead to applying a type operation (say subtyping) on ill-formed types, during
the algorithmic typing derivations. As the semantics of these operations is obvi-
ously not defined for ill-formed types, we need to ensure that “foreign” operations
(i.e. those provided by the host language) are always applied on well-formed types
and will also use annotations in those cases. Before detailing this point some more,
let us present the algorithm.

5.2 Type-inference Algorithm

Since the algorithm needs to work on finite representations of (possibly infinite) reg-
ular types, we use the “µ” notation introduced in Definition 2.12 to represent types.
We use Greek letters τ, σ to range over µ-types and to distinguish them from regular
tree types (which are ranged over by t, s,. . .); recursion variables are ranged over by
α, β,. . . .

We extend the definition of filters with annotated filters:

Definition 5.1 (Annotated filters)

f ::= e | p→→→ f | f ;;; f | (((f ,,, f))) | f ||| f (unchanged)
| fE (annotation)

An annotation is a set of (µ-)types E among which the algorithm will pick an out-
put type for the annotated filter. The algorithm is described in Figure 5.1 as a set of

5.2. TYPE-INFERENCE ALGORITHM 85

deduction rules for the judgement Γ, ∆ `A f (τ) = σ, where Γ denotes a type envi-
ronment for pattern variables and ∆ is a memoization environment (which ensures
the termination of the algorithm), that is, a set of triples (f , τ, σ) where f is a filter
and τ and σ types (intuitively, they respectively are an input and an output type).

There are two sets of rules. The structural rules are adapted from the system by
adding an extra environment ∆ which they do not use. Memoization rules, on the
other hand reflect the co-inductive nature of the type inference system, and handle
regularity with the memoization environment ∆ in a classical way. The basic case
is the (a-base-rec) rule, which returns the output type σ for the corresponding pair
f , τ if it is already in ∆. As for putting a type in ∆ there are three cases. If the
filter is not annotated, and a suitable output type does not exist in ∆ yet, then we
introduce a fresh type variable to represent this output type (rules (a-unfold-rec) and
(a-unfold-non-rec)); we then type f against the input type, possibly after unfolding
its definition if this type is recursive. The returned output type σ is then closed by
the binder µα where α is the newly introduced variable. The third case is the one
of an annotated filter (rule (a-annot)). In that case, we non-deterministically pick
an annotation in the set E, and then type the filter f under the assumption that its
output type, for the input type τ is the annotation σ that was chosen. In this pre-
sentation, we assume that the choose() function in rule (a-annot) always chooses the
right type in the annotation set if it exists. In practice, this is implemented by back-
tracking, the algorithm trying all the annotations one after the other until a valid
one is found (or a type error is raised). We chose to hide this aspect of the algorithm
in order not to clutter it with tedious backtracking rules and environments.

Given as it is, the algorithm would not work properly. Indeed, while the struc-
tural rules are syntax directed, the memoization ones are not. If we are not careful,
the algorithm could then, for any input type and any filter perform the ill-founded

derivation:
(f , τ, α) ∈ ∆

∅, { f , τ, α} `A f (τ) = α

∅,∅ `A f (τ) = µα.α

, giving the ill-founded type definition µα.α

as a result. To avoid such a behaviour, we must enforce a contractivity property on
the system, by forcing an alternation between the two kind of rules: a memoization
rule must be followed by a structural rule and a structural rule must be followed by a
memoization rule. To further formalize the order of application of the rules, we give
the algorithm in pseudo code in Figure 5.2.

This specification leads us closer to a practical algorithm but a technical issue
of importance has yet to be addressed. Since we use the standard notations ≤, πππ,
τ/p,. . . that we introduced in Chapter 2 — hence the function given par the host
language — we can only assume that these functions are defined on well-formed
types, that, is closed “µ”-expressions. Unfortunately, due to the composition rule
(a-comp), such an operation can be performed on open types (type expressions with
free variables). There is then the need to extend these operations on open types. A
simple extension, which we will use for now is the following:

Definition 5.2 (Operation on open types)
The operations≤, πππ and τ/p fail when applied to an open type.

86 CHAPTER 5. TYPE INFERENCE

Structural rules

(a-expr) typeA (Γ, e) = σ
Γ, ∆ `A e(τ) = σ

(a-prod)

πππ(τ) ≡ {(((τ1
1 ××× τ1

2))), . . . , (((τn
1 ××× τn

2)))}
j ∈ 1..2

Γ, ∆ `A f j(τi
j) = σi

j

Γ, ∆ `A (((f1,,, f2)))(τ) =
∨

i

(((σi
1××× σi

2)))

(a-patt) τ/p ::∪ Γ, ∆ `A f (τ) = σ τ ≤ *p +∧∧∧ * f +
Γ, ∆ `A (p→→→ f)(τ) = σ

(a-union)

τ ≤ * f1 +∨∨∨ * f2+
τ1 = τ ∧∧∧ * f1+
τ2 = τ ∧∧∧¬¬¬ * f1+

Γ, ∆ `A f1(τ1) = σ1 Γ, ∆ `A f2(τ2) = σ2

Γ, ∆ `A (f1||| f2)(τ) =
∨

{i|τi 6=Empty}
σi

(a-comp)

τ ≤ * f1+
σ1 ≤ * f2+

Γ, ∆ `A f1(τ) = σ1 Γ, ∆ `A f2(σ1) = σ2

Γ, ∆ `A (f1;;; f2)(τ) = σ2

Memoization rules

(a-base-rec) (f , τ, σ) ∈ ∆
Γ, ∆ `A f (τ) = σ

(a-unfold-rec)

@σ s.t. (f , µα.τ, σ) ∈ ∆ and β fresh.
Γ, {(f , µα.τ, β)} ::∪ ∆ `A f (τ[α← µα.τ]) = σ

Γ, ∆ `A f (µα.τ) = µβ.σ

(a-unfold-non-rec)

@σ s.t. (f , τ, σ) ∈ ∆ and α fresh.
Γ, {(f , τ, α)} ::∪ ∆ `A f (τ) = σ

Γ, ∆ `A f (τ) = µα.σ

(a-annot)

σ = choose(E) and (fE, τ, σ) /∈ ∆
Γ, {(fE, τ, σ)} ::∪ ∆ `A fE(τ) = σ′ σ′ ≤ σ

Γ, ∆ `A fE(τ) = σ

Figure 5.1: Deduction system associated with FA

What we mean with this informal definition is that the algorithm will fail and con-
sider the term as ill-typed, in the same way as it fails when one of the conditions

5.2. TYPE-INFERENCE ALGORITHM 87

let rec typeinf f τ Γ ∆ =

if τ � * f +
then failure
else

(∗ we take care of memoization ∗)

if ∃σ s.t. (f , τ, σ) ∈ ∆
then σ
else

match f with
| f ′E ->

let σ =choose(E)

(∗ non deterministic choice ∗)
in

let σ′ =typeaux f ′ τ Γ
({(f ′, τ, σ)} ::∪ ∆)
in if σ′ ≤ σ then σ else failure

| _ ->

let α = fresh_variable ()

in

let σ =

typeaux f τ Γ ({(f ′, τ, α)} ::∪ ∆)
in µα.σ

(∗ And now by case on the
structure of the filters ∗)

and typeaux f τ Γ ∆ =

match f with
| e -> typecheck(Γ,e)

| (((f1,,, f2))) ->∀(τ1, τ2) ∈ πππ(τ)
let σi

1 = typeinf fi (τ1) Γ ∆
and σi

2 = typeinf fi (τ2) Γ ∆
in
∨

i
(σi

1 × σi
2)

| p→→→ f ′ ->if τ ≤ *p +∧ * f +
then

let σ =typeinf f ′ τ (τ/p ::∪ Γ) ∆
in σ
else failure

| (f1||| f2) ->if τ ≤ * f1 +∨ * f2+
then let τ1= τ ∧ * f1+
and τ2 =τ ∧ ¬ * f1+
in

let σ1 = typeinf f1 τ1 Γ ∆
and σ2 = typeinf f2 τ2 Γ ∆
in

∨
i|τi 6=Empty

σi

else failure
| (f1;;; f2) ->let σ1 =typeinf f1 τ Γ ∆

in

if σ1 ≤ * f2+
then

let σ2 = typeinf f2 σ1 Γ ∆
in σ2
else failure

Figure 5.2: Type inference algorithm given in pseudo-ML

in the premises of a rule does not hold. This allows us not to make any assumption
on the internal representations of types for the host language and to provide a truly
parametric filter language.

Before discussing the theoretical properties, let us have a look at the behaviour of
the algorithm, first on an easy case, where annotations are not required. Let us con-
sider again the filter succList (that we introduced in Section 3.4.3) and the input type
τ=µα.(`nil∨∨∨ (((Int××× α)))) (i.e., lists of integers), and try to find a type σ such that
∅,∅ `A succList(τ) = σ. We can see the complete typing derivation in Figure 5.3.
At the first step, rule (a-unfold-rec) is applied. It creates a fresh type variable α0
which it associates to succList applied to the type τ. It then performs a structural
rule (Step 2) (a-union). This will type both branches of the union filter, (Steps 3-6
and 7-12) and return the union of the result. Step 3-6 mimic the rules F interleaving
them with memoization rules. It should be noted that in this derivation the exact re-
sult should be µα1.`nil, µα1.µα2.`nil,. . . but we directly simplified the results. For

88 CHAPTER 5. TYPE INFERENCE

(succList, µα.(`nil∨∨∨ (((Int××× α)))), α0) ∈ ∆112© (a-base-rec)
∅, ∆1 `A succList(µα.(`nil∨∨∨ (((Int××× α))))) = α0

type({x 7→ Int},x + 1)
11© (a-expr)

{x 7→ Int}, ∆3 `A (x + 1)(Int) = Int
10© (a-unfold-non-rec)

{x 7→ Int}, {(x + 1, Int, α2)} ∪ ∆2 `A (x + 1)(Int) = Int
9© (a-patt)

{x 7→ Int}, ∆2 `A (x→→→ x + 1)(Int) = Int
8© (a-unfold-non-rec)

∅, {(x→→→ x + 1, Int, α2)} ∪ ∆1 `A (x→→→ x + 1)(Int) = Int
12©

7© (a-prod)
∅, {((((x→→→ x + 1,,,succList))), (((Int××× µα . . .))), α1)} ∪ ∆0 `A (((x→→→ x + 1,,,succList)))((((Int××× µα . . .)))) = (((Int××× α0)))

type(`nil,∅)
6© (a-expr)

∅, {(`nil, `nil, α3)} ∪ ∆2 `A `nil(`nil) = `nil
5© (a-unfold-non-rec)

∅, {(`nil, `nil, α2)} ∪ ∆1 `A `nil(`nil) = `nil
4© (a-patt)

∅, ∆1 `A `nil→→→ `nil(`nil) = `nil
3© (a-unfold-non-rec)

∅, {(`nil→→→ `nil, `nil, α1)} ∪ ∆0 `A `nil→→→ `nil(`nil) = `nil
7©

2© (a-union)
∅, {(succList, µα.(`nil∨∨∨ (((Int××× α)))), α0)} `A succList(`nil∨∨∨ (((Int××× . . .)))) = `nil∨∨∨ (((Int××× α0)))1© (a-unfold-rec)

∅,∅ `A succList(µα.`nil∨∨∨ (((Int××× α)))) = µα0.`nil∨∨∨ (((Int××× α0)))

Figure 5.3: Derivation of the algorithm on the filter succList

space reasons we also did not write extensively the ∆ sets but rather aliased them
with fresh variables ∆i and only wrote the new addition to these sets. Step 7 types
the product part of the filter against the product part of the type. The type hav-
ing only one product component, the decomposition πππ returns the product itself.
The two sub-filters are applied component-wise (Steps 8, 11 and 12). The left filter,
x →→→ x + 1 follows the same pace as Steps 3-6. The important step is Step 12 where
a recursive call is made, applying succList again on τ. The result α0 which was mem-
oized at Step 1 is returned. The output type is then reconstructed to finally obtain:
σ = µα0.(`nil∨∨∨ (((Int××× α0)))), which is the expected type.

The next example illustrates what can go wrong in the presence of a composition
filter. Imagine the following filter:

Example 5.3

g = `nil→→→ `nil|||(((x→→→ x+1,,,g)));;;h
h = `nil→→→ `nil|||(((x→→→ x+1,,,h)))

Like succList, this filter increments each element of a list of integers but, here, h

5.3. PROPERTIES 89

is also called on every trailing list, that is:

g([0 0 0]) ; h(0+ 1, h(0+ 1, h(0+ 1, `nil)))
; [2 3 4]

If we try to type this filter, we get at some point of the derivation:

...
∅, ∆ `A ((((x→→→ x+1,,,g))))((((Int××× µα.(. . .))))) = (((Int××× β))) ∅, ∆ `A h((((Int××× β)))) = . . .

(a-comp)
∅, ∆ `A ((((x→→→ x+1,,,g)));;;h)((((Int××× µα.(. . .))))) = . . .

Here, we must test that (((Int××× β))) ≤ *h+, where not only β is not bound, but its
definition is at this moment incomplete since it is the type we are computing. The
test fails and so does the algorithm. However we want to type such filters, that is why
we impose that the filter (((x→→→ x+1,,,g))), preceding the composition is annotated. This
example gives the intuition on why composition filters must be annotated. We will
formalize this intuition now, before discussing how this restriction has an impact
on the usage of filters.

5.3 Properties

We prove in this section three properties. (1.) Termination of the algorithm, which
is quite straightforward to prove, thanks to the careful specification of memoization
rules and restrictions on filter composition. (2.) Soundness of the algorithm, that is
correctness with respect to the type-system defined in Chapter 4 which states that
if the algorithm infers an output type for a given filter and input type, then there
exists a derivation in the system for this filter, input, and output type. This is what
makes the algorithm inherits the property of type safety proven for the system. (3.)
Completeness — which roughly states that if a filter can be typed (in the system),
then the algorithm finds the expected type —, requires more work to be precisely
defined. Indeed, since the algorithm works on annotated filters, the completeness
theorem need to take these annotations into account, and more specifically, granted
that a typing derivation exists in the system, the completeness theorem must give a
way to annotate the filter so that the algorithm succeed.

5.3.1 Termination

Proving the termination of the algorithm is quite straightforward:

Theorem 5.4 (Termination of the typing algorithm) For all filters f and types τ, the
typing algorithm for f (τ) terminates.

90 CHAPTER 5. TYPE INFERENCE

Proof (Termination of the typing algorithm) Given the type τ, by The-
orem 2.27, there exists a plinth i such that τ ∈ i. Let us fix the set:
D(τ) = {(f , τ′)| f ∈ Subtree(f) and τ′ ∈ i}. D(τ) is finite since
it is the Cartesian product of two finite sets. We define the function
Ψ(∆, τ) = {(f , τ′)|(f , τ′) ∈ D(τ) and @σ′ s.t. (f , τ′, σ′) ∈ ∆}. Here,
∆ is the set as constructed by the algorithm during a typing derivation.
Informally, D(τ) describes all the possible applications of a sub-filter of
f to a sub-tree of the input type τ.1 The set Ψ(∆, τ) describes then
all the such combinations (f ′, τ′) that have not been encountered at a
given step of the derivation. Finally, given a derivation D of the judgment
Γ, ∆ `A f (τ) = σ, we associate a measure m(D) such that:

m(D) = 0 if the last rule is a memoization rule
m(D) = 1 if the last rule is a structural rule

We can now prove the theorem. Given a filter f and a type τ,
we show that either the algorithm fails, or the derivation D for the
judgment Γ, ∆ `A f (τ) = σ is finite. We prove this by induction on
(f , Ψ(∆, τ), m(D)), equiped with the order (v,⊆,≤N)lex. If we consider
a strict sub-tree of the filter, then the first component decreases strictly.
If a filter is applied to a new type during the derivation (that is a type to
which it has never been applied earlier in the derivation), then Ψ(∆, τ) de-
creases strictly. The third measure, m(D) resembles the one introduced
to prove the termination of the evaluation of filters. Indeed, when going
from a memoization rule to a structural rule, either we visit a new input
type, and put it in ∆, or we visit an already memoized type and can stop
the derivation. In both cases, the second component of our induction order
decreases. However, when going from a structural rule to a memoization
rule, neither the first component decreases (since the sub-filter might not
be strict sub-tree of the input, as in the rule (a-prod)), nor Ψ(∆, τ) de-
creases, since ∆ is left untouched by these structural rules. However, we
know by definition of the algorithm that at the next step, a memoization
rule be applied, thus enforcing a strict decrease of the second component
of the order. The measure m(D) merely reflects this intuition. Finally, the
first component of the order, v handles the second premise of the rule (a-
comp) where the input type may increase (and be completely new) but the
filter decreases strictly (identical to the proof of Theorem 3.15).

Basic case :

Failure : One of the pre-condition of a rule does not hold (e.g.
τ � (((Any××× Any))) for a product filter or the operation τ/p is
performed on a type τ with free variables). The algorithm ter-
minates with a failure.

1This is an abuse of terminology. In fact it represents all the application of a sub-filter of f to a type
τ′ that can be generated from τ by Boolean connective and product decomposition, thus a super-set
of all the input types which occur in the derivation of f (τ).

5.3. PROPERTIES 91

f ≡ e : Basic case of the first component. We rely on the type infer-
ence of the host language and suppose it terminates.

(a-base-rec) : If the last application is (a-base-rec) then the algo-
rithm trivialy terminates (the rule has no premise).

Inductive case :

Structural rules : Here the last applied rule of the derivation D can-
not be a (a-expr) (as it was dealt with in the base case). If it
is either (a-prod), (a-pat) or (a-union), then the first compo-
nent does not decrease, nor does the second (as none of these
rules modify ∆, Ψ(∆, τ) is unchanged). For any of these rules,
the premises are the last step of a derivation D′ which ends by
the application of a memoization rule (due to the alternation
memoization/structural rule). Hence, m(D′) <N m(D), and
we can apply the induction hypothesis. If the last applied rule
is (a-comp), the first premise is treated as the other structural
rules. The second premise is of the form: Γ, ∆ `A f2(σ1) = σ2
where f ≡ f1;;; f2. Here, the second component might increase,
has Ψ(∆, σ1) might not be related to Ψ(∆, τ). However, the
first component decreases strictly, as, by definition of the fil-
ters, f2 < f . We can apply the induction hypothesis on this
premise.

Memoization rules : The rule (a-base-rec) does not apply here. It is
then one of the other three rules. For any of these rules, the filter
in the premises is the same filter f as in the goal (hence, the first
component does not change). Let us call ∆′ the memoization
environment of the premise. We have ∆ ⊂ ∆′ as these rules
add a triplet which is not in ∆. Hence, Ψ(∆′, τ) ⊂ Ψ(∆, τ)
(informally, if we add something in ∆ it means that we have less
types to visit). And so the second component decreases strictly.
We can apply the induction hypothesis on the premise.

5.3.2 Soundness

Soundness (and completeness) relates the typing algorithm and the non-algorithmic
type-system presented in Chapter 4. However the algorithm is defined for possibly
annotated filters. We need to define an operation which removes the annotations of
a filter:

Definition 5.5 (Stripping)
Let f be an annotated filter (seen as a regular tree). We define the stripping of f and we note

92 CHAPTER 5. TYPE INFERENCE

d f e the function defined as:

d fEe = d f e
dee = e

dp→→→ f e = p→→→ d f e

d f1;;; f2e = d f1e;;;d f2e
d f1||| f2e = d f1e|||d f2e
d(((f1,,, f2)))e = (((d f1e,,,d f2e)))

Now we need to formalize the fact that “the algorithm behaves like the system”
(crude words to express soundness). The idea is pretty straightforward. Given a
derivation for a (possibly annotated) filter f , we would like to show that there is a
corresponding derivation for d f e in the system. Despite that the algorithmic deriva-
tion is finite, it is however not possible to prove the theorem by induction. Indeed,
the rule (a-base-rec) is not well-founded. While this rule has no premise, it cor-
responds to an infinite derivation in the type-system (this rule was purposely intro-
duced to deal with regular derivations). We see that while the algorithmic derivations
are finite, we need a co-inductive technique to build the corresponding regular typ-
ing derivation. To that end, we reuse the proof technique seen in Chapter 4, (used
for Lemma 4.6). We use the finite derivation to build a finite system of guarded equa-
tions between typing derivations. It follows that the unique solution of this system
is exactly the corresponding typing derivation.

Theorem 5.6 (Soundness of the typing algorithm) For all Γ, ∆, f , τ, and σ, if
Γ, ∆ `A f (τ) = σ, then [Γ]∞ ` d f e([τ]∞) = [σ]∞.

Proof We recall that the []∞ notation denotes the infinite expansion of a
well-formed µ-term (see Chapter 2, Definition 2.14).
First, let us remark that, since Γ, ∆ `A f (τ) = σ is a successful al-
gorithmic derivation, then to every type variable occuring in this deriva-
tion, we can associate a closed µ-type. Indeed, since the derivation is suc-
cessful, every fresh type variable introduced by an application of the rule
(a-unfold-rec) or (a-unfold-non-rec) is associated to a corresponding µ
definition, in the goal of the rule. We can use this fact to extend the defini-
tion of []∞ to an open type (a type with free recursion variables). Let τ′ be an
open type occuring in the algorithmic derivation. We define [τ′]∞ as [τ′′]∞,
where τ′′ = τ{α← µα.σ′}, for all free variables α ∈ τ′ and such that µα.σ′

is the definition corresponding to the introduction of the variable α in the
derivation.
We can now inductively build our system of equations (the solution of
which is a co-inductive derivation). As a commodity, we label every step
of the algorithmic derivation by a unique integer. We inductively define
the function E from algorithmic derivations to system of equations. The
two important points are:

• The rule (a-base-rec) which introduces a circular definition, and thus
generate a regular solution to the system of equations.

5.3. PROPERTIES 93

• The rule (a-annot) which corresponds to a subsumption rule.

As for the structural rules, they are just “translated” while the (a-unfold-*)
rules are simply ignored.

(a-base-rec) :E((f , τ, σ) ∈ ∆
i Γ, ∆ `A f (τ) = σ

) =
{

xi =
xj

Γ ` d f e([τ]∞) = [σ]∞

}
where j is the label of the rule adding (f , τ, σ) to ∆. Indeed, the
application of the rule (a-base-rec) is always preceded by an in-
troduction rule, (a-unfold-rec), (a-unfold-non-rec) or (a-annot)
earlier in the derivation.

(a-annot) : E
(D′k dj

Γ, ∆ ∪ {(fE, τ, σ)} `A fE(τ) = σ′ σ′ ≤ σ
i Γ, ∆ `A fE(τ) = σ

)
=

{
xi =

xj

Γ ` d fEe([τ]∞) = [σ]∞

}
∪

{
xj =

xk

Γ ` d fEe([τ]∞) = [σ′]∞ [σ′]∞ ≤ [σ]∞
Γ ` d fEe([τ]∞) = [σ]∞

}
∪ E(D′k d

)

This rule is split into two equations, which form a corresponding
subsumption rule. Indeed, when the programmer annotates a filter
with a valid type (i.e. an annotation which makes the algorithm suc-
ceed), the corresponding behaviour in the type-system is to let the
system “guess” the annotation. Note that at this step, the annotations
are removed from the current filter.

Other rules : Structural rules must be handled carefully. The basic idea
is to rewrite a structural rule into its corresponding rule in the
type-system, and call E on every sub-derivation of its premises.
However we want to erase memoization rules ((a-annot-rec) and
(a-annot-non-rec)) from the derivation as they are not needed in the
system. If we perform the operation naively in two steps, we can gen-
erate an ill-founded system of equations. Indeed, consider the case of
a structural rule with label i:

D1k1 d′1j1 d1 · · ·

Dnkn d′njn dni Γ, ∆ `A f (τ) = σ

Here, since i is a structural rule, then all the rules labeled by js
are memoization rules, and conversely all the rules labeled by ks are
structural rules. If we were to proceed in two steps, then we would
first introduce an equation for xi depending on xj1,. . . ,xjn then a call
to E which would introduce equations for xjs depending on the xks.

94 CHAPTER 5. TYPE INFERENCE

This is e.g. what happens if the j rule is an annotation rule (remark
in the previous (a-annot) case the definitions of xi and xj). In the
case where the j rule is an (a-unfold-*) rule, and since we want to
“erase” such rules, we need to take some care so as to ensure the
well-formedness of our system of equations. Indeed, naively skip-
ping such rules (by calling E on their premises), can be done in two
ways, either by not introducing the xj variable or by introducing
a trivial equality xj = xk. Both solutions fail: the first one leaves
“dangling” variables xj in the definition of xi and the second one re-
sult in an ill-founded system (we recall that to apply the principle of
co-induction related to Definition 2.19, there must be no such trivial
equation in the system). We could, in a first pass generate such an ill-
founded system and in a second step “clean” the system, by removing
any aliasing equation (such as xj = xk). The solution we propose is
then simply to treat both steps at once: if the j rule is an annotation
rule, then simply call E on it and if j is an unfolding rule, then call
E on the k rule, thus skipping the unfolding rule. Let J be the set :{ D1k1 d′1j1 d1

, . . .,
Dnkn d′njn dn

}
. We define the following notations:

lJ(ι) = jι if jι is an annotation rule
lJ(ι) = kι if jι is an unfolding rule

δJ(ι) =
Dιkι d′ιjι dι

if jι is an annotation rule

δJ(ι) = Dιkι d′ι
if jι is an unfolding rule

We can now define the function E for this case:

E(

D1k1 d′1j1 d1 . . .

Dnkn d′njn dni Γ, ∆ `A f (τ) = σ

) =

{
xj =

xlJ(j1) . . . xlJ(jn)

[Γ]∞ ` f ([τ]∞) = [σ]∞

}
∪

⋃
ι∈{1..n}

E(δJ(ι))

First step: As previously explained, each unfolding rule is erased while
rewriting the a structural rule which is its goal. Since the goal of any
(complete) typing derivation is mandatorily proven by a memoization
rule, we also need to take care of this first step (as it is not handled
by the previous case, since there is no structural rule below the first

step). This gives the definition: E(
D′j
di Γ, ∆ `A f (τ) = σ

) = E(δJ(i))

5.3. PROPERTIES 95

To conclude the proof, we need to remark the following points:

i. The application of E always terminates on a well-formed algorithmic
derivation.

ii. The result of E is a system of guarded equations between a finite num-
ber of variables and rules of the type-system.

Point i. is straightforward since E is always applied to a strict sub-
derivation of a finite derivation. Knowing that the number of applications
of E is finite, point ii. is easily proven by induction on this number. In par-
ticular, we can see that since we erase the annotation in the case (a-annot),
we provide a derivation for d f e. Consequently, the unique solution of this
system is a valid regular derivation of the non algorithmic type-system,
which proves the theorem.

5.3.3 Completeness

Hitherto we showed the following properties:

(Termination) : The algorithm always terminates, either by inferring an output
type or by failing.

(Soundness) : When the algorithm finds an output type, this output type is accept-
able for the type-system (i.e. there exists a regular derivation corresponding to
this output type).

However an algorithm that would fail too often (or which would always fail) classifies
as sound. Normally, to ensure that the algorithm is useful, one would state the notion
of completeness as the exact converse of the soundness:

(Soundness) : “Every judgment derivable by the algorithmic system FA corre-
sponds to a judgment derivable in the type system, F ”

(Completeness) : “Every judgment derivable by the type system F corresponds to
a judgment derivable in the algorithmic system, FA ”

While we have proven exactly this soundness theorem, we cannot prove its converse
as stated. Indeed, we have seen that for a given input type and filter, there are possi-
bly many different derivations of the system. An algorithm, which is deterministic,
has to pick one. As previously stated, there is no notion of principal type in our
setting.

Indeed, in our framework, the notion of “being more general than” translates to
“being a subtype of ”, that is the one, among all the possible output types, which
best approximates the exact set of output values. As already explained, such a set is
in general not regular and does not even have a better regular approximation, which
forbids any sensible notion of type principality.

96 CHAPTER 5. TYPE INFERENCE

A second problem is “how can the completeness theorem take annotations into
account?”. Indeed, while, starting from a derivation of the algorithm, it was easy to
erase the annotations and arrive to a derivation in the system. But if we start from a
derivation of the system (and therefore dealing with unannotated filters), how can we
decorate the filter with annotations — which, in some cases are mandatory for the
algorithm to succeed? The notion of completeness we propose allows us to kill these
two birds with one stone2.

The first observation is that we want to relate a derivation of the algorithm to
a given derivation of the type-system. So why do not we just take the annota-
tions from this very type-system derivation? Indeed, it would be easy to show that,
given a derivation in F for Γ ` f (t) = s, we can build a derivation in FA for
[Γ]µ,∅ `A g([t]µ) = [s]µ where g is the same filter as f where every sub-filter of
g is annotated with the corresponding output type in the typing derivation. Un-
fortunately, such property is not very useful as it states that, for the algorithm to
succeed, the programmer has to annotate every sub-filter with the corresponding
partial result found in the typing derivation. The algorithm would then not be a
“type inference algorithm” (in the sense of: given an input type, infer an output
type), but a type-checking algorithm, and a bad one, which would not only require
the input and output types but also all the intermediary types. However, as illus-
trated by Example 5.3, for every structural rule but the composition, the algorithm
behaves like the type system. This gives a much lighter constraint on the number of
annotations needed to type a filter and, we think, a very reasonable notion of com-
pleteness. Indeed we can characterize minimal sets of annotations for a filter to be
typable by the algorithm. These annotations would serve as guides for the algorithm
and we will show that, in practice (see Chapter 6), these annotations are very light
and that the programmer does not have to “guess too much”. We now formalise all
these notions and state the completeness theorem. We proceed in three steps. First,
we highlight the cases where the algorithm fails, and more precisely, fails due to a
lack of annotations (or to incorrect annotations). Then, we give a sufficient condi-
tion on annotations such that a filter annotated in this way can either be typed or
be detected as ill-typed. Finally, we state the completeness theorem, ensuring that if
a filter is well typed in the type-system, with respect to a certain input type t, then
the algorithm succeeds in typing the filter, provided that the latter is sufficiently
annotated. Let us start by pinpointing the cases where the algorithm fails:

Lemma 5.7 (Failure cases) The algorithm fails if and only if at least one of the following
three conditions holds:

i. One of the side conditions for the current rule is not true (e.g. the input type of a
product filter is not a product).

ii. One of the four meta operators τ/p, or πππ(τ), or testing for equality, or subtyping is
applied to a type τ such that FV(τ) 6=∅.

iii. The choice operator cannot find a suitable type amongst the annotations given for a
certain filter fE.

2No animal was harmed during the writing of this thesis.

5.3. PROPERTIES 97

Proof (Failure cases) We have to prove two implications:

1. If the algorithm fails then one of the condition holds

2. If one condition hold then the algorithm fails, or equivalently, if the
algorithm does not fail, then none of the condition holds.

Case 1 is trivial. (Definition of the algorithm).
Case 2 is proven by induction on the derivation (which we assumed exists,
as we assumed the algorithm does not fail). It is easy to show by a case
analysis that none of the conditions are true.

A failure for the algorithm may have different meanings. Case (i.) means that the
term is ill-typed and the algorithm fails with a type error. In case (ii.), the algorithm
is deconstructing a type which contains free recursion variables, that is, a type which
it is currently computing; it therefore fails due to a lack of information and more
annotations are required. Of course, we would like to avoid cases (ii.) and (iii.) while
keeping the annotations as minimal as possible. The only problematic case is, as
stated before, the composition of two filters. More formally:

Definition 5.8 (Deconstructing subterms)
A filter f deconstructs its input if and only if f is not an expression filter. A recursive
filter f is a filter such that the associated regular tree is not finite. Let f be a filter. We define
the set of all deconstructing sub-terms of f , noted A f , as the set of all sub-terms g of f such
that g ≡ f1;;; f2 where f1 is recursive and f2 deconstructs its input.

We can now prevent the algorithm from failing in case (ii.) by requiring that in all
deconstructing sub-terms of a filter the leftmost one is annotated:

Lemma 5.9 (Mandatory annotations) Let τ be an input type and f a filter such that
for all f1;;; f2∈A f , f1 ≡ f ′E for some E. For all type τ′ occurring in the derivation of
Γ, ∆ `A f (τ) = σ, if FV(τ′) 6= ∅, then τ′ is never deconstructed.

Proof (Mandatory annotations) We assume that the derivation of
Γ, ∆ `A f (τ) = σ does not fail for reason (i.), that is, τ is a valid in-
put type for filter. We know that the derivation of the algorithm is finite.
As such there is a finite number n of applications of the rule (a-comp). We
prove the lemma by induction on this number.

n = 0 : there is no application of rule (a-comp) which means that there
is no sub-filter of f of the form f1;;; f2. For all the other rules, the
premises are applied only on the input type, which is closed (as it is

98 CHAPTER 5. TYPE INFERENCE

a decomposition of the global input type of the filter). The property
holds.

n >N 0 : that means that somewhere in the derivation, we have:

D ≡
D1

Γ′, ∆′ `A f1(τ′) = σ′1

D2

Γ′, ∆′ `A f2(σ′1) = σ′2
Γ′, ∆′ `A f1;;; f2(τ′) = σ′2

By hypothesis, f1 is of the form f ′E for some E and so, the deriva-
tion D1 starts by an application of the rule (a-annot) which returns
a closed type σ′1 ∈ E. We can also remark that there are strictly less
applications of the rule (a-comp) in D2, therefore the induction hy-
pothesis does apply here, which proves the inductive case.

Now that we know the only places where it may be necessary to annotate a filter, it
remains to define how to annotate these places, that is, to find the correct annotations
and thus avoid the last case (iii.) of failure. Once done, it remains nothing but
to state the completeness theorem. To have the right annotations for a well-typed
filter it suffices to pick their types in the corresponding regular derivation of the
type-system. This is formally defined by the following output type set function and
t-labelling procedure:

Definition 5.10 (Output set)

Let D = D′

Γ ` f (t) = s
be a regular derivation of the type-system. Let f ′ be a sub-filter of

f , that is f ′ v f . We define the output type set of f ′ in D as:

O(D, f ′) ≡ {[s]µ|∃Γ′, t′ such that
...

Γ′ ` f ′(t′) = s
v D}

We recall that v is the sub-tree relation and that it also applies to derivations,
seen as regular trees. The set O(D, f ′) is the collection of all possible output types
for a filter f ′ in a given derivation. It is important to note that, since D is regular,
the output type set is always finite. We can now define the t-labelling of a filter:

Definition 5.11 (t-labelling)
Let f be a filter and t a type such that a regular derivation D for Γ ` f (t) = s exists, for
some type s. Let A f = { f 1

1 ;;; f 1
2 , . . . , f n

1 ;;; f n
2 }, The t-labelling of f , noted [f]t,D is defined as:

[f]t,D = f { f 1
1 ← f 1

1 O(D, f 1
1); . . . ; f n

1 ← f n
1 O(D, f n

1)}

We can now use Definition 5.11 to state the completeness of the algorithm with
respect to t-labellings.

5.3. PROPERTIES 99

Theorem 5.12 (Completeness) The algorithm given by the set of rules FA is complete
with respect to the type-system F , that is:
if Γ ` f (t) = s is proved by a derivation D, then Γ,∅ `A [f]t,D([t]µ) = [s]µ.

Proof (Completeness) First, let us consider a judgment Γ ` f (t) = s and
its derivation D0. By Lemma 4.6 (Chapter 4), we know that Γ ` f (t) = s can
be proven by a derivation D1 for which every instance of the subsumption
rule (but the first rule, which proves the goal of the entire derivation) is in
the premise of the application of a composition rule, (t-comp). It is also
true that there exists a derivation D which proves the judgment and for
which the first premise of rule (t-comp) is proven by a subsumption rule.
It is sufficient to consider D1: if for one of the instances of the composition
rule in D1 the first premise is not proven by (t-subs), then we can insert a
step:

...
Γ ` f1(t) = s1 s1 ≤ s1

Γ ` f1(t) = s1

...
Γ ` f2(s1) = s2

Γ ` f1;;; f2(t) = s2

Using this remark and Lemma 4.6 we can then assume, without loss of
generality, that for any judgement Γ ` f (t) = s derivable in the system,
there exists a derivation D, such that:

i. the goal of the derivation is proven by an application of the subsump-
tion rule

ii. the first premise of an application of the rule (t-comp) is proven by a
subsumption rule

The idea of the proof is now to build a (finite) algorithmic derivation for
Γ,∅ `A [f]t,D([t]µ) = [s]µ. Intuitively, an application of (t-subs) will be
rewritten into an application of the annotation rule (a-annot), while the
other rule will straightforwardly be rewritten into structural rules of the
algorithmic system. This procedure is formalized by the recursive func-
tion [_]M defined in Figure 5.4. This function takes three arguments, the
memoization environment ∆ (initially empty), the non algorithmic deriva-
tion D, and an input filter, annotated according to D. Given the judgment
Γ ` f (t) = s, [∅, D, [f]t,D]M computes a finite, well-formed derivation
for the judgement Γ,∅ `A [f]t,D([t]µ) = [s]µ. Informally, [_]M is applied
to ∆, D and [f]t,D. Depending on the conditions, it produces the appro-
priate memoization rule. For instance, if the input type has already been
visited (i.e. if it is in ∆), then it returns an instance of (a-base-rec). If the

100 CHAPTER 5. TYPE INFERENCE

input derivation starts by a subsumption rule, it returns a corresponding
(a-annot) rule, after which it calls [_]S on the input derivation. The role
of this auxiliary function is to insert, in the output derivation, the corre-
sponding structural rule, as well as to unfold the third argument, the an-
notated filter. Indeed, during the whole process, the filter f in the typing
derivation D, and the t-labelled filter [f]t,D are unfolded simultaneously,
and the annotated filters are used in place of their corresponding stripped
version in the algorithmic derivation.
To prove that the result of [_]M is indeed a well-formed algorithmic deriva-
tion, we must first prove that it terminates for any input. This can easily
be done, in a way very similar to the proof of Theorem 5.4. It is sufficient
to consider the triple (f , Ψ(∆, [t]µ), m′(D)), where m′ evaluates to 1 for
a recursive call to [_]M and to 0 for a recursive call to [_]S (it serves the
same purpose as the measure m in the proof of Theorem 5.4). An induction
on this triple, ordered by (v,⊆,≤N), proves that the function terminates.
As for Theorem 5.4, the termination of this functions means either that it
outputs a derivation (success), or that it fails. In the present case, a failure
can only occur during a call to [_]S , if the third argument has not the same
form as the filter in the goal of the second argument. Let us consider ∆,

D = D′

Γ ` f (t) = s
and let g be a filter such that f ≡ dge.

Since we know that a call to [_]M always terminates, we can show by in-
duction that exactly one of the rule can be applied:

basic case: there are no recursive calls, and [_]M is directly applied to the
typing derivation of an expression filter. Since by hypothesis, the
call is made on [∅, D, [e]t,D]M , the first rule of [_]M applies and the
function does not fail

inductive case: By case analysis on the different forms of f we can ver-
ify, for every call to [∆, D, [g]t,D]M , that D proves exactly the filter
dge. Since by definition g and dge have the same form (the same
top level constructor), always one of the rules of [_]M applies, and
consequently, the function does not fail.

Now that we know that the function always returns a derivation, we can
prove the well-formedness of this output algorithmic derivation by induc-
tion on the number of call to [_]M . It is easy to verify, by a case analysis
that:

i. for every instance of a composition rule, the first premise is proved
by an annotation rule

ii. the filters occuring in the algorithmic derivation are well-annotated

iii. the instance of the annotation rules are well-formed, that is, [s]µ ∈ E

(see the second case in Figure 5.4).

iv. any memoization rule is followed by a structural rule

5.3. PROPERTIES 101

Case (i.) is a direct consequence of particular shape of D: the first premise
of every composition rule is proved by a subsumption rule which is trans-
lated into an annotation rule. Case (ii.) is also straightforward since the
filters in the output derivations come from the t-labelling of the input fil-
ter. By Lemma 5.7 and 5.9, such a filter makes the algorithm succeed. Case
(iii.) is also a consequence of the shape of D. By definition, the t-labelling
of f annotates every occurrence of filters a filter f1 occuring as the left-hand
side of a composition: f1;;; f2. However, in D any output type of such an f1 is
proved by a subsumption rule. Case (iv.) is immediate by construction: the
alternation between memoization rules and structural rules results from
the alternate calls to [_]M and [_]S in their definition.

102 CHAPTER 5. TYPE INFERENCE

[
∆,

D
Γ ` f (t) = s

, g

]
M

= [Γ]µ, ∆ `A g([t]µ) = α if (g, [t]µ, α) ∈ ∆

[
∆,

D
Γ ` f (t) = s′ s′ ≤ s

Γ ` f (t) = s

, gE

]
M

=

[
{(gE, [t]µ, [s]µ)} ∪ ∆, D, gE

]
S

[Γ]µ, {(gE, [t]µ, [s]µ)} ∪ ∆ `A gE([t]µ) = [s′]µ
[Γ]µ, ∆ `A gE([t]µ) = [s]µ[

∆,
D

Γ ` f (t) = s
, g

]
M

t is recursive, [t]µ = µα.τ
β is fresh,[s]µ ≡ µβ.σ

=

[
{(g, [t]µ, β)} ∪ ∆, D, g

]
S

[Γ]µ, {(g, [t]µ, β)} ∪ ∆ `A g(τ[α← [t]µ]) = σ

[Γ]µ, ∆ `A g([t]µ) = µβ.σ[
∆,

D
Γ ` f (t) = s

, g

]
M

t is not recursive
α is fresh,[s]µ ≡ µα.σ

=

[
{(g, [t]µ, α)} ∪ ∆, D, g

]
S

[Γ]µ, {(g, [t]µ, α)} ∪ ∆ `A g([t]µ) = σ

[Γ]µ, ∆ `A g([t]µ) = µα.σ

[
∆,

type(Γ, e)= s

Γ ` e(t) = s
, e′
]

S

=
typeA (Γ, e′)= [s]µ

[Γ]µ, ∆ `A e′([t]µ) = [s]µ[
∆,

D1 D2

Γ ` (((f1,,, f2)))(t) = s
, (((g1,,,g2)))

]
S

=
[∆, D1, g1]M [∆, D2, g2]M
[Γ]µ, ∆ `A (((g1,,,g2)))([t]µ) = [s]µ[

∆,
D1 D2

Γ ` f1;;; f2(t) = s
, g1;;;g2

]
S

=
[∆, D1, g1]M [∆, D2, g2]M
[Γ]µ, ∆ `A g1;;;g2([t]µ) = [s]µ[

∆,
D1 D2

Γ ` f1||| f2(t) = s
, g1|||g2

]
S

=
[∆, D1, g1]M [∆, D2, g2]M
[Γ]µ, ∆ `A g1|||g2([t]µ) = [s]µ[

∆,
D1

Γ ` p→→→ f1(t) = s
, p→→→ g1

]
S

=
[∆, D1, g1]M

[Γ]µ, ∆ `A p→→→ g1([t]µ) = [s]µ

Figure 5.4: Translation functions [,]M and [,]S

Part III

Implementation

103

Chapter 6

Concrete language

Throughout this chapter, we describe the process of designing
a practical language based on the filter algebra presented in
Part II. This implementation uses CDuce as host language, and
benefits from many extensions derived from the core algebra.

Contents
6.1 Introduction . 106

6.1.1 Basic syntax . 106

6.1.2 XML filters . 107

6.1.3 Recursive filters . 108

6.1.4 Filter annotations . 108

6.2 Examples . 111

6.2.1 Pattern-matching . 111

6.2.2 Map-like filters . 112

6.2.3 Non local transformations 114

6.2.4 Annotations . 116

6.3 Syntactic extensions . 116

6.3.1 Deletion . 116

6.3.2 Filter parameters . 118

6.3.3 Regular expression filters 120

6.4 Type inference algorithm . 123

6.5 Compilation . 125

6.5.1 Compilation target . 125

6.5.2 Tail-recursive list traversal 126

6.5.3 Filter specialization . 127

105

106 CHAPTER 6. CONCRETE LANGUAGE

6.5.4 Evaluation without backtracking 128

6.1 Introduction

We have presented a theoretical framework for manipulating XML data-structures,
in the form of the filter algebra and the associated type-system and inference

algorithm. While for the theoretical framework our aim has been to abstract from
any particular host language, this chapter will present a tight integration between
filters and CDuce. This integration is present at many levels. First we show how we
extend the syntax of CDuce to provide filter declarations and applications. We also
show that many (if not all) of the hard-coded operators of CDuce can be encoded
with filters. A second point of interest is how we deal with annotations, particularly
how we achieve our goal of keeping the language filter modular even in the presence
of annotations. Lastly we present our compilation scheme for filters, and show how
to apply optimisations present in the core CDuce compiler to filters.

6.1.1 Basic syntax

Filters are a natural extension of CDuce’s syntax:

Definition 6.1 (Concrete syntax)

e ::= . . . (CDuce expressions)
| apply f to e (filter application)
| apply f to e where a (filter with annotations)

f ::= �{e} (CDuce expressions)
| (f, f) (pair filter)
| $p-> f (pattern filter)
| f| f (alternative filter)
| f; f (composition filter)
| < f f> f (XML filter)
| X (filter variable)
| let filter X = f [and Y = f . . .] in f (recursive filter)

a ::= X1 = {|t11; . . . ;t1n|} [and . . .] (annotations)

d ::= . . . (CDuce toplevel declarations)
| let filter X = f [and Y = f . . .] (global filter definition)

In the above definition, we used the standard square bracket notation to denote
optional parts of an expression; e is the entry point of CDuce’s grammar for expres-
sions, ti the one for types and d the one for top-level declarations.

6.1. INTRODUCTION 107

Operator
High precedence �{_} $_->_,(_,_),<_ _>_

;
Low precedence _|_

Table 6.1: Precedences of filter operators

The reader will easily recognize in the f grammar the basic filter algebra. The
additional symbols for expression and pattern filters were added so as to easily dis-
ambiguate1 filter expressions from patterns and CDuce expressions. For instance,
without the delimiters, the phrase:

Example 6.2

(x,x)

could denote either the pair expression (x, x) (where x is a variable), or the filter
�{(x, x)} (where x is a filter identifier) or the filter (�{x},�{x}) (where x is again a
standard variable). In order to make the examples more readable, we will omit, when
possible, the use of parenthesis. The precedence of the filter operators are given in
Table 6.1.1 from higher to lower.

6.1.2 XML filters

The XML filter follows the same encoding as the one used for CDuce’s XML values.
We recall that an XML value is encoded as:

<tag a1 = va1 . . . ak = vak>[v1 . . . vn]
⇓

(`tag, ({a1 = va1 . . . ak = vak}, (v1, (. . . , (vn, `nil)))))

where {a1 = va1 . . . ak = vak} is an extensible record used to encode the list of
attributes of the XML element `tag. The XML filter is then nothing but:

< f1 f2> f3 ≡ (f1,(f2, f3))

The first filter f1 is applied to the tag (which turns out to be very useful in practice
for tag conversion), the second filter f2 to the attributes and the last one, f3 on the
content of the element.

1Both for the programmer and the parser

108 CHAPTER 6. CONCRETE LANGUAGE

6.1.3 Recursive filters

In the algebra, filters are regular tree. In the programming language, this trans-
lates naturally into mutually recursive filter expressions. Recursive declarations are
inspired by recursive functions. In this presentation, we underline filter names so
as to distinguish them more easily from function names and capture variables. For
example the filter succList of Section 3.4.3 is written:

Example 6.3
let filter succList = $ [] -> �{ [] }

| ($ x -> �{ x+1 }, succList)

This filter can then be used in an apply to construct:

Example 6.4
let filter succList = $ [] -> �{ [] }

| ($ x -> x+1, succList);;

let res = apply succList to [1 2 3 4 5 6];;

The previous code, evaluated in the toplevel interpreter of CDuce returns:

val res : [2 3 4 5 6 7] =[2 3 4 5 6 7]

In this code snippet, res is a regular CDuce variable, defined by the classical let
binding. The answer of the interpreter means that the (global) variable res has type
[2 3 4 5 6 7] and is equal to [2 3 4 5 6 7]. Here the type is the most precise
one: it is the singleton type containing only the value [2 3 4 5 6 7].

6.1.4 Filter annotations

As we saw in Definition 6.1, the way annotations are specified is quite different from
the formal presentations. Indeed, filter annotations are given at the place of the
application (that is, in the apply to construct) rather than at the declaration of the
filter. This feature is fundamental for code reuse and modularity. Indeed, it is a prob-
lem every developer faces when (s)he relies on type annotations: an annotated code
is marked and “specialized” for the specific annotation, thus forbidding its usage in
a different typing context. For example, let us consider the reverse filter:

6.1. INTRODUCTION 109

Example 6.5
let filter rev = $ x ->

(let filter aux =

$ [] -> �{ ([],x) }
| ($ z -> �{ z }, aux) ;

($ (_,(_,[])) ->�{ ([],[]) }

| $ (_,(y,(h,t))) ->�{ ((h,y),t) }
)

in aux); $ (x,_) -> �{ x };;

This filter is the same as the one given in Section 3.4.4. Because of the compositions
at Line 4 and 8, some annotations might be needed, but not always. For example, the
application of this filter to a constant does not need any annotation:

Example 6.6
apply rev to [1 2 3 4];;

returns:

− : [4 3 2 1] =[4 3 2 1]

Indeed, when applied to a singleton types or, more generally, to non-recursive types,
the typing of filters behaves exactly like the evaluation, hence providing a great pre-
cision. For example:

Example 6.7
apply rev to ([1 "Foo" 3 `true]: [Int String Int Bool]);;

returns:

− : [Bool Int String Int] =[`true 3 "Foo" 1]

In this example, the “value:type” notation is a coercion or up-cast: the value [1

"Foo" 3 `true] is not seen as being of type [1 "Foo" 3 `true] (the corre-
sponding singleton type) but of type [Int String Int Bool]. As the latter is finite
(non recursive) the typing of the reversal works properly without annotations. If we
now up-cast the same value to a recursive type such as [Any*], we have to annotate
the filter:

110 CHAPTER 6. CONCRETE LANGUAGE

Example 6.8

apply rev to ([1 "Foo" 3 `true]: [Any*]);;

fails with:

Characters 0−67:
Insufficient annotations

Had we implemented filters as their formal counterpart, we would have been faced
here with the sole choice of putting a generic annotation (such as [Any*]) in the
code of the filter. This would have meant rewriting the filter with a new annotation
each time list reversal is applied. This is exactly the problem we wanted to avoid
while defining filters because this is the exact behaviour of hand-written functions.
Worse, if we look at the filter then we see that according to the formal algebra, this
filter needs two annotations. One at line 4 for the filter “($z->�{z},aux);. . . ” and
one at line 8 for the composition of aux. To offer the user a more flexible way to
provide annotations, we designed the language so that annotations are provided at
“application time”. The code for rev stays therefore as it is (unannotated) while the
application becomes:

Example 6.9

let r1 = apply rev to ([1 "Foo" 3 `true]:[Any*])
where aux = {| ([Any*],[Any*]) |};;

let r2 = apply rev to ([1 "Foo" 3 `true]:[(Int|String|Bool)*])

where aux = {| ([(Int|String|Bool)*],[(Int|String|Bool)*]) |};;

Here we only need to provide the output type of aux, which is a pair formed by
the type of the accumulator and the type of the list we reverse. We see that many
instantiations of rev can have different annotations:

r1 : [Any*] =[`true 3 "Foo" 1]

r2 : [(String | Int | Bool)*] =[`true 3 "Foo" 1]

Naturally, this “double annotation” (here, since aux is a product filter, the type
[(Int | String | Bool)*] needs to be “duplicated” in the annotation) is still quite
cumbersome. Further extensions to the filter algebra allow us to alleviate this con-
straint as we will see hereafter.

6.2. EXAMPLES 111

6.2 Examples

6.2.1 Pattern-matching

As stated in Chapter 3, CDuce’s pattern-matching construct, match with can be en-
coded with filters:

Example 6.10

match e with

| p1 ->e1
...
| pn ->en

is only syntactic sugar for:

apply ($ p1 ->�{e1 }| . . . | $ pn ->�{en })to e

Another example of CDuce operator that can easily be encoded with filters is the
so called upward coercion. As already explained, CDuce proposes a coercion oper-
ator, “:” (read forget), which up-casts the type of an expression. For instance the
expression “2:Int” has type Int while the expression “2” would have the more pre-
cise singleton type “2”. Of course, the compiler checks that the upward coercion is
possible, that is, that the type of the expression is a subtype of the desired output
type. For instance, the expression “2:Bool” naturally raises a type error. A variant of
this construct is the dynamic cast, “:?” which checks at run-time that a value has a
particular type, and raises an exception if the tests fails. For instance, the expression
“(2:Int) :? 2”, succeeds. The expression “2” is coerced to Int and then, at run
time, checked against the singleton type “2”. The difference with the static up-cast is
that, for example, the expression “(2:Int) :? 3” type-checks correctly but raises
an exception at run-time. Both constructs can be encoded as filters (in the following
example, t is the type we want to constraint the input to):

Example 6.11
let filter stc_cast = $ x&t -> �{ x }

;;

let filter dyn_cast = $ x&t -> �{ x }

| $ _ -> �{ raise "Cast error" }

;;

let x = apply stc_cast to 2;;
let y = apply dyn_cast to x;;

112 CHAPTER 6. CONCRETE LANGUAGE

6.2.2 Map-like filters

Filters are enough to express “map-like” functions and type them as precisely as e.g.
the map and xtransform operators of CDuce. The map construct iterates expressions
guarded by patterns on every element of a sequence:

Example 6.12

map [1 2 "0" `false] with

x&Int -> x+1
| x&String ->x @ "+1"
| x&Bool -> not x

returns:

− : [2 3 "0+1" `true] =[2 3 "0+1" `true]

This construction can be simulated by the the following expression, which is as pre-
cisely typed:

Example 6.13

apply let filter mymap =$ [] -> �{ [] }

| (($ x&Int -> �{ x+1 }

| $ x&String ->�{ x@ "+1"}
| $ x&Bool -> �{ not x }),

mymap) in mymap
to [1 2 "0" `false]

− : [2 3 "0+1" `true] =[2 3 "0+1" `true]

The same holds for the xtransform operator which is a generalization of map to
XML values. It iterates a list of expressions (guarded by patterns) over every (XML)
elements of a list (given as input). If a pattern matches then the corresponding ex-
pression is evaluated. If no pattern matches, the element is left untouched and the
transformation is recursively applied to its content. For instance:

Example 6.14

xtransform [<a>[[] [<c>[] []]]] with

| x -> [x]

returns:

6.2. EXAMPLES 113

− : [<a>[[] [<c>[] []]]] =

[<a>[[] [<c>[] []]]]

We see that while the first and second are capitalized, the third one is not. This is
because the second is under a itself. This behaviour can be easily reproduced
by a filter:

Example 6.15

apply let filter myxtrans = $ [] -> �{ [] }

| ($ x -> �{ x }

| <($ x -> �{x}) ($ x -> �{x})>myxtrans
| $ x -> �{ x }

,myxtrans)
in myxtrans

to

[<a>[[] [<c>[] []]]]

returns:

− : [<a>[[] [<c>[] []]]] =

[<a>[[] [<c>[] []]]]

However, this limitation of xtransform is clearly annoying for real-life types,
such XHTML. Indeed, it is common in such types to find mixed and recursive content
(such as the tags , <i> and <a> of XHTML) which can occur without restriction
below one another. Despite the pervasiveness of such types, hard-coded operators
such as xtransform fall short and do not allow one, for instance, to rewrite every
 into a <i> in an XHTML document. This was the primary reason to add filters
to CDuce: allow the programmer to perform a controlled recursive transformation
over an input document and at the same time precisely type this transformation:

Example 6.16

apply let filter capitalize = $ [] -> �{ [] }

| (<($ `a -> �{ `A }

| $ `b -> �{ `B }

| $ `c -> �{ `C }) ($ x -> x)> capitalize
| $ x -> �{ x }

, capitalize)
in capitalize

to

114 CHAPTER 6. CONCRETE LANGUAGE

[<a>[[] [<c>[] []]]]

returns:

− : [<A>[[] [<C>[] []]]] =

[<A>[[] [<C>[] []]]]

6.2.3 Non local transformations

Thanks to composition, filters can perform non-local transformations. For example,
it is possible to write a filter which takes an XML document as input and replaces the
rightmost node with the same values as the leftmost node. Let us show it in detail.
We simplify a little bit this definition so that the filter remains readable2. To be more
precise, we define a filter which takes the leftmost element which must be an empty
element, that is of the form <tag>[] for any tag. This leftmost used to replace the
rightmost element of the tree, which must itself also be empty:

Example 6.17

let filter id = $ x -> �{ x } ;;

let filter leftmost = $ x & <_ .. >[] -> �{ x }

| <(id) (id)> (leftmost,id); $ <_ .. >(x,_) -> �{ x };;

let filter replace = $ x -> �{ x };

leftmost; $ y ->

(�{x};
let filter rightmost = $ <_ .. >[] -> �{y}

| <(id) (id)> iter
and iter = (rightmost, $ [] -> �{[]})

| (id, iter)
in rightmost);;

First of all the leftmost filter returns its argument if it is an empty XML element.
If not, it is recursively applied to the first child of this argument, after what, the
reconstructed element is composed with a pattern that selects only the interesting
part of its input. The second part is the replace filter. It takes the tree we want to
transform as argument and saves it in x. Then it applies the leftmost filter on it,
whose result is stored in y. After that, x is recalled and the recursive filter rightmost
is applied to it. The latter iterates until it finds the desired sub-tree and then replaces
it by y. What is interesting with this filter is of course the way the type inference
algorithm behaves. And as we can see, it performs quite well:

2And we also acknowledge the rather poor choices in syntax and delimiters, but making such
ambiguous and overlapping parsers as the one for filters and the one for expressions left us with little
choice. . .

6.2. EXAMPLES 115

let r0 = apply replace to <a>[[] 1]

;;

This expression should have type:
X1 where X1 = <_ (Record)>[] | <(Any) (Any)>[Any+ X1 | X1]

but its inferred type is :
<a>[[] 1]

which is not a subtype, as shown by the sample :
<a>[[] 1]

In this case, the algorithm detects that the type of the argument is incompatible,
because the rightmost element is not an XML element. If we now apply the filter on
a valid input type, everything works as expected:

let r1 = apply replace to <a>[[<c>[] <d>[]]] <z>[]]
;;

val r1 : <a>[[<c>[] <d>[]] <c>[]] =<a>[[<c>[] <d>[]] <c>[]]

Here the leftmost element is <c>[] and the rightmost is <z>[]. As the filter is
applied to a singleton type the typing can be very precise: the output type is the
singleton type containing only the result of the application.

Since the replace and leftmost filters use the composition operation in many
places, one may thus wonder what happens if the input type is recursive.

let r3 = apply replace to (<a>[[] <c>[]]: <a>[[]+ <c>[]+]);;

val r3 : <a>[X1 X1+ | X1 X1+ X2+ X3 | X1 X2+ X3] where

X1 = [] and

X2 = <c>[] and

X3 = [] = <a>[[] []]

Since compositions are lightly used (in the sense of “do not deconstruct their in-
put too much”) the type inference algorithm can infer a precise output type without
any annotations. The input type being a document <a>[...] with a non-empty list
of [] and a non-empty list of <c>[] as content, the computed output type is
of course an <a>[...] whose content falls under one of the following three cate-
gories. First it can be [[] []+]. It would be the case if the input value was in
<a>[[]+ <c>[]]. The <c>[] is replaced by a [] hence the result. The input
could also be in <a>[[]+ <c>[] <c>[]+] (as the case for only one <c>[] was in
the previous category there are at least two <c>[]). The last <c>[] is replaced by a
[] giving <a>[[] []+ <c>[]+ []]. Finally the input type could be
in <a>[[] <c>[]+], which naturally gives an output type of <a>[[] <c>[]+

[]].

116 CHAPTER 6. CONCRETE LANGUAGE

6.2.4 Annotations

Let us now present some interesting filters that require annotations. We start with
the paradigmatic example: flattening.

Example 6.18

let filter concat =
$ (x,y) -> (�{x} ; (

let filter aux =

$ [] -> �{ y }

| ($ z -> �{ z }, aux)

in aux))

let filter flatten =

$ [] -> �{ [] }

| (($ [Any*] -> flatten ,flatten);concat)
| ($ x -> �{ x } , flatten)

This filter flattens nested lists. For example the problematic input type T defined
hereafter requires an annotation:

type T = [`a T `b] | []
apply flatten to ([`a [] `b]: T) where flatten = {| [(`a|`b)*] |}

− : [(`a |`b)*] =[`a `b]

If we omit the annotation, then the typechecker fails as expected:

apply flatten to ([‘a [] ‘b]: T);;
Insufficient Annotations.

6.3 Syntactic extensions

We already saw that the core filter algebra is very powerful and allows one to write
many interesting transformations and type them precisely. However, we made sev-
eral extensions that we present next.

6.3.1 Deletion

The actual algebra makes the writing of almost copying filters cumbersome. Indeed,
if one wants to write a filter which removes all the integers of a given list, (s)he may
do so with the following filter:

6.3. SYNTACTIC EXTENSIONS 117

Example 6.19

let filter remInt = $ [] -> �{ [] }

| ($ x&Int -> �{x},remInt);$ (_,y) -> �{y}
| ($ x -> �{x}, remInt)

As one can see throughout the different examples we gave, a composition such
as the one in Line 2 of the above example is quite common. Indeed, it is often the
case that we only want to apply a filter on one projection of a pair or only on the
content of an XML value (and discard its tag or attributes). To that end, we define
the following filters:

Definition 6.20 (Projection filer)
The filter grammar is extended with the following productions:

f ::= . . . (previous definitions)
| left f (left projection)
| right f (right projection)
| content f (XML content)
| tagcontent f1 f2 (discard attributes)

All these filters can be encoded in the core algebra. For instance:

left f

is equivalent to:
(f,id);$(x, _)->�{x}

The interest of inlining the composition is that:

1. In practice, we remarked that those cases are very common

2. Getting rid of a composition gets rid of the associated annotations.

The previous filter can then be rewritten:

Example 6.21
let filter remInt = $ [] -> �{ [] }

| $ (Int,_) -> right remInt
| ($ x -> �{x}, remInt)

118 CHAPTER 6. CONCRETE LANGUAGE

Similarily, discarding the tag (thus returning the content of an XML element) or
discarding the attributes of an element will be the building blocks of the XPath en-
coding, presented in Chapter 7. As a teaser, the knowledgeable reader could consider
the following example:

Example 6.22
let filter slash = $ [] -> �{ [] }

| ($ <a>x -> �{ x } , slash);concat
| right slash

which is nothing but the XPath expression “child::a”. The semantics of XPath as
well as our full encoding will be thoroughly presented in Chapter 7.

6.3.2 Filter parameters

As we saw earlier, filters can be used to encode CDuce iterators such as xtransform
or map. However one may still be reluctant to use filters to express such constructs
because of the burden of always rewriting the same iterating part. Indeed, there are two
parts in such filters. The “branches” part which constitutes the code to execute on
every traversed node and the actual code which iterates over an XML or list structure.
As we aim for a better code modularity than with explicitly typed function, we also
need a way to factorise the code of such filters. Indeed, a generic computation should
only be written once. A first step has been taken in the previous section with the
hardcoded projection filters. For instance, special typing aside, the left filter is a
filter which apply its filter argument to the first component of its input and discards
the second component. We generalize this approach with macro filters, which are
toplevel filters with filters as parameters.

Definition 6.23 (Macro filters)
The toplevel definitions are extended with the productions:

d ::= . . . (previous definitions)
| let filter X X0 . . . Xn = f [and . . .] (macro filters)

The term macro filter was inspired by Philip Wadlers higher order macros, introduced
in his well-known work on deforestation [Wad90]. With an argument to Wadler’s, we
claim that while macro filters are not “higher order” filters (since they do not have a
type and are not even first class values), they suffice in practice to write concise code
and obtain a behaviour one would expect from higher order functions:

6.3. SYNTACTIC EXTENSIONS 119

Example 6.24

let filter map f = $ [] -> �{ [] }

| (f, map);;

let filter trans1 = $ x -> �{ x+1 };;

let filter trans2 = $ x&Int -> �{ x+1 }

| $ x&Bool -> �{ not x};;

apply map (trans1) to [1 2 3 4];; (∗ returns [2 3 4 5] ∗)
apply map (trans2) to [1 `true 3 4];; (∗ returns [2 `false 4 5] ∗)

We can also define a generic xmap filter which takes 3 filters as parameter and
iterate through an XML value. The arguments are applied to the tags, attributes and
non-XML elements respectively:

Example 6.25

let filter xmap ftag fatt felem =

<(ftag) (fatt)>(let filter xmap_rec = $ [] -> �{ []}

| ($ <_ .. >_ -> xmap, xmap_rec)
| (felem, xmap_rec) in xmap_rec)

It should be noted that arguments are only allowed for toplevel filter definitions, and
are inlined within the body of the main filter, e.g. with the filters:

let filter atoA = $ `a -> �{ `A };;

let filter id = $ x -> �{ x };;

let filter incr = $ Int&x -> �{ x+1 } | $ x -> �{ x };;

the expression:

apply xmap (atoA) (id) (incr) to <a>[<a> [3 `Foo]];;

is compiled as:

120 CHAPTER 6. CONCRETE LANGUAGE

apply

let filter xmap =

<($ `a -> �{ `A }) ($ x -> �{ x })>(

let filter xmap_rec = $ [] -> �{ []}

| ($ <_ .. >_ -> xmap, xmap_rec)
| ($ Int&x -> �{ x+1 }

| $ x -> �{ x },

xmap_rec)
in xmap_rec)

in xmap
to <a>[<a> [3 `Foo]];;

This imposes that argument filters must be well-defined and therefore cannot be
the filter which is being defined. The syntactic restriction that, in their definitions,
arguments of filters are implicit (for example in the definition of xmap, one writes:
“xmap” and not “ xmap (ftag) (fatt) (felem)” to make a recursive call), prevents
from writing ill-founded recursive filters such as:

Example 6.26

let filter f (g) = (g (f), f(g))

Despite these restrictions, the previous examples show that macro filters, even if of
purely syntactical nature, are quite useful in practice to write reusable code.

6.3.3 Regular expression filters

While sequences and XML documents are encoded via pairs in the formal algebra,
providing syntactic support for such data structures clearly eases the writing of pro-
grams. This affects all the aspects of CDuce: values use the square brackets and
triangle brackets notations, types and patterns are extended with regular expression
types (and patterns) to express XML types. The same goes for filters, as it is possible
to add syntactic sugar for regular expression filters:

Definition 6.27 (Regular expression filters)
The filter grammar is extended by the following productions:

f ::= . . . (previous definitions)
| [r] (Regular expression filter)

6.3. SYNTACTIC EXTENSIONS 121

r ::= ε (Empty expression)
| t (CDuce type)
| r o (Regexp operator)
| r r (Concatenation)
| r|r (Alternation)

o ::= * | ? | *? | ?? (Regexp operators)

The regular expression operators are, quite classically the Kleene star *, and the ?
meaning at most one repetition. Their weak counterpart is denoted by *? and ?? re-
spectively. The semantics of regular expression filters is given by mean of a rewriting
function from regular expressions to filters, given in Figure 6.1. This function is in-
spired from the one used to rewrite CDuce patterns (which can be found in [Fri04b]).
Its first argument is the regular expression we rewrite and is deconstructed at each
call. The second and third arguments are respectively continuations, that is, filters
which are called after the current regular expression filter has been applied. We need
to distinguish two cases: the one where the regular expression accepts the empty
sequence, in which case we use the continuation f2 and the case where the regular
expression matches at least one element, in which case f1 is used as a continuation.

Reg(f , f1, f2) = (f, f1)

Reg(r1r2, f1, f2) = Reg(r1, Reg(r2, f1, f1), Reg(r2, f1, f2))
Reg(r1|r2, f1, f2) = Reg(r1, f1, f2)|Reg(r2, f1, f2)
Reg(r∗, f1, f2) = let filter X = Reg(r, X| f1, ε)| f2 in X
Reg(r∗?, f1, f2) = let filter X = f2|Reg(r, f1|X, ε) in X
Reg(r?, f1, f2) = Reg(r, f1, f2)| f2
Reg(r??, f1, f2) = f2|Reg(r, f1, f2)

X is a fresh filter variable.

Figure 6.1: Rewriting function Reg from regular expression filters to plain filters

Initially, for a given regular expression r the rewriting function is called with
Reg(r, nilf, nilf), where nilf is the filter matching and returning the empty sequence:

let filter nilf = $ [] -> �{ [] }

The ε filter found in the encoding of the Kleene star and its weak counterpart is a
“dummy” filter which is defined by:

122 CHAPTER 6. CONCRETE LANGUAGE

let filter ε = $ x & Empty -> �{ x };;

This filter is never taken —since its input type is Empty— and does not interfere
with the typing of the whole filter, since its output type is Empty. The ε filter is
only a “dummy” element which is used to build well-founded recursive filters and is,
in practice, removed during the compilation process. Let us consider the following
example to illustrate how this function works:

let filter f = [(($ x -> �{x}) ?) *]

f is a problematic regular expression since the internal regular expression: $x->�{x}?
matches the empty sequence. The result of Reg(f, nilf, nilf) is detailed in Figure 6.2.

First step:

let filter f =

let filter X =

Reg($x->�{x}?, X|nilf, ε)
| nilf

in X

Second step:

let filter f =

let filter X =

Reg($x->�{x}, X|nil f , ε)
| ε
| nilf

in X

Third step:

let filter f =

let filter X =

($ x -> �{x},X|nilf)
| ε
| nilf

in X

Simplification:

let filter f =

let filter X =

($ x -> �{x},X)
| nilf
in X

Figure 6.2: The Reg function in action.

Our syntax for regular expression filters resembles very much Hosoya’s filters
[Hos04]. The notable differences are that our union operator “|” is first match while
Hosoya’s is non deterministic and that, thanks to use of flat sequences in its algebra,
he obtains node deletion for free, by substituting a node with the empty sequence.
This differences aside, we can express the same map style filters:

Example 6.28

let filter succList = [($ x -> �{x+1})*];;

let filter xmap ftag fatt felem = <(ftag) (fatt)>[($ AnyXML ->xmap
|felem)*];;

6.4. TYPE INFERENCE ALGORITHM 123

The difference between greedy and weak regular expression is quite straightforward
when one looks at the encoding of Figure 6.1. A greedy regular expression (* or ?) will
match as much as possible while a weak operator will match as little as possible. This
is reflected e.g. in the encoding of *, where there is an alternation between (f,X)

(first choice) and Reg(r) (second choice). Thanks to the first-match policy, the filter
will try to apply f as much as possible on a sequence. When the application of f
fails, it falls back on the second choice and applies the tail of the regular expression
on the remaining value. For the weak version *?, the encoding is reversed. One first
tries to match the tail. If it does match, then the evaluation continues from it since
it would be considered as a “matching of length zero”. Again, we can see that the
core filter algebra allows to express higher level constructs, which are more suitable
for a real language and can nevertheless be typed in a very precise way.

6.4 Type inference algorithm

The implementation of the type inference algorithm is quite straightforward. It can
be written in a very natural way by transposing the rules of FA . Even a naive al-
gorithm allows us to quickly type large terms and input types. Indeed, in the XML
framework, types are often quite large (one can for example think of the XHTML
DTD or the DocBook DTD): there may be several hundreds of different sub-trees, all
mutually recursive and guarded by regular expression operators.

There is however quite a difference between filters seen as regular trees and con-
crete filter expressions. This has a direct impact on the precision of type inference in
presence of annotations. Let us once again consider the flatten filter. We can compare
the regular tree (given as a recursive equations) and its concrete syntax equivalent:

Example 6.29

flatten = `nil→→→ `nil

| ((([Any*]→→→ flatten,,, flatten)));;;@
| (((x→→→ x,,, flatten)))

let filter flatten =

$ [] -> �{ [] }

| ($ [Any*] -> flatten ,flatten);@
| ($ x -> �{ x } , flatten)

While those filters seems syntactically equivalent, they are most certainly not, as far
as annotations are concerned. Indeed if we consider the following type:

type t = [`a t `b] | [`a `b]

then we know that the most precise output type for “flatten(t)” is {[`an`bn] | n ≥ 1}.
We already dealt with a similar case: the algorithm could infer (with the appropriate
annotations) the output type [(`a|`b)∗] for the input type s = `nil|[`a s `b].

124 CHAPTER 6. CONCRETE LANGUAGE

In the present case we would like the algorithm to infer [(`a|`b)+]. The formal
algorithm shows this to be possible. It is indeed sufficient to consider the filter
flatten, annotated this way:

flatten = `nil→→→ `nil

| ((([Any*]→→→ flatten,,, flatten))){((([(`a | `b)+]×××[(`a | `b)+])))};;;@
| (((x→→→ x,,, flatten)))

However when “converting” this filter to the concrete syntax, we are faced with the
problem of adequately placing the annotation. There are two options. Either we
proceed as in Example 6.18 and write:

apply flatten to . . . where flatten={| [(`a|`b)+] |};;

which does not type check. Indeed, the whole filter (as we annotated the whole filter
for simplicity and not some sub part) must have type [(`a | `b)+] yet it contains
a branch (the first one) which returns `nil. Another way of doing is to alias the
relevant part of the filter by rewriting it like:

let filter flatten =

$ [] -> �{ [] }

| let filter alias = ($ [Any *] ->flatten ,flatten)

in (alias;@)

| ($ x -> �{ x } , flatten)

and annotate the application like this:

apply flatten to . . . where alias={| ([(`a|`b)+],[(`a|`b)+]) |};;

While this solution works, it is quite cumbersome. In the worst case, the pro-
grammer did not think that this annotation would be necessary and did not write
the filter with the extra alias, or in the best case (s)he did and can annotate the filter
without touching any other part of the code (especially the filter definition) but ends
up with a less readable code (and therefore less maintainable code). The solution we
used in the implementation is inspired by the refinement for the typing rule of the
union, presented in Section 4.1.3. We associate to each filter and input type a notion
of context which tells us whether the result of a filter is part of the whole output type
or not. Its effect on annotations (which are constraints over the output type) is that if
the result of an annotated filter is “intermediary” and is not part of the final output
type, then it is not necessary to check whether its output type is not a subtype of
the annotation or not. Said differently, the constraint of the rule (a-annot) has to be
enforced only for filters the output type of which contributes to the global output
type. With our current example, we can write:

6.5. COMPILATION 125

let filter flatten =

$ [] -> �{ [] }

| ~($ [Any*] -> flatten , flatten);@
| ~($ x -> �{ x } , flatten)

;;

apply flatten to . . . where flatten={| [(`a|`b)+] |};;

The output type of the first branch is not considered since the input type is:

type t = [`a t `b] | [`a `b]

which means that the filter can never return the empty sequence.

6.5 Compilation

Although the filter algebra does not provide an abstract execution model (automata,
virtual machine,. . .), we have experimented many compilation techniques which
take advantage of the fact that the core filter algebra is small and well defined and
that filters are precisely typed to provide some optimizations to a rather naive im-
plementation.

6.5.1 Compilation target

After many experiments, we chose to compile filters into OCaml closures instead of
writing an interpreter for a low-level algebra of filter terms. These closures take as
argument two environments (local and global represented as stacks of values), and
the input value and return the output value. The big advantage with this compila-
tion scheme is that it allows us to extend the values of CDuce with a new internal
representation: lazy filter application. Indeed internally, this value which is the result
of an apply to expression is represented by an OCaml variant Filter(f , v) where
f is a closure and v a value. Unfreezing the value merely consists in evaluating
the application (f g l v), where g and l are the current global and local environ-
ments. This was motivated by the fact that in CDuce the concatenation operator @
is lazily applied and evaluated, to achieve an amortized linear complexity while con-
catenating sequences, instead of the quadratic behaviour that one would have with
standard concatenation. This gave us the idea of lazily evaluating filters. However,
freezing/unfreezing each step of the evaluation of a filter adds a big overhead to the
whole process which kills the benefits of lazy evaluation. We experimented with
some heuristics to decide when to freeze a filter evaluation and the one which gave
the best results was to freeze recursive calls. Indeed, consider the concat filter and
its application:

126 CHAPTER 6. CONCRETE LANGUAGE

let filter concat =
$ (x,y) -> (�{x} ; (

let filter aux =

$ [] -> �{ y }

| ($ z -> �{ z }, aux)

in aux));;

apply concat to ([1 2 3 4],[5 6 7]);;

Here, recursive calls to aux will be frozen, so that the application will return a
value v which is internally encoded as (OCaml code):

Pair(1, Filter (f,[2 3 4]))

where Pair(,) is the internal representation for CDuce pairs and f the closure
encoding the application of aux. It should be noted that this closure retains in its
environment the variable y, bound to the value [5 6 7].

6.5.2 Tail-recursive list traversal

A well known drawback of languages such as OCaml or CDuce is that list mapping
is not tail-recursive. List mapping is however one of the building blocks of XML pro-
cessing and an efficient evaluation of list traversal is required. An existing approach
for OCaml is the ExtLib library [Ext]. This library provides tail recursive versions
of standard list functions of OCaml by making use of the unsafe module Obj. This
module allows one to temper with the low level representation of OCaml values e.g.
to perform in-place modifications of non mutable values. Such a technique was al-
ready used in CDuce to compile the iterators map, transform and xtransform in a
tail-recursive fashion when possible.

We reused this technique to compile filters more efficiently. Indeed, a naive eval-
uator for pair filters would be (given in ML pseudo-code):

let rec eval f g l v = match f with

| . . .
| FilterPair (f1,f2) -> Pair(eval f1 g l (fst v), eval f2 g l (snd v))
| . . .

It is clear that the recursive calls to eval are not in tail position, since the pair
value must be reconstructed afterwards. If we assume that it is possible to make
in-place modifications of pairs then we can write the previous code more efficiently
as:

6.5. COMPILATION 127

let rec eval f g l v output set_res = match f with

| . . .
| FilterPair (f1,f2) ->

let cell = new_pair()
in

set_res (output, cell);
eval f1 g l (fst v) cell set_fst ;
eval f2 g l (snd v) cell set_snd ;

| . . .

In this code snippet, the output argument is an accumulator which represents the
current output value of the filter and set_res is a function which given the accumula-
tor and a value, sets the value at the right place within the accumulator, and does so
by an in-place modification. We see now that evaluating a pair filter consists in:

1. allocating a new pair cell

2. setting it as part of the output

3. evaluating f 1 on the first projection of the input, the result of which will be
put as the first component of cell

4. evaluating f 2 on the second projection of the input, the result of which will be
put as the second component of cell

In this way, the second call to eval is tail-recursive (and then efficiently compiled by
the OCaml compiler). This technique combined with the previously explained lazy
evaluation gives good performances in practice.

6.5.3 Filter specialization

As we saw in Chapter 4, the precise typing of the union allows us to detect unused
code in a filter. But, for some filters, some branches may be unused, depending of
the input type:

Example 6.30

let filter convert = $ [] -> �{ [] }

| ~($ x&Int -> �{ "Integer : " @ (string_of x)}
| $ x&Bool -> �{ "Boolean:" @ (string_of x)}
| $ x&AnyXML ->�{"XML:" @ (string_of x)},
convert)

128 CHAPTER 6. CONCRETE LANGUAGE

The accepted type for this filter (which is exact as there is no composition) is
[(Int | Bool | AnyXml)∗]. However, if the type of its argument does not contain
any XML element, then the third branch of the first component of the product fil-
ter will never be used. We cannot completely issue a “warning” to the user at the
time of the definition because this branch might be used for some input types. How-
ever we can keep the information computed during the typing phase to discard this
branch at compile time and effectively obtain a more efficient filter. Indeed, thanks
to the efficient compilation of pattern matching in CDuce (described in [Fri04a]),
the previous filter , when applied to a value of type [(Int | Bool)∗], is compiled as
follows:

let filter convert = $ [] -> �{ [] }

| ($ x&Int -> �{ "Integer : " @ (string_of x)}
| $ x -> �{ "Boolean:" @ (string_of x)},

convert)

Not only is the third branch discarded, but the second test is simplified as (i). we
know that the filter is well-typed and (ii). the current element is not of type Int (as
the first branch failed) so it is of type Bool and the test is superfluous.

6.5.4 Evaluation without backtracking

The use of CDuce’s pattern matching framework is of great interest for filters. In-
deed, as shown by Alain Frisch [Fri04a, Fri04b], CDuce performs pattern matching
without backtrack. In a nutshell, the expression:

match v with

| p1 ->e1
...
| pn ->en

is compiled as:

run_matching [(p1,e1);. . .;(pn,en)] v

Essentially, the run_matching function matches the value v against the patterns
p1,. . . ,pn in parallel, without backtracking and returns a pair (v/pi, ei), where pi is
the successful pattern.

Since a union filter, “ f1||| f2” behaves like the branches of a match with construct,
we would like to evaluate it without backtracking, that is, evaluate f2 directly if f1
fails at some point. To achieve this, we reuse the information obtained during the
typing of the filter. Indeed, after a filter has been typed with respect to some input
type, every node in its internal representation is decorated with its accepted type. It

6.5. COMPILATION 129

is then possible to rewrite a filter “ f1||| f2” as : “* f1+→→→ f1||| * f2+→→→ f2” (we recall that
* f + is the accepted type of f). The union of two filters is then compiled as:

run_matching [(* f1+, f1);(* f2+, f2)] v

This ensures that the evaluation of the filter f1 does not fail, since its application
is guarded by the pattern * f1+.

130 CHAPTER 6. CONCRETE LANGUAGE

Chapter 7

XPath encoding, approximations

We present in this chapter a language of path expressions, based
on a forward fragment of XPath and CDuce types. We show that
such paths can be encoded as a set of mutually recursive filters.
Since these filters make use of the composition operator, they
must be annotated. We exhibit an algorithm which computes
an approximation of the output type and uses it to automati-
cally infer the annotations. The algorithm is a variation of the
algorithm presented in [BCCN06], which is detailed in Chap-
ter 8. Finally, we show how we encode XPath predicates and
tests into CDuce types to achieve a typed implementation of
XPath into filters.

Contents
7.1 XPath-like expressions . 131

7.1.1 XPatht expression, automata 132

7.1.2 Filter encoding . 139

7.2 Type annotations . 144

7.3 XPath and XPatht . 148

7.3.1 Basic features . 148

7.3.2 Predicates . 148

7.1 XPath-like expressions

XPath expressions are one of the standard way to select parts of an XML docu-
ment (the other one being patterns). As they are a w3c standard, their use is

131

132 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

widespread and well known by the average XML programmer. On the contrary, pat-
terns, while efficient and allowing great typing precision are less known and the av-
erage programmer is often clueless when having to use a language designed around
pattern-matching. What is true for patterns is even more true for filters. Indeed
as we have seen in the previous examples, while filters allow one to write complex
XML transformations, their code can be quite intricate and complex. Our goal is to
show an encoding from XPath like expressions into filters thus reusing their typing
discipline and compilation model.

7.1.1 XPatht expression, automata

We first present a particular subset of paths based on CDuce types that we dub
XPatht. We show later on in Section7.3.2 that a non-trivial subset of XPath can be
encoded in this formalism.

Definition 7.1 (XPatht)
A path is a finite production from the following grammar, with entry point p:

p ::= ε | s | q (path)
q ::= s/q | s
s ::= a :: τ (step)
a ::= self | child | desc | d-o-s (axis)

Here, τ ranges over CDuce types. The empty path —which is denoted by ε and is
the base case for the definitions— is only a commodity. It is not part of the standard
and is therefore not exposed to the programmer in the implementation. An example
of such XPatht expression is:

Example 7.2

child::Any/d-o-s::<c>Any

This path, when applied to an XML document, returns the list of all elements
with tags <c> which are below an element with tag which must be itself the root
of the document (here, the root of the document is to be understood as the root of the
CDuce value corresponding to the document. The w3c has a different specification
for the root element which we will discuss in the next paragraphs). XPatht axes
mimic those of XPath and are used to navigate through a value. The self axis “stays”
on the current input value, the child axis applies its test to every child of the input
value, the desc axis applies its test to every strict sub-tree of the input value and
finally the d-o-s axis applies its test to every sub-tree of the input value including
itself.

7.1. XPATH-LIKE EXPRESSIONS 133

While it is simple to illustrate, on an example, what such a path does, it is
not easy to directly translate the XPath specification ([XPa]) into the CDuce frame-
work. Indeed, this specification relies on a different data model than the one used
in CDuce. In particular, the specification requires that every node (or sub-tree) of
an XML document has a unique identifier. Unfortunately, the CDuce data model is
rather simple and two structurally equal sub-trees are indistinguishable. This re-
sults in a poor and very liberal interpretation of the XPath standard, where duplicate
elements can occur in a result (while they are forbidden in the standard specifica-
tion, and easily filtered out thanks to the unique node identifier). For instance, if we
consider the following expression1:

Example 7.3

[<a>[<a>[]]]/d-o-s::<a>Any/d-o-s::<a>Any

then the result is not what one would expect:

− : [<a>Any*] =[<a>[<a>[]] <a>[] <a>[]]

The problem here is that the inner element <a>[] has been duplicated in the
result. The reason is that, in the current implementation, XPath steps are interpreted
in a compositional fashion, one after another. In our example, the expression [

<a>[<a>[]]]/desc::<a>Any is evaluated first and returns [<a>[<a>[]] <a>[]],
which is the expected result for this step. To this intermediary result is applied the
second step, /desc::<a>Any, which naturally returns [<a>[<a>[]] <a>[]] for
the first element of the intermediary input and [<a>[]] for the second element.

We see then that, to give a proper semantics of XPatht for the CDuce language,
we cannot rely directly on the XPath specification. Fortunately, other semantics ex-
ists for XPath, such as the one described in [GGM+04, DAF+03, IHW02]. In these
works, forward fragments of XPath (such as the one presented in Definition 7.1), are
defined by translation into a deterministic finite word automaton (DFA). The lan-
guage recognized by this automaton denotes exactly the set of sub-trees of the input
document which match the XPatht expression. An example of such matching is illus-
trated in Figure 7.1. In this figure, the node matching desc::<a>Any/desc::Any

are numbered in the order in which they must be returned (the document order). The
sequence of the tags along the matched paths (in the tree) is clearly the regular lan-
guage “.*, <a>, .*, ” (with informal notations, where “*” denotes the Kleene star
and “.” a wild-card symbol). An interesting node is Node 5, which is matched ei-
ther by “.0, <a>, .1, ”, or by “.1, <a>, .0, ”. Nevertheless, this node must be
returned only once in the final result. To achieve both goals (document order as
well as unicity of nodes in the result), we simply translate the XPatht expression

1We have slightly adapted CDuce’s syntax here in order to ease the reading of the examples.
/d-o-s:: corresponds to // in the current implementation of CDuce.

134 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

<a>

1 2 <c> <a>

3 4 5

The path desc::<a>Any/desc::Any matches the following words:

1. <a>,

2. <a>,

3. <a>,,

4. <a>,<c>,

5. <a>,<a>,

Figure 7.1: Paths matching an XPatht expression

desc::<a>Any/desc::Any — seen as the regular expression “.*, <a>, .*, ”—
into a NFA (through standard techniques, e.g. see [Wat94]). Then we determinise the
NFA to obtain a DFA (again using standard techniques). Finally, we encode the DFA
as a set of mutually recursive filters, which capture elements matching the automa-
ton (thanks to patterns filters) and return the captured sub-trees. However, since
our automata are used as an intermediary step to produce filters, hence to process
CDuce values, we label the transitions by CDuce types instead of using symbols as it
is usually the case:

Definition 7.4 (Finite Type Automaton)
A finite automaton is a 5-tupleA = (Σ, Q, q0, Qa, δ) where:

Σ: is a finite set of types

Q: is a finite set of states

q0: is the initial state (q0 ∈ Q)

Qa: is the set of accept states (Qa ⊆ Q)

δ: Q× Σ 7→ P(Q) is the transition function.

Here, P(Q) denotes the power-set of Q. We also introduce the following notation:

7.1. XPATH-LIKE EXPRESSIONS 135

Definition 7.5 (Out-going transitions)
let A = (Σ, Q, q0, Qa, δ) be an automaton. The set of out-going transitions of a state
q ∈ Q, denoted by out(q) is:

out(q) = {t | ∃Q′s.t.δ(q, t) = Q′}

Our definition of automaton is not merely syntactical. We choose to label transi-
tions with types but still to match sequences of values. That is, given an input value,
a transition is taken if the value is in the type labelling the transition. We formalise
this new notion of run (or acceptance) of an automaton with the definition hereafter:

Definition 7.6 (Run of an automaton)
Let s = v0, . . . , vn be a finite sequence of values. LetA = (Σ, Q, q0, Qa, δ) be a finite type
automaton. The run ofA against s is defined as follows:
We call q the current state and v the current input.

1. initialize q with q0 and i to 0.

2. set v to vi

3. let T = {t | t ∈ out(q) ∧ v ∈ t}

4. let Q′ = {q′ | ∃t ∈ T s.t. δ(q, t) = q′}

5. if Q′ is not empty, choose non-deterministically q in Q′. Set i to i + 1 and go to Step 2.

6. if i = n and q ∈ Qa, then success, else failure.

From this definition, we see that an automaton can be non-deterministic if, in the
current state, there are two transitions, labelled t1 and t2 where t1∧∧∧ t2 is not empty.
We say thatA is deterministic if for any input sequence there is exactly one possible
run (A is a DFA) and that A is non-deterministic otherwise (A is a NFA).

The transformation of an XPatht expression into a NFA is achieved by the func-
tion [_]NFA, given in Figure 7.2. In the definition of [_]NFA, ε denotes the empty
path. The translation function relies on an auxiliary function, [_, _]NFA which takes
an automaton and a step as argument and “chains” together the input automaton
with the piece of automaton corresponding to the input step. The case for the child
axis is the simplest. It is sufficient to start from the accepting state of the input au-
tomaton and make a τ transition to the newly created accepting state. Similarly, the
automaton for the desc axis makes a τ transition to its final state. However, it can
also loop on the state q1, with the transition AnyXml, thus ignoring elements until
the τ transition can be taken. The other two cases are subtler. For a step self::τ
we must not add a new accept state (since we do not descend in the document) but
rather “correct” the transitions arriving to the current accepting state. If a transition

136 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

[ε]NFA = (∅, {q0}, q0, {q0},∅) q0 is a fresh state
[p/s]NFA = [[p]NFA, s]NFA

[(Σ, Q, q0, {q1}, δ), child::τ]NFA = (Σ ∪ {τ}, Q ∪ {q2}, q0, {q2}, δ′)
where δ′ = δ ∪ {(q1, τ) 7→ q2} and q2 is a fresh state

[(Σ, Q, q0, {q1}, δ), desc::τ]NFA = (Σ ∪ {τ, AnyXml}, Q ∪ {q2}, q0, {q2}, δ′)
where δ′ = δ ∪ {(q1, τ) 7→ q2, (q1, AnyXml) 7→ q1} and q2 is a fresh state

[(Σ, Q, q0, {q1}, δ), self::τ]NFA = (Σ′, Q, q0, {q1}, δ′)
where:
Σ′ = Σ ∪

⋃
((q,σ) 7→q1)∈δ

{σ∧∧∧ τ}

δ′(q, σ∧∧∧ τ) = q1 if ((q, σ) 7→ q1) ∈ δ
δ′(q, σ) = δ(q, σ) else

[(Σ, Q, q0, {q1}, δ), d-o-s::τ]NFA = (Σ′, Q ∪ {q2}, q0, {q2}, δ′)
where:
Σ′ = Σ ∪ {τ, AnyXml} ∪

⋃
((q,σ) 7→q1)∈δ

{σ∧∧∧ τ}

δ′ = δ ∪ {(q1, τ) 7→ q2, (q1, AnyXml) 7→ q1} ∪
⋃

((q,σ) 7→q1)∈δ{(q, σ∧∧∧ τ) 7→ q2}
and q2is a fresh state

AnyXml ≡ <AnyTag>[Any*]

AnyTag is the type of all tags (i.e. the type of all atoms).

Figure 7.2: Translation from XPatht to a NFA

matched a type σ while arriving on the current node, then since the current node
must also match self::τ, the σ transition is replaced by a σ∧∧∧ τ transition. Lastly,
a d-o-s::τ is similarly to desc::τ. However, we must take into account the cur-
rent node in the result. We proceed as for the self axis, adding new “intersection”
transitions to the accepting state.

A close inspection of the [_]NFA function shows some peculiar features. For
instance, any path starting by a self::τ step results in an ill-formed automaton,
where the initial state q0 is disconnected from the other states. The problem ac-
tually also arises in the XPath standard, where the first “real” element of an XML
document, the document node, is a child of a fictive root element which does not cor-
respond to any real element in the XML file. An XPath query starting with a self

step yields then always an empty result. This corresponds to our ill-formed automa-
ton which does not accept any input. Likewise, thanks to our use of the intersection
transitions, an ill-formed XPatht expression like child::<a>Any/self::Any will
return an automaton where the transition is labeled by the Empty type (since <a>Any

7.1. XPATH-LIKE EXPRESSIONS 137

desc::*/child::a/desc::b:

q0 q1 q2 q3
AnyXml

AnyXml

<a>[Any*] [Any*]

AnyXml

v0 = <c>[. . . <c>[. . . <a>[. . . <c>[. . . [] . . .] . . .] . . .] . . .]
v1 = <c>[. . . <a>[. . . <c>[. . . [] . . .] . . .] . . .]
v2 = <a>[. . . <c>[. . . [] . . .] . . .]
v3 = <c>[. . . [] . . .]
v4 = []

s = v0, v1, v2, v3, v4 is accepted by the NFA.

Figure 7.3: Matching of an input sequence by an NFA

and Any are disjoint), thus rejecting also any input.
An example of valid automaton is given in Figure 7.3 together with an accepted

input sequence. In this figure, v1 is a sub-tree of v0, v2 is a sub-tree of v1, and so
on. We see that v0 is accepted by the transition AnyXml which stays in q0, v1 by the
transition from q0 to q1, v2 by the <a> transition, v3 by the loop on q2 and finally v4
is accepted by the transition which leads to an accepting state. Since v4 leads to
an accepting state it must be in the result of the XPatht expression applied to v0.

Since our goal is to encode such an automaton into filters, we need to determinise
the NFA to obtain a DFA. Instead of adapting the determinisation procedure to the
general case of type NFAs as introduced in Definition 7.4, we specialize the deter-
minisation procedure to automata obtained as output of the [_]NFA function, which
simplifies the presentation quite a bit. Indeed, by construction, the only ambiguity
in the NFA is when an AnyXml transition is introduced. Such transitions are used to
treat “wild-card” * or recursion (descendant axis). In [GGM+04], the authors use a
special transition, labeled [other] to denote “any tag that is not explicitly occuring
in an outgoing transition”. Thus [other] is not a fixed symbol of the alphabet (of the
automaton) but rather a “default transition” which depends of the other transitions
going out of a given state. The use of CDuce types and their Boolean connective
allows us to explicit the value of this default branch in our algorithm. The deter-
minisation algorithm is given in pseudo-code in Figure 7.4. Like the well-known
power-set algorithm, our variation creates new states, indexed by a set of states of
the input automaton. This set represent the possible positions in the NFA during
one of its run. The only difference is our handling of the AnyXml transition.

Lines 1 to 3 consist of initialization of variables. At Line 5, the algorithm chooses
from the sets of generated states one for which it has not computed the outgoing
transitions yet. Initially the only state is q{q0} indexed by the initial state of the NFA.

138 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

Input: XPatht expression p.

Output: a DFA (Σ′,Q′,q{q0},Qa,δ′)

1 let q0 =new_state()

2 let (Σ,Q ,q0,Qa,δ) =[p, q0]NFA
3 let (Σ′,Q′,Qa,δ) =∅,{q{q0}},∅,∅
4 do

5 let qE =choose(Q′)
6 let out_t =

⋃
q′∈E out(q')

7 let out_t ’ = out_t r{AnyXml}
8 Σ′ := Σ′∪ out_t’
9 for t ∈ out_t’

10 do

11 let E′ =
⋃

Q′′ | ∃q′′∈E s.t. ∃t′≥t s.t. δ(q′′ ,t′)=Q′′
Q′′

12 if qE′ /∈ Q′ then
13 begin

14 let qE′ = new_state();

15 Q′ := Q′ ∪ {qE′};
16 if ∃q′ ∈ E′ s.t. q′ ∈ Qa
17 then Q′f := Q′f ∪ {qE′};
18 end;

19 δ′ := δ′ ∪ {(qE, t) 7→ {qE′}};
20 done;

21 if AnyXml ∈ out_t then
22 begin

23 let t = AnyXml∧∧∧¬¬¬
∨

t′∈out_t’

t′;

24 let E′ =
⋃

Q′′ | ∃q′′∈E s.t. ∃t′≥t s.t. δ(q′′ ,t′)=Q′′
Q′′

25 if qE′ /∈ Q′

26 then

27 begin

28 let qE′ = new_state();

29 Q′ := Q′ ∪ {qE′};
30 if ∃q′ ∈ E′ s.t. q′ ∈ Qa
31 then Q′f := Q′f ∪ {qE′};
32 Σ′ := Σ′ ∪ {t};
33 end;

34 δ′ := δ′ ∪ {(qE, t) 7→ {qE′}};
35 end;

36 while δ′changes

Figure 7.4: Determinisation procedure

7.1. XPATH-LIKE EXPRESSIONS 139

Steps 6 to 11 compute the set of accessible states from the current state qE. This re-
quires a little bit more work than in the standard case. First (Step 6) it is necessary
to obtain the set of types which labels the out-going transitions. If one (or more)
transitions are labeled by AnyXml, then this case must be treated separately (Step 21)
since it represents “all the transitions that are not explicitly taken from the current
state”. Step 8 only adds the possible transition labels to the alphabet of the DFA we
are computing. Then, the algorithm differs slightly from the standard power-set al-
gorithm. For every possible type in a transition, we must find the reachable states.
This is done at Step 11, where E′ regroups every state connected by a transition la-
beled by a super type of the current type. For instance, consider that the current state
in the DFA is q{q0}. Imagine that, in the NFA, there are four transitions going out
of q0, two labeled by <a>[Any*], going respectively in q1 and q2 and two others, la-
beled by AnyXml, going in q3 and q4. Then the accessible states in the NFA from q0,
if the input value is in <a>[Any*], are q1, q2, q3 and q4. Thus, these are grouped, in
the DFA in a single state q{q1,q2,q3,q4} reachable from q{q0} by a transition labeled by
<a>[Any*]. Line 12 to 19 only updates the DFA we are constructing. Step 21 repeats
the same operation for the case where AnyXml was in the out-going transitions. Go-
ing on with our example, if the only transitions from q0 in the NFA were to q1 and
q2 with <a>[Any*] and to q3, q4 with AnyXml, then, in the DFA, there are two transi-
tions: one from q{q0} to q{q1,q2,q3,q4} labeled by <a>[Any*] and one to q{q3,q4} labeled
by AnyXml∧∧∧¬¬¬<a>[Any*]. Like the standard algorithm, ours stops when we saturate
the set of transitions, δ′, of the DFA. Since the number of new states is finite (in the
worst case it is the number of partition of Q′) the algorithm clearly terminates. The
output of the algorithm, applied to the input path desc::a/child::b is illustrated
in Figure 7.5. Note that, for all the states of the DFA, the types on the outgoing tran-
sitions are pair-wise disjoint (thus ensuring determinism), and that the union of the
types labelling the outgoing transitions of the DFA is equal to the union of the types
labelling the outgoing transitions of the NFA.

7.1.2 Filter encoding

Once the XPatht expression is converted into a DFA, the hard part of the work is
done (typing aside). Indeed, the rewriting procedure to transform the DFA into a set
of mutually recursive filters is purely syntactical. To illustrate how the filter works,
let us consider again the example of Figure 7.5. There are three states in the DFA,
each one marking “how much” of the desired input has been recognized. In state qo,
nothing has been recognised. In state {q0, q1}, we have found an <a> somewhere in
depth. In state {q0, q2}, we have found a directly below an <a>, thus the state is
an accepting one. If below this there is an <a>, then we are not done yet and we
go back to state {q0, q1} since there might be again an directly below the new
<a>, and so on.

The semantics we wish to achieve is the following: given an XPatht p and an
input sequence [v0 . . . vn] we want to return the list p(v0)@ . . . @p(vn), where “@”
denotes the concatenation and p(vi) informally denotes the application of the XPatht

expression p to the tree vi. What we simply need to do is:

140 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

Input: desc::a/child::b
“Syntactic” NFA:

q0 q1 q2
<a>[Any*]

AnyXml

[Any*]

Corresponding DFA:

q0 q0, q1 q0, q2

<a>[Any*]

AnyXml∧∧∧¬¬¬<a>[Any*]
[Any*]

AnyXml∧∧∧¬¬¬(<a>[Any*] | [Any*])
<a>[Any*]

<a>[Any*]

AnyXml∧∧∧¬¬¬<a>[Any*]

Figure 7.5: Transformation of an XPatht expression into a NFA and determinisa-
tion

1. Iterate the starting state of the DFA corresponding to p on each element of the
sequence v0, v1,. . .

2. depending on the tag of the input value, one transition exactly (since we are in
a DFA) applies. It returns a new state q1.

3. Iterate q1 on every child element of v0

4. and so on. . .

Furthermore, if at Step 2 the transition we take leads to an accepting state, then
we have to remember the current input as it is part of the result. Before giving the
encoding, let us recall the semantics of some useful filters:

let filter mapconcat f = $ [] -> �{ [] }

| (f, mapconcat);concat;;

The mapconcat filter expects a list as input and apply its filter argument to every
element of this list and concatenates all the results. For instance:

7.1. XPATH-LIKE EXPRESSIONS 141

let filter id = $ x -> �{ x };;

apply mapconcat id to [[1] [2] [[3] 4]];;

val − : [1 2 [3] 4] =[1 2 [3] 4]

Here, since the input type is not recursive, the filter mapconcat does not require
any annotations; even though in the general, annotations are mandatory for this
filter.

We also recall the behaviour of the filter content which was presented in Sec-
tion 6.3.1.

let filter id = $ x -> �{ x };;

let filter content f = <(id) (id)>f; $ <_ >x -> �{ x };;

when applied to an XML element, content f applies f to the sequence of children of
that element and discards the tag. We also recall that in the extended version of the
filter calculus, this filter can be typed without annotations despite the presence of a
composition.

The algorithm for translating a DFA is given in Figure 7.6. It is easy to see that the
resulting filters are well-formed. Indeed, since the input are the transitions of a DFA,
all the generated branches for a given filter are independent (except for the default
case, added as the last branch at Line 16). Secondly, every recursive call to an fi occurs
on the left-hand side of a composition operator (we recall that composition operators
are hidden in the definition of mapconcat and content). The result of the algorithm
run on the DFA corresponding to the XPatht expression desc::a/child::b is:

Example 7.7

let filter f0 =

| $ <a>[Any*] ->content (mapconcat f01)
| $ AnyXml r<a>[Any*] ->content (mapconcat f0)
| $ _ -> []

and filter f01 =

| $ <a>[Any*] ->content (mapconcat f01)
| $ x&[Any*] ->content (mapconcat f01);y ->�{ (x,y) }
| $ AnyXml r(<a>[Any*] | [Any*]) ->content (mapconcat f0)
| _ -> []

and filter f02 =

| $ <a>[Any*] ->content (mapconcat f01)
| $ AnyXml r<a>[Any*] ->content (mapconcat f0)

142 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

| $ _ -> []

;;

let filter fxpath =mapconcat (content f0)

Let us check on an example that the filter fxpath performs the desired computa-
tion:

let v0 =<a>[[1]]

let v1 =<c>[<a>[<c>[[2]]] <c>[] <d>[<a>[[3] <d>[]]]

<a>[[4 <a>[[5]]]]

]

let input = [v0 v1]

The input is composed of two documents, v0 and v1. v0 is a simple case and
should the [1] sub-tree should appear in the result. For v1, [2] should not
appear since it is not directly the child of an <a> node. [3], [4...] and
[5] should appear in this order in the result. Let us check:

Input: a DFAA = (Σ, Q, q0, Qa, δ)

Output: the filter fx

1 for qi ∈ Q′

2 do

3 create a new union filter fi
4 for every transition δ(qi, t) 7→ qj ∈ δ

5 do

6 if qj ∈ Qa

7 then

8 create a branch
9 " | $ x&t -> (content (mapconcat f j) ;y-> �{(x,y)})"

10 else

11 create a branch
12 " | $ t -> content (mapconcat f j)"
13 done

14 create a branch
15 " | $ _ -> �{ [] }"
16 done

17 create a new filter "fx = (content (mapconcat f0)"

Figure 7.6: Translation of a DFA into a filter

7.1. XPATH-LIKE EXPRESSIONS 143

apply fxpath to input . . .;;
val − : . . . =[[1]

[3]

[4 <a>[[5]]]

[5]]

Here we see that the document order is respected. The ellipsis hide (for now) the
typing parts. Indeed, since the filter makes an heavy use of composition, annotations
are required to type it. Before giving our typing discipline for the XPath fragment we
have defined, let us show another example. Here we consider the filter corresponding
to the XPatht expression d-o-s::<a>Any/d-o-s::<a>Any:

Example 7.8

let filter f0 =

| $ x&<a>[Any*] ->content (mapconcat f012);y ->�{ (x,y) }
| $ AnyXml r<a>[Any*] ->content (mapconcat f0)
| $ _ -> []

and filter f012 =

| $ x&<a>[Any*] ->content (mapconcat f012);y ->�{ (x,y) }
| $ AnyXml r<a>[Any*] -> content (mapconcat f01)
| _ -> []

and filter f01 =

| $ x&<a>[Any*] ->content (mapconcat f012);y ->�{ (x,y) }
| $ AnyXml r<a>[Any*] ->content (mapconcat f01)
| $ _ -> []

;;

let filter fxpath =mapconcat (content f0)
;;

(∗ XPath expression in CDuce, second <a> node is duplicated ∗)
let buggy = [<a>[1 <a>[2]]] //<a>Any //<a>Any ;;

val buggy : [<a>Any*] =[<a>[1 <a>[2]] <a>[2] <a>[2]]

(∗ The filter corresponding to the DFA ∗)
let ok = apply fxpath to [<a>[1 <a>[2]]] . . .;;

val ok : . . . =[<a>[1 <a>[2]] <a>[2]];;

144 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

Since the traversal of the value is done in one pass for the whole filter, we see that a
sub-tree is kept in the result only if it matches the path expression and that, after-
wards, the automaton is iterated on its strict-subtree and siblings. This prevent any
duplication of an input tree in the output.

7.2 Type annotations

The encoding of XPatht into filters, while satisfactory from a dynamic semantics
perspective seems less appealing from a typing perspective. If one considers the
code for the filters (mapconcat fi), it is quite clear that such a filters needs to be
annotated. Indeed, they are very similar to—and are in fact an “inlined” version
of—the flatten filter, root of all evil in this world (of typing). The situation seems
even more problematic because, since the programmer writes an XPatht expression
which is then compiled into a set of filters, (s)he does not have any knowledge of the
number (let alone the names) of the filter that are introduced by the transformation.

The situation is however not desperate. A careful analysis of the generated filters
shows that all the generated filters must be annotated by the same type: the final
output type. As we have seen, the most precise instance of this output type might
not be regular. To see why this is true in the case of XPatht expressions, it is sufficient
to consider the following input type and XPatht expression:

Example 7.9

type in_t = <c>[<a>[] in_t []] | <c>[]

d-o-s::(<a>[Any*]|[Any*])

For this particular type, the XPatht expression is nothing but a flatten filter, where
the most precise output type is {[<a>[]n[]n] | n ≥ 0}.

A possible solution is to reuse the type information occurring in the last step of
the XPatht expression. That is, for a path p/axis :: τ (where axis denotes any of the
four axes), annotate the filters with the output type [τ*]. Such solution is however
barely satisfactory. Indeed, if one writes a path such as: d-o-s::<a>Any/self::AnyXml,
we know at least, just by looking at the path, that the result will be both in [<a>Any*]

and in [AnyXml*], that is in [<a>[Any*]*]. To achieve a greater precision, we
can, as for filters, take the input type into account. The idea is again to evaluate the
XPatht expression on the input type. Since we know the precise semantics of the
XPath expression, we can tailor an algorithm so that computes an approximation of
the output type. Contrary to filters, where the composition can be used to define
arbitrary transformations and hence requires annotations, we know the extent of all
the operation that must be done on the input type and can thus tailor the typing rule
for theses specific rules. In particular we have the following pieces of information:

7.2. TYPE ANNOTATIONS 145

• the output type is a subtype of [Any*]

• the recursive calls are made to iterate through XML elements only

We give in Figure 7.7 a typing algorithm for XPatht expressions. This algorithm
is given as a set of inference rules, deriving judgment of the form
x p(T) = S.
Contrarily to the type inference algorithm of Chapter 5 this algorithm works on sets
of types rather than types directly. Here,
x p(T) = S means that if a path is
applied to a value whose type is in T, then the type of its result is in S. Informally,
we abstractly execute the path p on every elements of T and collect the resulting
types in S. Suppose now that τ ≤ [Any*] is the type of the sequence of elements we
wish to apply the path p onto. If
x p({τ}) = S, then we choose for output type:
[(
∨

σ∈S
σ)*].

This judgment requires an auxiliary judgment, ∆ `x s(T) = S where s is a single
step, T and S sets of types and where ∆ a memoization environment, that is, a set of
pairs (s, τ) where s is a step and τ a type. In the presentation, <_>τ stands for an XML
type with some label, which we do not care about and axis represent any of the four
XPatht axes. Additionally, for the (s-*) rules, a memoization rule must be applied
whenever possible and must be followed by a non-memoization rule (as for the type
inference algorithm of Chapter 5). The algorithm for paths is quite simple: it applies
step by step the path on the set of input types. The (s-*) rules are where the real
work takes place. The (s-*) rules are divided in four categories. The first three—step,
iteration and set—are structural rules. Step rules handle the application of a step on
a singleton2. The (s-self) rule restricts the input by using an intersection with the
“test type” of the step. The (s-child) checks that the input type is compatible with an
XML element, extract the type τ′′ corresponding to the sequence of child and apply a
self step on the types of the children. (s-d-o-s) returns the output types for both the
current input and (s-d-o-s) recursively applied to the types of the children. Finally,
(s-desc) is equivalent to applying (s-d-o-s) on the children directly.

Iteration rules apply the step rules on every elements of a sequence type. In-
deed, the encoding of sequences in CDuce is made explicit in this algorithm. Since
sequences are encoded as nested pairs, we use the product decomposition πππ (de-
fined in Chapter 2, Section 2.26). As an example, consider an input set {τ}, where
τ ≡ [(A|B) ∗ C] and A, B and C are three disjoint types (for the sake of simplicity).
More formally, τ is defined by:

τ = ((((A | B)××× τ))) | (((C××× `nil)))

What we want is that the algorithm apply the current step on A, B and C. Like for
the typing of product filters, this depends of the semantics of πππ. Let us assume
here that πππ(τ) = {(((A××× τ))), (((B××× τ))), (((C××× `nil)))}, then in rule (s-cons) the step s is
applied to A, B, C, τ and `nil, which is the expected behaviour. It is also possible
that πππ(τ) = {((((A | B)××× τ))), (((C××× `nil)))} in which case, s would be applied to A | B.
It is worth noticing that in the CDuce implementation, πππ returns a set of products
whose first components are pairwise disjoint.

2Note that here, a singleton is a set containing only one type, an not a singleton type.

146 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

Step rules
(s-self)

∆ `x (self::τ)({τ′}) = {τ∧∧∧ τ′}

<_>τ′′ = τ′ ∧∧∧ AnyXml ∆ `x (self::τ)({τ′′}) = S
(s-child)

∆ `x (child::τ)({τ′}) = S

<_>τ′′ = τ′ ∧∧∧ AnyXml ∆ `x (d-o-s::τ)({τ′′}) = S
(s-desc)

∆ `x (desc::τ)({τ′}) = S

<_>τ′′ = τ′ ∧∧∧ AnyXml
∆ `x (self::τ)({τ′}) = S1

∆ `x (d-o-s::τ)({τ′′}) = S2(s-d-o-s)
∆ `x (d-o-s::τ)({τ′}) = S1 ∪ S2

Iteration rules

(s-nil)
∆ `x (s)([]) = ∅

πππ(τ′) ≡ {(((τ1
1 ××× τ1

2))), . . . , (((τn
1 ××× τn

2)))}
j ∈ 1..2

∆ `x (s)({τi
j}) = Si

j(s-cons)
∆ `x (s)({τ′}) =

⋃
i

Si
1 ∪ Si

2

Set rules
(s-set1)

∆ `x (s)(∅) = ∅
n > 1, i ∈ 1..n ∆ `x (s)({τi}) = Si(s-set2)

∆ `x (s)({τ1, . . . , τn}) =
⋃

i

Si

Memoization rules

(s, τ′) ∈ ∆
(s-mem1)

∆ `x (s)({τ′}) = ∅

(s, τ′) /∈ ∆ (s, τ′) ∪ ∆ `x (s)({τ′}) = S
(s-mem2)

∆ `x (s)({τ′}) = S

Path rules
(p-empty)

x (ε)(T) = ∅
∅ `x (s)(T) = S
x (p)(S) = S′

(p-step)

x (s/p)(T) = S′

Figure 7.7: Type inference algorithm for XPatht

7.2. TYPE ANNOTATIONS 147

Set rules are used when the input set contains more than one type. Lastly, mem-
oization rules are used to record an already encountered type and stop the recursion
(occuring for a d-o-s step).

What the step algorithm does, is to collect every sub-tree of a type in the input
set which matches the step. This is clearly seen in the (s-d-o-s) and (s-cons) Where
the result is the union of what is returned in the premises of the rule. The set of (s-*)
rules defines an algorithm, since the termination is ensured by the memoization
environment ∆.

The set of (p-*) rules also defines an algorithm (the derivation clearly terminates
by induction on the length of the path).

Let us illustrate how the algorithm performs on a few examples.

Example 7.10

type in_t = <c>[<a>[] in_t []] | <c>[]

d-o-s::(<a>[Any*]|[Any*])

let v : in_t = <c>[<a>[] <c>[] []]

#val v : int_t = <c>[<a>[] <c>[] []]

apply d-o-s::(<a>[Any*]|[Any*]) to [v];;

#val − : [(<a>[]|[])*] =[<a>[] []]

We see here that the result is more precise than by simply using the path to
annotate the filter, which would yield the output type: [(<a>[Any*]|[Any*])*].
A more interesting example is the following.

Example 7.11

type a_int = <a>[Int *]

type a_bool = <a>[Bool *]

type doc = <c>[[a_int *] * a_bool *]

let v : doc = <c>[[<a>[1 2 3]] <a>[`false]]

#val v : doc = <c>[[<a> [1 2 3]] <a>[`false]]

apply d-o-s::AnyXml/child::Any/child::<a>Any to [v];;

#val − : [<a>[Int *] *] =[<a>[1 2 3]]

148 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

Here the algorithm correctly deduced that the only <a> sub-trees that could occur in
the result where those below a , hence only nodes of type a_int and not a_bool.
Let us details the algorithm step by step3:

1. d-o-s::AnyXml is applied to v, of type doc≡ <c>[[a_int*]* a_bool*].
This returns a set of types: S = {doc, [a_int*], a_int, Int, a_bool, Bool}

2. On this intermediary type is applied child::Any is then applied to S. First
of all, only the XML part of the type is kept (since the child axis must descend
into an input element). This correspond to having the step self::Any ap-
plied to S′ = {doc, [a_int*], a_int, a_bool}.

3. This returns the intermediary set S′′ = {[a_int*]} onto which is applied
child::<a>Any, which returns {a_int}, hence the final result: [a_int*].

7.3 XPath and XPatht

We present some encoding of standard XPath expression into XPatht. As we will
show, many conditions can be encoded into CDuce types and thus checked statically.

7.3.1 Basic features

Aside from renaming descendant-or-self and descendant into d-o-s and desc

respectively, one can easily encode XPath tests into CDuce types:

• axis::a where a is a tag name is encoded as axis::<a>Any

• axis::* where the special character * matches any element is encoded as
axis::AnyXml

• axis::text(), which matches raw text nodes is encoded as: axis::Char

The attribute axis can be also added as a basic axis of XPatht, since its treatment is
roughly similar to the one of the child axis.

7.3.2 Predicates

A more complex and more wanted feature are XPath predicates. Predicates are Boolean
conditions that are used to restrict the set of selected nodes. For instance, the
XPath expression child::a[child::text() = "foo" or child::b] selects only
the child of the current node, whose tag is <a> and for which, either the content is
the character string "foo", or one of the children is a . We define a notion of
predicates, which we call structural predicates, and which correspond to a subset of
non-nested XPath predicates:

3Pun intended. . .

7.3. XPATH AND XPATHT 149

Definition 7.12
A structural predicate is a finite production of the following grammar, with entry point c:

c ::= c and c | c or c | not c (Boolean operations)
| s (XPatht step)
| child::text() = STRING | desc::text() = STRING (string search)

The step condition is evaluated to true if the step applied to the current node does
not yield an empty result. The “child” string test is evaluated to true if the string
– obtained by concatenating all the child of the current node which have type Char
– is the same as the constant STRING we test against. Finally, the “desc” string test
if the string-value of the current node is equal to some string. The string value, as
defined by [XPa] is the concatenation of all the raw text node occuring inside a given
sub-tree.

Our goal here is to show that such predicates can be encoded into CDuce types.
An XPatht step axis::τ[c] can then simply be rewritten into axis::(τ∧∧∧ τc) where
the type τc is the encoding of the predicate c. Before defining the translation from
predicates to types, we define some useful CDuce types.

Definition 7.13 (Many occurrences)

Many(τ) ≡ µX.(τ | <AnyTag>[Any* X Any*])

It is clear that if v ∈ Many(τ), then at least one sub-tree of v has type τ (by
induction on the value v).

We can also easily define exactly one and exactly zero occurrence for types that
are not XML (that is for basic types such as Int, Char,. . . which are ranged over by
B). We use this feature to encode string matching.

Definition 7.14 (Zero occurrence)
Let τ be a type such that τ∧∧∧ AnyXml = Empty:

Zero(τ) ≡ AnyrrrMany(τ)

Definition 7.15 (One occurrence)
Let τ be a type such that τ∧∧∧ AnyXml = Empty:

One(τ) ≡ µX.(τ | <AnyTag>[Zero(τ)* X Zero(τ)*])

150 CHAPTER 7. XPATH ENCODING, APPROXIMATIONS

Again, let v be a value of type One(τ). Then it is clear that exactly one sub-tree of
v has type τ (by induction on v).

The conversion from predicates to types is given by a function [_]T from predi-
cates to types given in Figure 7.8. We can now express XPath expressions such as:

[c1 and c2]T = [c1]T ∧∧∧ [c2]T
[c1 or c2]T = [c1]T | [c2]T
[not c]T = ¬¬¬[c]T
[self::τ]T = τ
[child::τ]T = <(AnyTag)>[Any* τ Any*]

[desc::τ]T = <(AnyTag)>[Any* Many(τ) Any*]
[d-o-s::τ]T = Many(τ)
[child::text() = "c0 . . . cn"]T = <(AnyTag)>[NC ′c′0 NC . . . NC ′c′n NC]
[desc::text() = "c0 . . . cn"]T =

<(AnyTag)>[NCN One(′c′0) . . . NCN One(′c′n) NCN]

where:
NC = Anyrrr Char

NCN = Zero(Char)

Figure 7.8: Translation from predicates to types

Example 7.16

d-o-s::a[child::b]/d-o-s::*[child::text() = "foo" or (not child::d)]

We spare the reader’s sanity by not giving the corresponding CDuce type for each
step.

Chapter 8

Type-based XML projection

We introduce in this chapter a practical use of the abstract eval-
uation, that is, the evaluation of a term on a type instead of a
value. Our motivation is to optimize query engines based on
the DOM data-model which is known to be very expensive in
memory. Indeed, for such engines, even if the query does not
access the whole document, the latter has to be entirely loaded
in memory. Our approach is to perform a static analysis on the
query and the type of the document to determine which parts of
it will be needed at run-time.
The work presented in the present chapter is based on an orig-
inal idea by Dario Colazzo. For the sake of comprehension, we
give here the collaborative results published in [BCCN06], and
highlight our personal contribution namely the design of the
type inference algorithm, the formal proofs of the theorems in
this chapter as well as the implementation and experimental re-
sults.

Contents
8.1 Document pruning . 152

8.2 Notations . 153

8.2.1 Data Model . 153

8.2.2 DTDs and validation . 154

8.2.3 Type projectors . 156

8.3 XPath and XPath` . 157

8.3.1 Simple paths . 158

8.3.2 Predicates . 159

8.3.3 Handling XPath predicates 160

151

152 CHAPTER 8. TYPE-BASED XML PROJECTION

8.4 Static Analysis . 164

8.4.1 Type inference . 164

8.4.2 Type-Projection inference 174

8.4.3 Adding sibling, preceding and following axes. 178

8.5 Extension to XQuery . 178

8.6 Experiments . 181

8.1 Document pruning

As we developed in the introduction, the typing discipline for filters, that is,
the evaluation of a filter on a type rather than on a value, was designed so

as to be independent from the type algebra or particular data-model used for the
host language. However, the language we designed was still somewhat related to
CDuce/XDuce. Indeed, the use of semantic subtyping and a pattern algebra allowed
us to design a very precisely typed language. As for the implementation, it was even
more dependent on the CDuce compiler and the particular data-model and type al-
gebra it implements. To see whether the technique of abstract evaluation scales to
other data-models and type algebra, we propose the following study, inspired by
the type inference algorithm for XPatht in Chapter 7. Our aim in this chapter is to
present a very practical use of typing, namely its use to optimize the loading of an
XML document in memory.

Languages, or more specifically query engines, for XML can be divided in three
categories with respect to memory usage. The first category is the one of streaming
engines, for which the transformation is evaluated on the fly, with bounded mem-
ory, performing the outputs as soon as they are computed. Unfortunately, not every
transformation can be performed in streaming. For instance, the reversal of the list
of children of the root of a document needs to buffer all these elements up to the last
to start the output. The second category, is the one of main-memory query engines.
In these engines, the whole input document is loaded in memory and organised fol-
lowing a data-model such as DOM ([DOM04]). While providing an easy access to any
part of the document, such models are known to be expensive in memory due to the
presence of various meta-data. The situation is such that even for relatively small
documents, of hundreds of megabytes, the main-memory representation takes sev-
eral gigabytes, thus making such engines unusable on standard desktop setups or
small servers. A more recent and maybe more realistic use case is the one of the
“interactive web”. In this setup web sites are not static anymore but the client (the
web browser) continuously exchanges data with the server. Such data exchanges are
often encoded in XML (for instance by using the AJAX framework). In the current
situation, client-side programming is performed with Java-Script, in which the use
of the DOM data-model is pervasive. In this context, the bottleneck for XML process-
ing is not the memory but the network bandwidth, which is much more constrained.
Finally, the last category is the one relying on a persistent storage of the XML doc-
ument, pretty much like a DBMS. While bigger documents can be processed, the

8.2. NOTATIONS 153

penalty of disk access with respect to memory access is a huge price to pay. An-
other remark is that persistent query engines can be much more difficult to set-up
and fine-tune. As remarked by Amélie Marian and Jérôme Siméon in [MS03], the
whole document is often not needed to perform a transformation. Following this
idea, they proposed XML projections, a method where they evaluate the query (given
in XQuery, [XQu]) while loading the document, hence discarding part of it before con-
structing the memory representation. Of course, as the document is not complete,
the exact result cannot be computed, but this “loading time evaluation” provides
them enough information to choose which nodes of the input to keep in memory
and which to discard. This results in a smaller version of the in-memory document,
onto which they can execute the query/transformation to obtain the expected result.
While the reduced memory occupation of the projected document is certainly ap-
pealing, their method suffers from a major drawback: the evaluation of the query
at loading time might require (even if temporary) a significant amount of memory
especially in the presence of a descendant-or-self axis. Another drawback is that
they do not handle backward axes, namely the parent or ancestor axes of the XPath
specification [XPa].

While retaining their approach of document pruning, we extend their technique
by taking types into account. In the same way as we previously typed filters by eval-
uating them on an input type, we evaluate queries on the type of the input document.
This application allows us to compute a type projector, which can then be used at run-
time to perform the pruning process. The advantage is that given a type projector
and a document, the pruning can be performed in streaming, and be interleaved with
the loading/validation process, thus avoiding any memory or time penalty at run-
time. Our approach also takes all XPath axes into account, particularly the ancestor
and parent one.

Our algorithm works as follows: given an input XQuery query, we perform a path
extraction, that is, we collect every XPath expression that is used in the query to
navigate in the input document. Given this set of XPath expressions, we apply it on
the input type of the document, given by a DTD, thus computing a type projector.
The latter can then be used to prune the documents that are fed to the query engine.

We introduce our notion of data-model, XPath expressions and DTD before for-
mally giving the algorithms. The type projector inference algorithm is shown to be
sound—a query applied to a projected document always gives the same result as on
the original document—and also complete for a specific class of DTDs and queries—
if we try to remove more nodes than those specified by the type projector, then we
change the semantics of the query.

For the case where the input document is not in this specific class of DTD, we
show through our implementation that it remains very precise in practice.

8.2 Notations

8.2.1 Data Model

As for XPatht in Chapter 7, we exclude the treatment of attributes, for which our ap-
proach can straightforwardly be extended, as we did in our implementation. Indeed,

154 CHAPTER 8. TYPE-BASED XML PROJECTION

from a theoretical point of view, the treatment of attributes is very similar to the one
of the child axis.

Definition 8.1 (XQuery data-model)
A value is a finite production of the following grammar, with entry-point f :

f ::= () | f , f | t (forest)
t ::= si | [f] (tree)

Essentially, a value is an ordered sequence of labelled ordered trees (ranged over by
t), that is an ordered forest (ranged over by f), where each node has a unique identifier
(ranged over by i) and where () denotes the empty forest. Tree nodes are labelled
by element tags (ranged over by l) while, without loss of generality, we consider only
leaves that are text nodes (that is, strings, ranged over by s) or empty trees (that is,
elements that label the empty forest). The main difference with the data-model used
in the previous chapters is the presence of a unique identifier for strings and trees.

We define a complete partial order � on forests (and thus on trees) by relating a
forest with the forests obtained either by adding or by deleting sub-forests:

Definition 8.2 (Projection (�))
Given two forests f and f ′ we say that f ′ is a projection of f , noted as f ′ � f , if f ′ is
obtained by replacing some sub-forests of f by the empty forest.

Definition 8.3 (Good formation)
A forest is well formed if every identifier i occurs in it at most once. Given a well-formed
forest f and an identifier i occurring in it, we denote by f @i the unique sub-tree t of f
such that t = si or t = [f ′]. The set of identifiers of a forest f is then defined as
Ids(f) = {i | ∃ t. f @i = t}

Henceforth we will consider only well-formed forests and confound the notions
of a node with that of the identifier of the node.

Definition 8.4 (Root id)
Given a tree t, if t = si or t = [f] then we define RootId(t) = i.

8.2.2 DTDs and validation

The approach we present in this chapter is for DTDs, but the treatment for XML
Schema is similar.

Following [LMM00] we define a DTD as a local tree grammar:

8.2. NOTATIONS 155

Definition 8.5 (DTD)
A DTD is a pair (X, E) where X is a distinguished name and E is a set of productions rules
(or edges) of the form {X1 → R1, . . . , Xn → Rn}, such that:

1. the Xi’s are pairwise distinct;

2. each Ri is of the form <ai>[ri] or String, where ai is an element tag, and each ri is a
regular expression over names {X1, . . . , Xn};

3. for each pair Xi → <ai>[ri] and Xj → <aj>[rj], i = j if and only if ai = aj;

4. X is in {X1, . . . , Xn} (it denotes the root element type).

In the following we write Names(r) for the set of all names used in r and DN(E)
for the set of names defined in E (that is, {X1 . . . Xn}). We also say that r is a regular
expression over (X, E), if r is a regular expression over names in DN(E). We will use
W, X, Y, Z to range over names. We use Greek letters to range over sets of names
(in particular we use π to stress that the set of names is a type projector, as in Defini-
tion 8.8, κ and τ to stress that the set is used as a context or as a type, respectively
(see Section 8.4.1) and S to range over sets of (node) identifiers. When speaking of
DTDs we will often identify them with the set of their edges E, leaving the root X
implicit.

We see that DTDs are far more restricted than CDuce types. In particular, point
(3.) in Definition 8.5 states that for a given tag, there is only a unique definition for
the associated content. For instance, it is possible to define <a>[(c | d)*] but
not both <a>[c*] and <a>[d*] within the same DTD. In other words, the tag of
an element determines its contents.

We define now the validity of a document with respect to a DTD:

Definition 8.6 (Valid Trees)
A tree t is valid with respect to a DTD (X, E), if there exists a mapping (interpretation) =
from Ids(t) to DN(E) such that:

1. =(RootId(t)) = X

2. for each i in Ids(t), if t@i = si then =(i) = Y and (Y → String) ∈ E

3. for each i in Ids(t), if t@i = [t1 . . . tn], then =(i) → <l>[r] ∈ E and
=(RootId(t1)), . . . ,=(RootId(tn)) is generated by r.

In this case we say that t is =-valid with respect to (X, E) and write t ∈= (X, E).

Algorithms to validate XML trees are well known (see [LMM00] for a comparison
between various XML schema specifications). Every validation algorithm produces,
as a side effect, an interpretation for the validated tree. Note that if t is valid with

156 CHAPTER 8. TYPE-BASED XML PROJECTION

respect to a DTD, then there is a unique interpretation = from t to the DTD. This is
a direct consequence of point (3.) in Definition 8.5.

8.2.3 Type projectors

Given a tree t valid with respect to a DTD (X, E), we can use subsets of DN(E) to
project that tree. Essentially, only nodes that are associated with names in the pro-
jecting subset of DN(E) are kept in the projection. Of course not every subset of
names can be used to project a tree, since we want to delete whole sub-trees (not
nodes in the middle of a tree), thus if we discard some name, we must also discard
all the names it generates. In order to define formally this notion we need to define
the reachability relation⇒E.

Definition 8.7 (Forward Reachability)
Given a DTD (X, E) and Z ∈ DN(E), we write Z ⇒E Y if and only if Z → <a>[r] ∈ E
and Y ∈ Names(r). We use⇒+

E and⇒∗E to denote respectively the transitive closure and
the transitive and reflexive closure of⇒E.

Strings of names are called chains and ranged over by c, ci, c′,... In particu-
lar we use Chains(X,E)(Y) to denote the set of all chains rooted at Y, defined as
{Y X1 . . . Xn | Y ⇒E X1 ⇒E . . . ⇒E Xn, n ≥ 0}. We use Names(c) to denote
the set of all names occurring in a chain c.

Definition 8.8 (Type-Projectors)
Given a DTD (X, E), a (possibly empty) set of names π ⊆ DN(E) is a type projector for
(X, E) if and only if there exists C ⊆ Chains(X,E)(X) such that

π =
⋃
c∈C

Names(c)

A type projector is thus a set of names generated (i.e. reached) by a suite of pro-
ductions starting from the root of the DTD. A type projector can be used to prune a
valid tree as follows:

Definition 8.9 (Type Driven Projections)
Let π be a type projector for (X, E) and t a forest or tree such that t ∈= (X, E). The
π-projection of t, noted as t\=π,is defined as follows:

[f]\=π = [f \=π] =(i) ∈ π
si\=π = si =(i) ∈ π
[f \=π] = () =(i) 6∈ π
si\=π = () =(i) 6∈ π
(f , f ′)\=π = (f \=π), (f ′\=π)

8.3. XPATH AND XPATH` 157

The interesting cases are the third and fourth cases of Definition 8.9. If a tree
[f] is the production of a name Y in the DTD (that is if =(i) = {Y}), and if Y
is not in the projector, then this tree must be erased that is replaced by the empty
forest; and the same holds for strings. In other words, pruning erases every node
that corresponds to a name not in π.

Lemma 8.10 Let π be a type projector for (X, E). Then for every tree t ∈= (X, E) it holds
(t\=π) � t.

Proof By straightforward induction the finite tree t equiped with the order
v (sub-tree).

8.3 XPath and XPath`

As we have already sketched in Chapter 7, XPath queries are expressed by defining a
path of steps separated by /. For instance,

Q = /descendant :: author
/child::text()[self::node="Dante"]
/parent::*/parent::book/child::title

is the query that returns all titles of books whose author is “Dante”. First, the
navigational part instructs to descend to all text nodes whose parent is an author
(/descendant :: author/child :: text()), then the predicate selects those nodes
that are the string “Dante” ([self::node="Dante"]), and finally the navigation as-
cends to the book element and descends to the title.

The inference rules we define in Section 8.4.2 do not work directly on queries such
as Q. The rules are defined for XPath`, a subset of XPath that we introduce in this
section. Contrary to XPatht, introduced in Chapter 7, XPath` includes downward and
upward axes and a special kind of predicates. In order to statically analyse Q (or any
other XPath query that is not in XPath`), we will find a XPath` query that approx-
imates Q soundly with respect to the pruning inferred by the rules (Section 8.3.3),
and use it to deduce the pruning for Q.1 Of course, these approximations, as well as
those we introduce later on, will only be used to determine the pruning: the pruned
document will be queried by the original query.

For the sake of presentation, we first deal with “simple paths”, that is, path ex-
pressions with upward and downward axes in which no predicate occurs. Then, in
Section 8.3.2 we add XPath` predicates, i.e. disjunctions of simple predicates, and
finally in Section 8.3.3 we show how to approximate generic XPath conditions into
XPath`. The missing axes are dealt with in Section 8.4.3.

1For instance, the approximation of our sample query Q is obtained by replacing in Q the predicate
[self::node] for the current one.

158 CHAPTER 8. TYPE-BASED XML PROJECTION

8.3.1 Simple paths

Definition 8.11 (Simple Path)
Simple paths are defined by the following grammar:

SPath ::= Step | SPath/SPath | /SPath

Step ::= Axis::Test

Axis ::= self | child | descendant
| parent | ancestor | ancestor-or-self
| descendant-or-self

Test ::= tag | node() | text()

Here, tag is a meta-variable ranging over element tags. Henceforward, we omit
the treatment of leading / (i.e., absolute paths) and of descendant-or-self and
ancestor-or-self axes: their handling would blur definitions and can be easily
deduced from the rest.

The formal semantics of paths is given in three definitions. First, we formalise
Test filtering, then Axis selections, and finally we combine the two notions to define
the semantics of a single step Axis :: Test. The definitions comply with the W3C XPath
semantics [XPa].

Definition 8.12 (Filtering)
Given a tree t and a set of nodes S ⊆ Ids(t) we define

S ::t l = {i ∈ S | t@i = [f]}
S ::t node() = S
S ::t text() = {i ∈ S | ∃ s . t@i = si}

Definition 8.13 (Axes selection)
Given a tree t and a set of nodes S ⊆ Ids(t) (called context nodes), we define JStepKt(S) as
the set of nodes resulting by applying Step to each node in S

JselfKt(S) = S
JchildKt(S) =

⋃
i∈S{i′ | (i, i′) ∈ E(t)}

JparentKt(S) =
⋃

i∈S{i′ | (i′, i) ∈ E(t)}
JdescendantKt(S) =

⋃
i∈S{i′ | (i, i′) ∈ E(t)+}

JancestorKt(S) =
⋃

i∈S{i′ | (i′, i) ∈ E(t)+}

where E(t) is the edge relation of t, that is:

E(t) = {(i, i′)| t@i = [f t′ f ′] ∧ RootId(t′) = i′}

and E(t)+ is its transitive closure.

8.3. XPATH AND XPATH` 159

Definition 8.14 (Simple Path Semantics)
Given t, a set S ⊆ Ids(t) and a path SPath, we define the evaluation of path SPath over S
nodes as follows:

JAxis :: TestKt(S) = (JAxisKt(S)) ::t Test
JSPath1/SPath2Kt(S) = JSPath2Kt(JSPath1Kt(S))

Contrary to the XPath fragment we defined in Chapter 7, the semantics we present
in Definition 8.14 is quite simple and compositional: the semantics of SPath2 in the
definition is applied to the result returned by the application of the semantics of
SPath1 to the argument S. This is because the result set here is a set of ids, which
ensures that at most one occurrence of a given sub-tree appears in the result. This
simplicity is to be contrasted with the fairly complex automaton encoding we gave
in Chapter 7.

8.3.2 Predicates

XPath queries use predicates to express some filtering conditions that cannot be ex-
pressed by simple paths. Predicates mix structural conditions (directly expressed by
means of paths) with non-structural conditions (expressed by functions, operators, val-
ues, etc. . .).

We have seen an example of a non-structural condition in the query Q extracting
all book titles of books written by Dante, defined at the beginning of the section.
The best pruning for the query Q is the one that deletes all books whose authors do
not include Dante. To implement such a pruning, one should extract value-based
conditions (e.g. being equal to “Dante”) from the query . This would drastically com-
plicate the treatment without bringing a significant gain: previous experiments have
shown that navigational specifications are already sufficient to obtain important im-
provements in memory reduction and query execution time [MS03]. Hence we would
rather abstract out non-structural conditions and only retain structural ones. From
this derives our definition of XPath`:

Definition 8.15 (XPath ` query)
XPath ` queries are the finite production of the following grammar:

Path ::= Step | Step[Cond] | Path/Path (path)
Cond ::= SPath | Cond or Cond (condition)

We will use meta-variables Path and P to range over these paths, and reserve SPath
for simple paths and Q for general XPath queries. Note that the definition of Cond
uses simple paths, therefore in XPath` conditions are not nested. The definition for
the semantics of conditions is straightforward:

160 CHAPTER 8. TYPE-BASED XML PROJECTION

Definition 8.16 (Condition Semantics)
The truth value of a static condition is given by:

Checkt[Path](i) = JPathKt({i}) 6= ∅
Checkt[C1 or C2](i) = Checkt[C1](i) ∨ Checkt[C2](i)

Semantics of XPath`’s paths is defined by extending the one in in Definition 8.14:

Definition 8.17 (XPath` Semantics)
Given a tree t, a set S ⊂ Ids(t) and a path Path, we define the evaluation of path Path over
S nodes as follows:

JAxis :: TestKt(S) = (JAxisKt(S)) ::t Test
JAxis :: Test[C]Kt(S) = JAxis :: Test/self :: node[C]Kt(S)
Jself :: node[C]Kt(S) = {i ∈ S | Checkt[C](i)}
JPath1/Path2Kt(S) = JPath2Kt(JPath1Kt(S))

This semantics allows us to directly handle structural conditions. We present now
a way to approximate general XPath conditions.

8.3.3 Handling XPath predicates

The predicates of the previous section cover only a small part of XPath. If we want
to apply our analysis to XPath and XQuery we must be able to deal with the more
general expressions used in conditions.

In this section we show how to rewrite every predicate Exp expressible in XPath to
a simple condition Cond such that Cond is a sound approximation of Exp with respect
to data needs: the pruning determined for Cond preserves the semantics for Exp. In
other words, if we take a generic XPath query Q and approximate all its predicates
to infer a projector π, then the execution of (the original) Q on a given document
or on the document pruned by π yield the same result. This rewriting, together
with the treatment of missing axes of Section 8.4.3, allows us to deal with a large
subset of XQuery and XPath queries, covering all those in XPathMark [Fra05] and
XMark [SWK+02] benchmarks. First of all, let us define XPath conditions:

8.3. XPATH AND XPATH` 161

Definition 8.18 (XPath Conditions)

Exp ::= Q (XPath query)
| Exp op Exp (Operator)
| f (Exp1, . . . , Expn) (Function)
| AExp (Arithmetic expression)

Q ::= Step | Step[Exp] | Step/Q | Step[Exp]/Q

where op∈{eq, ne, lt, le, gt, ge, =, !=, <, <=, >, >=, is, <<, >>, or, and} is an operator,
AExp ranges over arithmetic expressions (see [XPa]) and base values (PCDATA), f
ranges over XPath and XQuery functions and operators (see [MMW05] for a complete
reference) such as count, contains, is-zero, not, empty, etc., and Q is a generic
XPath query. The rewriting is obtained by a path-extracting function which, when
applied to an expression Exp returns a set of simple paths whose “or” constitutes the
approximation of Exp.2

Let us illustrate the rewriting by an example. Consider the predicate following
predicate:

[position()>1 and parent::node/book/author="Dante" and year>1313]

In our system this predicate is approximated by:

[self::node() or parent::node()/book/author or year].

Indeed, if at run-time one wants to check that:

1. the position of the current node in the result set is greater than one;

2. and that there is a book under the parent node for which the author is Dante;

3. and that the year is 1313

then, the nodes that must be kept are those that:

1. match the current step (self::node());

2. or are the node matching parent::node()/child::book/child::author, as
well as its content;

3. or match year

2 In order not to clutter this presentation with verbose details about XPath and XQuery specifi-
cations, we do not formally define the approximation for each function of the standard, nor do we
handle other aspects such as absolute paths that are not relevant to the formal development.

162 CHAPTER 8. TYPE-BASED XML PROJECTION

Since these conditions are “dynamic” (we cannot determine them in advance since
their truth value depends on a particular instance of the DTD), we must keep all the
node matching either of the three conditions above. This ensures that at run-time,
the node is present and that the dynamic condition can be tested on it.

Essentially, given a predicate Exp we obtain a condition Cond that soundly ap-
proximates it by retaining the disjunction of all structural conditions (for instance
parent::node/book/author and year in the previous example), plus either self::node
or descendant-or-self::node if some non-structural condition is present (for in-
stance, position()>1). Indeed, for some conditions, keeping only the node is suffi-
cient, while for other it is necessary to also keep the content of all the sub-trees. For
instance functions like position or count require self::node since their execution
requires only the root nodes; instead a function such as string, which concatenates
all the strings occuring in the sub-tree in document order, needs the whole tree. The
choice between self::node and descendant-or-self::node depends on the func-
tions and operators used in the condition. We give here a partial definition of this
function3:

Definition 8.19 (F function)
We define F : String×N→ {descendant-or-self :: node, self :: node} as:

F(fn:string, 1) = descendant-or-self :: node
F(fn:count, 1) = self :: node
F(fn:deep-equal, 1) = descendant-or-self :: node
F(fn:deep-equal, 2) = descendant-or-self :: node
F(fn:empty, 1) = self :: node

...

For the sake of generality we suppose that this function depends on the posi-
tion of the argument in n-ary functions. For instance, if we consider the function
fn:deep-equal which takes two arguments and returns true if they are structurally
equal, then the approximation needs to keep all the nodes for both arguments of the
functions. Hence, F(fn:deep-equal, 1) returns descendant-or-self :: node and so
does F(fn:deep-equal, 2). On the contrary, the fn:empty function, which returns
true if its argument is the empty sequence only needs to keep the context node, not
all its content. We can now define the approximation for general XPath predicates:

3A complete definition would be quite tedious since there are almost two hundred operators (as
a rough count of those defined in [MMW05] indicates). We only give a few of them to illustrate our
approach and refer the reader to our implementation for a more detailed list of what is currently
handled.

8.3. XPATH AND XPATH` 163

Definition 8.20 (Predicate approximation)

P(Step) = {Step}
P(Step[Exp]) = Step/P(Exp)
P(Step/Q) = Step/P(Q)
P(Step[Exp]/Q) = Step/(P(Q) ∪ P(Exp))
P(Exp op Exp′) = P(Exp) ∪ P(Exp′)
P(f (Exp1, . . . , Expn)) =

⋃
i=1,n(P(Expi)/F(f , i))∪
∪{self :: node}

where we used the notation Step/A as a shorthand for {Step/SPath | SPath ∈ A}
when A is a set of simple paths (similarly for A/Step). The first three cases of the def-
inition are straightforward. For Case 4, since we need to check at run-time if a node
matches Exp and if it matches Q, then we cannot discard nodes which would match
either of them. Hence we need to keep the union of the approximations. Case 5 is
similar, we need to keep the approximation of both operands. As for Case 6, the
presence of {self :: node} is motivated by the fact that when we have a non struc-
tural condition, paths must not be used to restrict the inferred projectors, since this
would not yield a sound approximation. More precisely, when Exp is purely struc-
tural, that is it only involves paths in (possibly nested) conditions, then these paths
are extracted to refine the projection. For instance, in descendant :: node[child :: a]
we can use the condition [child::a] to refine projection inference : we select only
element types having an a child. On the other hand, when Exp is not purely struc-
tural, as in:

descendant :: node[not(child :: a)] (8.1)

or in :
descendant :: node[count(child :: a)<5] (8.2)

we can not use the same projector as for descendant :: node[child :: a]: if we
use [child :: a] to restrict the projection, we would alter the result of the last two
queries, so the projector would be unsound. To guarantee soundness, we extract
paths from the arguments not and count and add the condition {self :: node} to
ensure that we do not prune nodes necessary to the evaluation of the functions. So,
for the Queries 8.1 and 8.2, after condition rewriting, we have the approximating
query descendant :: node[child :: a or self :: node], yielding a sound projector.

To resume, to indicate the fact that, in the presence of not purely structural con-
ditions, paths must not be used to restrict inferred projectors, we add the always
true condition {self :: node}. Of course, we could have adopted more precise (and
complex) techniques, but we preferred this solution since we consider it as a good
compromise between precision and simplicity.

We want also to stress that here we reach the limits of XQuery and XPath type
systems. Indeed, as we saw in Chapter 7, the use of a more advanced type-system
allows us to encode dynamic conditions more precisely. For instance, we were able

164 CHAPTER 8. TYPE-BASED XML PROJECTION

to encode the test against a character string as a CDuce type. Some other example of
more precise encoding of XPath conditions can be found in [BCM05].

8.4 Static Analysis

In this section we define deduction rules to statically infer from a XPath` path P and
a DTD E a type-projector for an input document validating E. We show that the
analysis is sound, and that it enjoys completeness for a large class of queries when E
is a ∗-guarded and non-recursive DTD (see Definition 8.25 below). Soundness means
that executing the query on the original document and on the document pruned by
the inferred projector yields the same result. Completeness means that if we take a
type projector smaller (i.e., more selective) than the inferred one, then there exists
a document validating E for which the result of the two executions is not the same.
When the conditions on DTDs or on queries are relaxed the analysis is still sound
but it may be not complete. Nevertheless, as we will illustrate, it still is very precise.

In order to define our static type inference we proceed in two steps.

1. Given a path P and a DTD E we type P by the set of all elements that may
appear in the result of applying P to a document validating E. This is done
in Section 8.4.1 (actually, we will be more precise and type P by the set of all
names of E that generate the elements in the result).

2. We use the type inference at the previous point to define the inference of type
projectors. In particular we will use the cases in which the previous type infer-
ence returns the empty set to determine the points in which pruning must be
performed. This is done in Section 8.4.2.

8.4.1 Type inference

Given a path Path and a DTD E we want to find a set of names of E that gener-
ates elements that can be found in the result of P. Formally, we want to infer a set
τ ⊆ DN(E) such that

∀t ∈= E. =(JPathKt(RootId(t))) ⊆ τ (8.3)

which states the soundness of the analysis. Moreover, we aim at an analysis which is
precise enough to guarantee, on a large class of types and for a large class of queries,
that whenever the path semantics is empty over all possible instances of the input
DTD, then the inferred type τ is empty, as well:

∀t ∈= E. =(JPathKt(RootId(t))) = ∅ ⇒ τ = ∅ (8.4)

(the converse is a consequence of (8.3)). The precision described by (8.4) will then be
used during the inference of type-projectors to discard elements that are useless in
the evaluation of Path.

We start by inferring types for single-step paths.

8.4. STATIC ANALYSIS 165

Definition 8.21 (Single Step Typing)
Let E be a DTD and τ ⊆ DN(E), then:

AE(τ, ancestor) =
⋃

Y∈τ{Z | Z ⇒+
E Y}

AE(τ, child) =
⋃

Y∈τ{Z | Y ⇒E Z}
AE(τ, parent) =

⋃
Y∈τ{Z | Z ⇒E Y}

AE(τ, descendant) =
⋃

Y∈τ{Z | Y ⇒+
E Z}

AE(τ, self) = τ

TE(τ, a) = {Y | Y ∈ τ, E(Y) = <a>[r]}
TE(τ, node) = τ
TE(τ, text) = {Y | Y ∈ τ, E(Y) = String}

The type of a single step query Axis :: Test for the DTD (X, E) is then given by
TE(AE({X}, Axis), Test). As we can see, this definition is quite similar in spirit to the
structural (s-*) rules of the algorithm presented in 7, Section 7.2. The present version
is however simpler since the tag of an element determines its content.

Soundness of this definition, i.e. property (8.3), is given by the following lemma.

Lemma 8.22 Let t be a tree =-valid with respect to the DTD E. For every S ⊆ Ids(t) and
type τ, if =(S) ⊆ τ then:

1. =(JAxisKt(S)) ⊆ AE(τ, Axis)

2. =(S ::t Test) ⊆ TE(τ, Test)

Proof By structural induction on the finite tree t and case analysis, it is
easy to check that the property holds, for each case of Definition 8.13.

While the typing of composed paths was rather simple in the case of forward
axes, as in Chapter 7, the presence of upward axes complicates the situation. To
ensure precision, i.e. property (8.4), we have to be careful in dealing with DTDs in
which an element may occur in the content of different elements. The naive solution
consisting of inferring a type for composed paths by composing the functions we
just defined for single steps, works only in the absence of upward axes. This can be
illustrated by an example. Consider the following DTD rooted at X:

{X → <c>[Y Z], Y → <a>[W String], Z → [String], W → <d>[Y?]}

and observe that Y occurs in two different element content definitions. If we consider
the path self :: c/child :: a/parent :: node over documents of the above DTD, then
the precise type that this path should have is {X}. However, by using Definition 8.21
we would end up with {X, W}. This is because the first step selects {Y} and then,

166 CHAPTER 8. TYPE-BASED XML PROJECTION

according to Definition 8.21, the second step selects {X, W}, as Y is in the content
definition of these two names.

To solve this problem we introduce particular types, called contexts, to be updated
at each step and containing names already encountered in previous steps. We then
use them to refine type inference for upward axes. In the previous example, when
typing the first step we build a context {X, Y} indicating that for the moment the
two names are the only ones visited by the traversal. Then, we use Definition 8.21 to
type parent thus obtaining {X, W}, as before, but this time we intersect it with the
context thus obtaining the precise answer {X}.

This idea is formalised by the (deterministic) type system of Figure 8.1. We use
the meta-variables τ to range over types and κ over contexts, both denoting sets of
names defined by the input DTD E. An environment, ranged over by Σ, is a pair
(τ, κ); we use Στ and Σκ to denote the first and second projection of Σ, respectively.
The judgement (τc, κc) `E Path : (τr, κr) means that given a DTD E, starting from

Primitive Single Step

Axis ∈ {self, child, descendant}
Σ `E Axis :: node : (AE(Στ , Axis) , Σκ ∪ AE(Στ , Axis))

Axis ∈ {parent, ancestor}
Σ `E Axis :: node : (AE(Στ , Axis)) ∩ Σκ , AE(Σκ , Axis) ∩ Σκ

Test 6= node

Σ `E self :: Test : (TE(Στ , Test), (Σκ ∩ AE(TE(Στ , Test), ancestor)) ∪ TE(Στ , Test))

∀Xi ∈ Στ , Pj ∈ Cond , ({Xi}, Σκ) `E Pj : Σij

Σ `E self :: node[Cond] : (τ , (Σκ ∩ AE(τ, ancestor)) ∪ τ)
where τ = {Xi | ∃j.Σij

τ 6= ∅}

Encoded Single Step

Σ `E Axis :: node/self :: Test : Σ′

Σ `E Axis :: Test : Σ′
Σ `E Axis :: Test/self :: node[Cond] : Σ′

Σ `E Axis :: Test[Cond] : Σ′
for Test 6= node and Axis 6= self

Composed paths

Σ `E Step : Σ′′ Σ′′ `E Path : Σ′

Σ `E Step/Path : Σ′

Figure 8.1: Inference rules for single step queries

the names in τc and the current context κc, the path Path generates the names τr in
an updated context κr.

An environment (τ, κ) is well-formed with respect to E, if τ ⊆ DN(E), and
κ ⊆ τ ∪ AE(τ, ancestor), that is, if the context contains only names that occur in

8.4. STATIC ANALYSIS 167

chains ending with names in τ. A judgement Σ `E Path : Σ′ is well formed if both
Σ and Σ′ are well formed with respect to E. It is easy to see that the type inference
rules of Figure 8.1 preserve well-formedness.

The rules are relatively simple to understand. The first two rules implement our
main idea: when we follow an axis Axis, we compute the type by AE(Στ , Axis); if the
axis is a downward one, then we add this type to the current context, otherwise if the
axis is an upward one, then we intersect it with the current context (both for the type
part and for the context part). The rule for self :: Test is slightly more difficult since
it discards from the current set of nodes those that do not satisfy the test: the type
is computed by TE(Στ , Test), while the context is obtained by erasing all the names
that were in there just because they generated one of the discarded nodes; to do it it
generates (the type of) all ancestors of the nodes satisfying the test, and intersects
them with the current context. These first three rules are enough to type all the paths
of the form Axis :: Test since, as stated by the fifth typing rule, all remaining cases
are encoded as Axis :: node/self :: Test. The fourth rule is the most difficult one:
recall that Cond is a disjunction of simple paths; the type τ is obtained by discarding
from Στ all (names of) nodes for which Cond never holds; thus for each Xi in Στ we
compute the type of all the paths in Cond, and keep in τ only names for which at least
one path may yield a non-empty result; the context then is computed as in the third
rule, by discarding from the context all names that generated only names discarded
from Στ. Once more, all the remaining cases of conditional steps are encoded by this
one, as stated by the sixth rule. Finally, step composition is dealt as a logical cut.

First of all, let us prove that the deduction rules in 8.1 define a deterministic total
and terminating algorithm:

Theorem 8.23 Let (X, E) be a DTD and P a path and Σ an environment. There exists a
unique finite derivation for the judgment Σ `E P : Σ′, for some Σ′.

Proof Uniqueness of the derivation is immediate, since the rules are
syntax-directed: at each step, exactly one of the rules applies. We prove
finiteness by induction on the pair (n(P), l(P)) where:

n(P): is the number of steps Axis :: Test for which Axis 6= self and Test 6=
node:

n(self :: node) = 1

n(Axis :: Test) = 0 if Axis 6= self∧ Test 6= node

n(Axis :: Test[C]) = n(Axis :: Test) + ∑
P∈C

n(P)

n(P/P′) = n(P) + n(P′)

l(P): is number of steps in P:

l(Axis :: Test) = 1

l(Axis :: Test[C]) = 1 + ∑
P∈C

l(P)

l(P/P′) = l(P) + l(P′)

168 CHAPTER 8. TYPE-BASED XML PROJECTION

Basic case: An application of any of the rules 1, 2 or 3 terminates the
derivation since the three of them are axioms.

Inductive case: Let us show for the other rules that the measure decreases
strictly in the premise of the rules:

• For Rule 4, it is clear that n(Pj) ≤ n(P) and that l(Pj) < l(P).

• For Rule 5, if Axis 6= self∧Test 6= node then n(Axis :: Test) = 1,
while for the premise of the rule: n(Axis :: node/self :: Test) =
0.

• For Rule 6, if Axis 6= self ∧ Test 6= node then n(Axis ::
Test[C]) = 1 + ∑P∈C n(P), while for the premise: n(Axis ::
node/self :: Test[C]) = ∑P∈C n(P).

• For Rule 7, it is clear that the first component does not in-
crease in the premises, that l(Step) < l(Step/Path), and that
l(Path) < l(Step/Path)

We can state the first important property, soundness of the type-system:

Theorem 8.24 (Soundness of type inference) Let (X, E) be a DTD and P a path. If
({X}, {X}) `E P : (τ, κ) then:⋃

t∈=E
=(JPKt(RootId(t))) ⊆ τ

Proof Let us consider the following, more general judgment:

(τ, κ) `E P : (τ′, κ′)

We show simultaneously the following properties:

1. Soundness : For all tree t =-valid with respect to (X, E) and all set
S ⊆ Ids(t), if =(S) ⊆ τ then:

=(JPKt(S)) ⊆ τ′

2. Context well-formedness, if:

κ = {Y | ∀Z ∈ τ, X ⇒∗E Y ⇒∗E Z}

then:
κ′ = {Y | ∀Z ∈ τ′, X ⇒∗E Y ⇒∗E Z}

8.4. STATIC ANALYSIS 169

Property 1 is a generalisation of the soundness property we are proving,
and states that the interpretation of the semantics of a path P applied to
all sub-trees of t produced by a name in τ is a subset of the output type τ′.
Property 2 states that the algorithm maintains well-formed contexts. We
prove both properties by induction on the depth of the typing derivation,
which is finite by Theorem 8.23:

Base case:

Rule 1: Property 1 is true by a direct application of Lemma 8.22.
Property 2 holds by definition of AE(_, _)

Rule 2: As for the previous case, by Lemma 8.22,
=(JAxis :: nodeKt(S)) ⊆ AE(τ, Axis). Moreover since κ is a
well-formed context, κ = {Y | ∀Z ∈ τ, X ⇒∗E Y ⇒∗E Z}. Let
us first consider the case Axis = ancestor. By Definition 8.13,
Jancestor :: nodeKt(S) = {i′ | i ∈ S ∧ (i′, i) ∈ E+(t)}.
Thus, =({i′ | i ∈ S ∧ (i′, i) ∈ E+(t)}) = {Y|Z ∈
=(S) ∧ Y ⇒+

E Z}. Since we supposed =(S) ⊆ τ,
then clearly {Y|Z ∈ =(S) ∧ Y ⇒+

E Z} ⊆ κ, thus
=(JAxis :: nodeKt(S)) ⊆ AE(τ, Axis) ∩ κ, which is Prop-
erty 1. The case for Axis = parent is a particular instance
of Axis = ancestor. As for Property 2, κ is the set of names
visited up to the context node type τ. AE(κ, Axis) is the set of
all parents (or ancestors) of those names. Consequently, the
intersection is still a well formed context.

Rule 3 : Similarly to the case of Rule 1, Property 1 is a direct ap-
plication of Lemma 8.22. For Property 2, we can remark that
κ′ = κ ∩ AE(TE(τ, Test), ancestor) contains all the names lead-
ing to a node in τ for which Test succeeds (including the name
of the selected node), hence it is a well-formed context.

Inductive case:

Rule 4 : The induction hypothesis holds for all the premises of
the rule. Let us call τij = Σij

τ and κij = Σij
κ . We have that:

=(JPjKt(Si)) ⊆ τij where Si is such that =(Si) ⊆ {Xi} (Prop-
erty 1). By Definition 8.17 :

Jself :: node[Cond]Kt(S) =
⋃

{i|i∈S∧∃Pj∈Cond s.t. JPjKt({i}) 6=∅}
{i}

If JPjKt({i}) 6= ∅, then =(JPjKt({i})) 6= ∅, and by Property 1,
τij 6= ∅, which implies the Xi ∈ τ′. Consequently, Property 1
holds for the goal of the rule. Property 2 holds, similarly to
Rule 3.

Rule 5 and Rule 6: The induction hypothesis holds for the premise
of the rule. Since τ′ and κ′ are unchanged in the goal of the rule,
both properties hold.

170 CHAPTER 8. TYPE-BASED XML PROJECTION

Rule 7 : Property 1 is true by induction hypothesis on both premises.
Property 2 is true for the first premise, by induction hypothesis.
In particular, Σ′′κ is a well-formed context. We can then apply
the induction hypothesis on Σ′′ and we have that Σ′κ is a well-
formed context too.

2

The type system is also complete for DTDs that are ∗-guarded, non-recursive, and
parent-unambiguous. Intuitively, a DTD is ∗-guarded when every union occurring
in its productions is guarded by ∗ (or by +); it is non recursive if the depth of all
documents validating it is bound; it is parent-unambiguous if no name types both
the parent and a strict ancestor of the parent of another name. Formally, we have the
following definition

Definition 8.25
Let (X, E) be a DTD.

1. E is ∗-guarded if for each Y → <l>[r] in E, the regular expression is a product
r = r1, . . . , rn and whenever ri contains a union, then ri = (r′)∗;

2. E is non-recursive if it is never the case that Y ⇒+
E Y, for any name Y ∈ DN(E);

3. E is parent-unambiguous if for all chains c and names Y, Z such that cYZ ∈
Chains(X,E)(X) the following implication

cYc′Z ∈ Chains(X,E)(X) =⇒ c′ = ε

holds (ε denotes the empty chain).

Non-recursivity and ∗-guardedness are properties enjoyed by a large number of com-
monly used DTDs. As an example, the reader can consider the DTDs of the XML
Query Use Cases [CFF+03]: among the ten DTDs defined in the Use Cases, seven are
both non-recursive and ∗-guarded, one is only ∗-guarded, one is only non-recursive,
and just one does not satisfy either properties. Furthermore our personal experience
is that most of the DTDs available on the web are ∗-guarded. Concerning the parent-
unambiguous property, although DTDs satisfying this property are less frequent (five
on the ten DTDs in [CFF+03]), its absence is in practice not very problematic since,
as we will see, only the presence of the parent axis may hinder completeness.

Theorem 8.26 (Completeness) Let (X, E) be a DTD and P a path. If (X, E) is ∗-
guarded, non-recursive, parent-unambiguous, and if ({X}, {X}) `E P : (τ, κ), then
we have:

τ ⊆
⋃

t∈=E
=(JPKt(RootId(t)))

8.4. STATIC ANALYSIS 171

Proof Like for the proof of Theorem 8.24, we consider the following, more
general judgment:

(τ, κ) `E P : (τ′, κ′)

We show that for each tree t, =-valid with respect to (X, E) and set S ⊆
Ids(t), if τ ⊆ =(S) then:

τ′ ⊆ =(JPKt(S))

We proceed by induction on the depth of the typing derivation:

Basic case :

Rule 1 :

self axis : We have AE(τ, self) = τ. By definition of J Kt(_),
Jself :: nodeKt(S) = S, hence =(Jself :: nodeKt(S)) =
=(S) which, by hypothesis is such that τ ⊆ =(S).

descendant axis : Let Y ∈ τ. Let τ′ = AE({Y}, descendant).
By definition:

τ′ = {Z|∃Z1, . . . , Zn s.t. Y ⇒E Z1 ⇒E . . .⇒E Zn ⇒E Z}

Here, the chain YZ1 . . . ZnZ is finite and the Zk, Y and Z are
distinct from one another since the DTD is not recursive.
Let us suppose that ∃i0, . . . , in, l ∈ Ids(t), where =(ik) = Zk
and =(l) = Z. Now let us consider j such that =(j) = Y.
j, l and the ik’s are distinct from one another (because their
=-interpretations are).
We can conclude that if Z ∈ τ′, then Z ∈ =(Jdescendant ::
nodeKt({j})). Indeed, Jdescendant :: nodeKt({j}) =
{m|(j, m) ∈ E+(t)}. Let us call T this set. Since,
(j, i1), . . . , (in, l) ∈ E+(t), we have that l is in T, and
consequently that Z = =(l) ∈ =(Jdescendant ::
nodeKt({j})). Hence, for all Z, if Z ∈ τ′ then
Z ∈ =(Jdescendant :: nodeKt({j})) which proves the the-
orem for this case.

child axis : is a particular instance of the previous case.

Rule 2 : We only treat the case of the ancestor axis, of which the
parent axis is a particular instance. Let Y ∈ τ. Let τ′′ =
AE({Y}, ancestor). By definition:

τ′′ = {Z|∃Z1, . . . , Zn s.t. Z ⇒E Z1 ⇒E . . .⇒E Zn ⇒E Y}

Again the chain ZZ1 . . . ZnY is finite since the DTD is not re-
cursive, and all names are pairwise distinct. We know that κ is a
valid context, hence that:

τ′ = τ′′ ∩ κ = {Z|X ⇒∗E Z ⇒+
E Y}

172 CHAPTER 8. TYPE-BASED XML PROJECTION

Furthermore, given a name Y there is a unique chain of
names X . . . Y, because the DTD is parent-unambiguous.
Let us consider Z in τ′ with the associated unique chain
XZ1 . . . ZnZ. Then there exists a document t =-valid with
respect to the DTD, such that i,i1,. . . ,in,l ∈ Ids(t) and
=(i) = {X}, =(ik) = {Zk} and =(l) = {Z}. Let us
now consider Jancestor :: nodeKt({l}). By definition, we have
that: Jancestor :: nodeKt({l}) = {l, in, . . . , i1, i}, hence that:
=({l, in, . . . , i1, i}) = {X, Z1, . . . , Zn, Z}, and thus that τ′ ⊆⋃

t∈=E =(Jancestor :: nodeKt(S))
Rule 3: is similar to the case self of Rule 1.

Inductive case :

Rule 4: Let us consider the condition:

Cond ≡ P1 or . . . or Pn

Let us note Xi1, . . . , Xin1 the names for which Pi may yields a
non-empty result. Without loss of generality, we can restrict
ourselves to the case where Cond ≡ P1 or P2, and P1 and P2 are
incompatible that is, ∀j ∈ Ids(t):

JP1Kt({j}) 6= ∅ =⇒ JP2Kt({j}) = ∅
JP2Kt({j}) 6= ∅ =⇒ JP1Kt({j}) = ∅

Let us assume that X1 ∈ τ′ is such that τ11 6= ∅ and X2 ∈ τ′

is such that τ22 6= ∅ (that is X1 yields a non empty type for P1
and X2 yields a non-empty type for P2. Furthermore, since there
are at least two distinct names X1 and X2 in τ′ and thus in τ,
we can assume that we are not at the root of the document (in
which case τ would be {X}). Then there exists a document t,
=-valid with respect to the DTD, such that, i1, i2 ∈ Ids(t) and
=(i1) = {X1} and =(i2) = {X2}. This is possible because the
DTD is ∗-guarded, which means that X1 and X2 occur either
as (X1|X2)∗ or X1, X2 or X2, X1. For each case, it is possible
to have two distinct sub-trees, one generated by X1 the other
by X2 on the same level (if the DTD were not ∗-guarded, for
instance with X1|X2, then our algorithm would have kept X1
and X2 in the type while only one tree could be present in a
document, thus compromising completeness). We can conclude
by remarking that:

=(Jself :: node[Cond]Kt(S)) = {X1, X2}

thus that τ′ ⊆ ⋃t∈=E =(Jself :: node[Cond]Kt(S))
Rule 5 and Rule 6: are a straightforward application of the induc-

tion hypothesis

8.4. STATIC ANALYSIS 173

Rule 7 : Again, we can apply the induction hypothesis on the
premises of the rule. We only need to note that, as for Rule 4,
if Step and Path are incompatible, then the ∗-guardness of the
DTD guarantees the existence of a document with at least two
nodes: one for which Step is successful and one for which Path
is successful (see the example hereafter).

2

To see why completeness does not hold in general consider the following DTD
rooted at X and which is recursive and not ∗-guarded

{X → <c>[Y|Z], Y → <a>[Y∗ String], Z → [String]}

and the following two queries self :: c[child :: a]/child :: b and self :: c/child ::
a/parent :: node. The type inferred for the first query contains both Y and Z.
These are useless since the query is always empty. This is due to the non ∗-guarded
union Y|Z: if we had (Y|Z)∗ instead, then the query might yield a non-empty result,
therefore Y and Z must correctly (and completely) be in the query type. The second
query shows the reason why completeness does not hold in presence of recursion
and backward axes (recursion with only forward axes does not pose any problem for
completeness). The type of the second query should be {X}, but instead the type
{X, Y} is inferred. This is due to the recursion Y → <a>[Y∗ . . .]: since Y ⇒E Y,
once Y is reached it is kept in the inferred type for every backward step.4

For queries over parent-ambiguous DTDs, completeness does not hold because
the fourth rule in Figure 8.1—the one defined for self :: node[Cond]—is not precise
for the parent axis. For instance, consider the following DTD rooted at X

{X → <a>[Y Z], Y → [Z], Z → <c>[]}

and the query self :: a/child :: b/child :: c/parent :: node. The precise type
of this query should be {Y}. However, the inferred type is {X, Y}. This is because
the last step parent :: node is typed with the context {X, Y, Z} and this contains
AE({Z}, parent) = {X, Y}. Here Z is the type for the c node selected by child :: c
and the AE(,) operator assigns it {X, Y} as parent type, even if the real parent type
for Z in this case should be {Y}. Hence, the intersections operated by the type rule
for parent are not powerful enough to guarantee precision for cases like this one.
In a nutshell, this happens because in the presence of parent-ambiguous DTDs the
type analysis may produce contexts containing false parent types (with respect the
current type τ). This suggests that to be extremely precise, instead of sets of names,
contexts should rather be sets of chains of names, computed and opportunely man-
aged by the type analysis. However (i) managing sets of chains instead of simple
sets of names dramatically complicates the treatment, due to recursive axes like

4The techniques developed in [CGMS04, Col04] can be adapted to recover completeness for cases
like the first query, while a more sophisticated type analysis could solve the problem with the second.
In view of the precision of the current approach this is not a priority and we leave this investigation
as future work.

174 CHAPTER 8. TYPE-BASED XML PROJECTION

descendant, (ii) the problem may arise only for queries that use parent axis and
the concomitance of parent-ambiguity make the event rare in practice, and (iii) the
loss of precision looks in most cases negligible. Therefore we considered that such a
small gain (remember that completeness is just some icing on the cake since while
it helps to gauge the precision of the approach its absence does not hinder its ap-
plication) did not justify the dramatic increase in complexity needed to handle this
case.

Note also that the type system, hence the completeness result, is stated for pred-
icates of the form described in Section 8.3.2, therefore it does not account for the
approximations introduced in Section 8.3.3. However very few non-structural condi-
tions can be expressed at the level of types, so the impact of these approximations
on completeness is very light.

8.4.2 Type-Projection inference

In this section we use the type inference defined previously to infer type-projectors.
Once again, naive solutions do not work. For instance, if we consider simple paths
Step1/ . . . /Stepn, we may consider as type projector with respect to (X, E) the set⋃

i=1...n τi ∪ {X}, where for i = 1 . . . n:
({X}, {X}) `E Step1/ . . . /Stepi : (τi,−)

(we use “−” as a placeholder for uninteresting parameters). This definition is sound
but not precise at all, as can be seen by considering descendant :: node/Path: the
use of the above union yields a set containing τ1 defined as

({X}, {X}) `E descendant :: node : (τ1,−)
that is, all descendants of the root X (no pruning is performed). Instead, we would
like to discard, at least, all names that are descendants of X but that are not ancestors
of a node matching Path. These are the names Y ∈ TE(AE({X}, descendant), node)
such that:

({Y}, κ) `E descendant :: node/Path : (∅,−)

for some appropriate context κ. A similar reasoning applies to ancestor.
Such a selection is performed by the inference rules of Figure 8.2. For paths

formed by a single step, if the step has no condition (first rule), then the type in-
ference of the previous section is enough; otherwise (second rule) the step is trans-
formed into a complex path (a simple trick to avoid the definition of several rules).
Thanks to the third rule the type inference can work on just one node at a time, and
thanks to the fourth and fifth rule, it just analyses paths whose components have one
of the following three forms: (i) self::Test, (ii) self::node[Cond], or (iii) Axis::node.
These three cases are handled by the “Primitive Rules” of Figure 8.2: The first rule
handles the case (i) simply by collecting the current context. The second rule han-
dles the case (ii), by collecting besides the context also all the parts that are necessary
to compute the condition (which in the rule is expanded in its more general form);
the case (iii) is handled by the last three rules which are nothing but slight varia-
tions of the same rule according to the particular axis taken into account: each rule
infers the type τ obtained by discarding from the type {X1, ..., Xn} of the step, all

8.4. STATIC ANALYSIS 175

Base and induction

Σ `E Step : (τ, κ)
Σ
E Step : τ ∪ κ

Σ
E Step[Cond]/self :: node : τ

Σ
E Step[Cond] : τ

({X1}, κ)
E P : τ1 . . . ({Xn}, κ)
E P : τn

({X1, . . . , Xn} , κ)
E P :
⋃

i=1..n τi

Encoded Rules

Σ
E Axis :: node/self :: Test/P : τ Test 6= node

∧
Axis 6= selfΣ
E Axis :: Test/P : τ

Σ
E Axis :: Test/self :: node[Cond]/P : τ Test 6= node

∨
Axis 6= selfΣ
E Axis :: Test[Cond]/P : τ

Primitive Rules

({Y}, κ) `E self :: Test : Σ Σ
E P : τ

({Y}, κ)
E self :: Test/P : {Y} ∪ τ

({Y}, κ) `E self :: node[P1or . . . orPn] : Σ Σ
E P : τ Σ
E Pi : τi
n≥1

({Y}, κ)
E self :: node[P1or . . . orPn]/P : {Y} ∪ τ ∪ τ1 ∪ · · · ∪ τn

({Y}, κ) `E Axis :: node : ({X1, ..., Xn}, κ′) ({Xi}, κ′) `E P : Σi (τ, κ′)
E P : τ′

({Y}, κ)
E Axis :: node/P : {Y} ∪ τ ∪ τ′

where Axis ∈ {parent, child} and τ = {Xi | Σi
τ 6= ∅}

({Y}, κ) `E desc :: node : ({X1, . . . , Xn}, κ′)

({Xi}, κ′) `E desc :: node/P : Σi (τ, κ′)
E child :: node/P : τ′

({Y}, κ)
E desc :: node/P : τ ∪ τ′

where τ = {Xi | Σi
τ 6= ∅} ∪ {Y}.

({Y}, κ) `E ancs :: node : ({X1, ..., Xn}, κ′)

({Xi}, κ′) `E ancs :: node/P : Σi (τ, κ′)
E parent :: node/P : τ′

({Y}, κ)
E ancs :: node/P : τ ∪ τ′

where τ = {Xi | Σi
τ 6= ∅} ∪ {Y}

Figure 8.2: Projectors inference rules (where ancs and desc are shorthands for
ancestor and descendant)

names that are useless for the rest of the path, and then uses this τ to continue the
inference of the projector. It is easy to show that the process terminates:

176 CHAPTER 8. TYPE-BASED XML PROJECTION

Theorem 8.27 (Termination of projector inference) Let (X, E) be a DTD and P a
path and Σ an environment. There exists a unique finite derivation for the judgment
Σ
E P : Σ′, for some Σ′.

Proof We can use the same measure as for the termination of type infer-
ence, since paths are deconstructed the same way.

The projector inference algorithm is sound:

Theorem 8.28 (Soundness of projector inference) Let (X, E) be a DTD and P a path.
If ({X}, {X})
E P : τ, then τ is a type projector for (X, E) and for every t ∈= E:

JPKt\=τ(RootId(t)) = JPKt(RootId(t))

Proof This is a straightforward induction on the depth of the derivation.
We use 8.24 to show that whenever the type inference algorithm returns ∅
then the query is always empty hence the node name is safe to remove.

The above theorem states that executing the query P on a tree t returns the same
set of nodes as executing it on t\=τ (see Definition 8.9) the tree t pruned by the in-
ferred projector. From a practical perspective it is important to notice that according
to standard XPath semantics, the semantics of a query contains only the nodes of the
result of the query not their sub-trees. The latter may thus be pruned by the inferred
projector. Therefore, if we want to materialise the result of a query we must not
cut these nodes, and rather use the projection τ = τ′ ∪ AE(τ′′, descendant) where
({X}, {X})
E P : τ′ and ({X}, {X}) `E P : (τ′′;−).

Completeness requires not only completeness of the type system (∗-guarded,
non-recursive, and parent-unambiguous DTDs), but also the following condition on
queries:

Definition 8.29
An XPath query Q is strongly-specified if:

i. its predicates do not use backward axes,

ii. along Q and along each path in the predicates of Q there are no two consecutive (pos-
sibly conditional) steps whose Test part is node

iii. each predicate in Q contains at most one path and this does not terminate by a step
whose Test is node.

8.4. STATIC ANALYSIS 177

For instance, among the following queries, only the first two are strongly-specified:

1. descendant :: node/self :: a/ancestor :: node

2. descendant :: node[child :: b]/self :: a/parent :: node

3. descendant :: node/ancestor :: node/self :: a

4. descendant :: node[child :: b/child :: node]/self :: a

5. child :: a[descendant :: node/parent :: b]/child :: c

Once more, we are in presence of a very common class of queries: for instance, almost
all paths in the XMark and XPathMark benchmarks are strongly specified.

Theorem 8.30 (Completeness of projector inference) Let (X, E) be a ∗-guarded,
non-recursive, and parent-unambiguous DTD, and P a strongly-specified path. If
({X}, {X})
E P : τ, then there exists t ∈= E such that for each Y ∈ τ, if
π = τ \ ({Y} ∪ AE({Y}, descendant)), then:

JPKt\=π(RootId(t)) 6= JPKt(RootId(t))

Proof By induction on the length of the typing derivation which is finite.
We use Theorem 8.26 to show that if we remove a name Y inferred by the
type inference algorithm, then we remove nodes from the result of the
query applied to the projected document. The fact that P is strongly speci-
fied is used for the treatment of predicates. Indeed, it forces any path in a
predicate to be matched exactly by one node. If a path in a predicate could
be matched by two (or more) nodes, then removing one of the nodes would
not change the semantics of the query, since there would still be a node
present to make the predicate succeed. We illustrate this in the example
hereafter.

The fact that completeness may not hold for not ∗-guarded, non-recursive, or parent-
ambiguous DTDs, is a consequence of the analogous property of the type system. To
see that also strong-specification is a necessary condition consider documents valid
with respect to the following DTD rooted at X:

{X → a[Y, W], W → c[], Y → b[Z], Z → d[]}.
Query them by the following query which is not strongly-specified since it does not
satisfy condition (ii) of Definition 8.29

self :: a[child :: node].
{X, Y} is an optimal projector for this query, but the presence of the condition
self :: node makes the system to include also W in the inferred projector, thus
breaking completeness. Concerning the presence of backward axes in predicates,

178 CHAPTER 8. TYPE-BASED XML PROJECTION

consider the query self :: a[descendant :: node/ancestor :: a] which does not sat-
isfy condition (i). An optimal projector for this query on the same DTD is {X, Y}.
However, since the ancestor condition is true for all descendants of a nodes, {W, Z}
is included in the projector as well. Finally, it is straightforward to check that the
query self :: a[child :: b or child :: c], which does not satisfy condition (iii), is
not complete for the same DTD.

Of course, it is possible to state completeness for other classes of queries but,
once more, this seems a satisfactory compromise between simplicity and generality.

8.4.3 Adding sibling, preceding and following axes.

We could deal with the missing XPath axes by adding specific inference rules. Instead
we opt to use an approximation of these axes in term of the previous ones, since it
appears as the best compromise between simplicity and efficiency.

The approximation is performed by two logical rewriting passes. In the first
pass we rewrite preceding and following axes as specified in the W3C specifica-
tions [DFF+04]. Namely, we substitute each step:

Axis :: Test where Axis ∈ {preceding, following}

by the following equivalent path:

ancestor-or-self :: node/(Axis-sibling) :: node/descendant-or-self :: Test

The second pass is the one which introduces the approximation since it replaces all
steps of the form Axis::Test with Axis ∈ {preceding-sibling, following-sibling}
by the path parent::node/child::Test.

Clearly, the static analysis of the approximation yields a less precise projection
than the one we could obtain by working directly on the original query. However, we
still achieve good precision of pruning in practice as we will show in Section 8.6. For
instance, by applying the above rewriting to XPathMark queries Q9 and Q11, we were
able to prune a document down to 7.5% of its original size.

8.5 Extension to XQuery

In this section we extend the technique to XQuery. More precisely to the FLWR core
of XQuery described by the following grammar:

Definition 8.31 (XQuery core)

q ::= () | q, q | <tag>q</tag> | Exp (Simple expression)
| for x in q return q (for)
| let x = q return q (let)
| if q then q else q (if)

8.5. EXTENSION TO XQUERY 179

where the definition of Exp (given in Section 8.3.3) is extended with variables, and
with generic XPath expressions Q of Section 8.3.3 that can be rooted at a variable or
at / :

Exp ::= x | Q | x/Q | /Q | Exp op Exp | f (Exp, .. , Exp) | AExp

Without loss of generality, we assume that FLWR expressions do not occur in if-
conditions nor in predicates (every query can be put into this form by adding appro-
priate let-expressions). Also, we do not consider either queries which first construct
new elements and then navigate on them (these are rarely used in practice), nor those
containing XQuery clauses like order_by, switch_case, etc.: our approach can be
easily extended to both cases.

1. E((), Γ, m) = ∅

2. E(AExp, Γ, 1) = {P | (x; for P) ∈ Γ}

3. E(AExp, Γ, 0) = ∅

4. E((q1,q2), Γ, m) = E(q1, Γ, m) ∪ E(q2, Γ, m)

5. E(<tag>q</tag>, Γ, m) = {P | (x; for P) ∈ Γ} ∪ E(q, Γ, 1)

6. E(x, Γ, 1) =
⋃

(x; − P)∈Γ

{P/descendant-or-self :: node}

7. E(x, Γ, 0) =
⋃

(x; − P)∈Γ

{P}

8. E(/P, Γ, 1) = {/P/descendant-or-self :: node}

9. E(/P, Γ, 0) = {/P}

10. E(x/P, Γ, 1) =
⋃

(x; − P′)∈Γ

{P′/P/descendant-or-self :: node}

11. E(Step/q, Γ, m) = Step/E(q, Γ, m)

12. E(Step[Exp]/q, Γ, m) = Step[or(P(Exp))]/E(q, Γ, m)

13. E(Exp1 op Exp2, Γ, m) = E(Exp1, Γ, m) ∪ E(Exp2, Γ, m)

14. E(f (Exp1, . . . , Expn), Γ, m) =
⋃

i=1,n(E(Expi, Γ, 0)/F(f , i)) ∪ {self :: node}

15. E(if q then q1 else q2, Γ, m) = E(q, Γ, 0) ∪ E(q1, Γ, m)
∪E(q2, Γ, m) ∪ {P | (x; − P) ∈ Γ}

16. E(for x in q1 return q2, Γ, m) = E(q1, Γ, 0) ∪ E(q2, Γ ∪ Γ′, m)
where Γ′ = {(x; for P) | P ∈ E(q1, Γ, 0)}

17. E(let x = q1 return q2, Γ, m) = E(q1, Γ, 0) ∪ E(q2, Γ ∪ Γ′, m)
where Γ′ = {(x; let P) | P ∈ E(q1, Γ, 0)}

Figure 8.3: XQuery path extraction

180 CHAPTER 8. TYPE-BASED XML PROJECTION

In order to apply the previous analysis to infer a projector for q, we first extract
a set of XPath` expressions from q, denoting the data needs for q. This set of paths
is extracted from the query by the extraction function E, whose definition is given
in Figure 8.3. The extraction function has the form E(q, Γ, m). The first parameter
is the query at issue. The second parameter Γ is an environment that keeps track of
bindings of the form (x; for P) or (x; let P), whose scope q is in (see the definition
of Γ′ in the last two lines of Figure 8.3, and observe, by a simple induction reasoning,
that environments contain paths already in XPath`). Finally, m is a flag indicating
whether q is a query that serves to materialise a partial or final result (m = 1), or that
just selects a set of nodes whose descendants are not needed (m = 0). Thus, the set
of path expressions (possibly containing qualifiers) extracted from a top-level query
q is E(q, ∅, 1).

Once the set of paths are extracted from a query q, we use it to infer a projector for
q according to rules in Section 8.4.2. Formally, for each Pi extracted from q we deduce
a projector πi, and use for the whole q the union of these projectors (projectors are
closed by union). Also, note that the extracted path of a closed query will not contain
free variables since possible free variables are persistent roots that must be solved
before the analysis.

Most of the rules in Figure 8.3 are not difficult to understand, therefore only few
of them deserve further commentary. The flag is needed since each path determin-
ing the result (m = 1) must be extended with descendant-or-self, in order to
project on all nodes needed in the query result. This is done by the lines 6, 8, and
10 of the definition. Expressions are dealt in a way similar to the path extractor
P of Section 8.3.3; the extractor P itself is used in line 12 to produce simple paths
(where we used the notation or({P1, ..., Pn}) for P1or . . . orPn, and omitted the—
straightforward—rules for single step paths). Also note that when a result is com-
puted (lines 2 and 5) paths in “for”-environments are added (“let” are added only if
their binding variable is used).

These rules subsume and enhance the technique of Marian and Siméon [MS03]. In
particular, (i) the technique we use to exclude useless intermediate paths is simpler
and more compact, (ii) we do not need to distinguish between two kinds of extracted
paths but, more simply, we always manage a unique set of path expressions, and (iii)
last but not least, our path extractor can be used even if the user cannot access an
XQuery to XQuery-Core compiler, which is necessary for [MS03].

Before applying the extraction function E to a query q we apply some heuristics
that rewrite q so to improve the pruning capability of the inferred paths. Among
these heuristics the most important is the one that rewrites
for y in Q/descendant-or-self::node

return if C(y) then q else ()

into
for y in

Q/descendant-or-self::node[C(self :: node)]
return q

whenever C(y) is a condition referring only to y and does not use external functions
(C(self :: node) is obtained by replacing self :: node for all occurrences of y free in

8.6. EXPERIMENTS 181

C). If we apply E to the first query, then a path ending by descendant-or-self::node
is extracted thus annulling further pruning: the entire forest selected by Q is loaded
in main memory. This also happens with the approaches of Bressan et al. [BCL+05]
and of Marian and Siméon [MS03]. In our and Marian and Siméon’s approach the
query can be rewritten as above (this is not possible in [BCL+05] since their subset
of XQuery does not include predicates). However, Marian and Siméon’s path based
pruning degenerates (no further pruning is performed) also for the second query,
since the descendant-or-self::node ends up in the set of pruner paths, thus se-
lecting all nodes. This is because their approach cannot manage predicates. In our
approach instead predicates are taken into account and therefore only nodes satisfy-
ing C(y) are kept by the projector, thus yielding a very precise pruning.

It is important to stress that despite their specific form the first kind of queries
is very common in practice since they are generated from XQuery→XQuery-Core
compilation of a non negligible class of queries (for instance Q13 of the XPathMark)
or when rewriting upward axes into downward ones. This latter observation shows
that the application of rewriting rules of [OMFB02] to extend Marian and Siméon’s
approach to upward axes is not feasible since the rewriting may completely compro-
mise pruning.

8.6 Experiments

We have implemented a complete version of the algorithm defined for full XPath.
The code is written in OCaml, uses the PXP library for parsing XML documents, and
its correctness was verified for all tests. After the path extraction of Section 8.5,
it performs the rewriting presented in Sections 8.3.3 and 8.4.3, and the static anal-
ysis defined in Section 8.4. The latter is extended to deal with attributes, with
the wild-card test element(), with {descendant,ancestor}-or-self as well as
{preceding,following}-siblings axes, and with absolute paths. It also uses a
couple of heuristics. One heuristic rewrites the DTD E so that every name Y defined
as Y → String occurs exactly once in the right hand side of an edge of E; this en-
hances the precision of pruning by reducing the number of conflicts on the leaves
of the tree. The other heuristic keeps track of the depth of elements in the paths
in order to improve pruning, especially in presence of recursive DTDs (this latter
heuristics could be embedded in the formal treatment, but we preferred to keep it
simpler). Pruning is then performed in streaming and merely consists of a one-pass
traversal of the document. We also added an optional validation option, that makes
it possible to prune the document while validating it. Programs that use an external
validator can therefore prune their document without any overhead.

We performed our tests on a GNU/Linux desktop, with 3GHz processor, 512 MB of
RAM and a single S-ATA hard-drive, using DTDs, document generator, and queries of
XMark and XPathMark (the latter is interesting because its queries use all the avail-
able axes). Queries were processed by the latest version of Galax. Virtual memory
(a.k.a. swap) was disabled to test memory limits.

For what concerns the overhead of the optimisation, tests confirmed that it is
always negligible, both in memory and time consumption: the only noticeable over-
head is pruning time, which is linear in the size of the pruned document, but can be

182 CHAPTER 8. TYPE-BASED XML PROJECTION

QM
03

QM
06

QM
07

QM
14

QM
15

QM
19

QP0
1

QP0
2

QP0
3

QP0
4

QP0
5

QP0
6

Original Document Size (MB) 930 2048? 1100 202 2048? 964 112 313 258 291 123 190
Pruned Document Size(MB) 25 5,3 42 139 24 24 89 50 46 50 98 133

Main Memory Usage (MB) 374 90 380 512 245 512 391 399 433 434 418 485
Gain in Size (% of original) 2.5 0.3 3.4 69.6 1.15 2.5 80.4 15.7 17.5 16.8 80.4 69.6

Gain in Speed (× faster) 17.8 110.1 28.2 3.9 62.6 7.5 1.5 3.6 3.7 4.3 1.5 2.9

QP0
7

QP0
8

QP0
9

QP1
0

QP1
1

QP1
2

QP1
3

QP2
1

QP2
3

Original Document Size (MB) 168 123 459 123 369 134 79 224 403
Pruned Document Size(MB) 123 99 35 98 28 107 78 152 42

Main Memory Usage (MB) 467 466 466 483 456 460 504 459 465
Gain in Size (% of original) 73.2 80.4 7.5 80.4 7.5 80.4 98.2 67.9 10.4

Gain in Speed (× faster) 2.6 1.1 4.9 1.6 4.2 1.6 1.0 3.6 3.6
?: biggest file the XMark generator was able to produce.

Table 8.1: Sizes (in MBytes) of the biggest document processed thanks to pruning,
size of its pruned version, and memory used to process the latter. Percent of the
pruned document and speedup of the execution time for a 56MB document.

embedded in document parsing and/or validation (e.g., for 60MB documents com-
puting the projector took around 0.5s while pruning and saving the pruned docu-
ment to disk was always below 10s). These results were confirmed by further exper-
iments on large DTDs (e.g. XHTML) and long XPath expressions (twenty steps or
so).

In Table 8.1 we report the result of our test (we omit in this presentation queries
with similar behaviour).

Projector efficiency. The fourth line of Table 8.1 reports the effect of inferred projec-
tors and it is an indicator of the selectivity of the query. For several XMark queries the
size of the pruned document is around 70-80% of the size of the original document.
This is due to the fact that XMark documents contain mixed-content <description>
elements which account for about 70% of the total size. Thus, queries whose execu-
tion requires the whole content of <description> elements, preserve a large part of
the file. On the contrary, for very selective queries like QM06, 99.7% of the document
is discarded. Finally, for queries that are very little selective, like QP13, the whole
document has to be kept. It should be noted in Table 8.1, fourth line, that for all
XMark queries but QM14 we could prune more than 95% of the original document.

Execution time and memory occupation. The comparison of performances of
the Galax query engine on an original document and its pruned version is given in
Figures 8.4 and 8.5, which respectively report the processing times and main mem-
ory occupation for documents of 56MB. They show that time and memory gains are

8.6. EXPERIMENTS 183

similar.

Q
M
0
3

Q
M
0
6

Q
M
0
7

Q
M
1
4

Q
M
1
5

Q
M
1
9

Q
P
0
1

Q
P
0
2

Q
P
0
3

Q
P
0
4

Q
P
0
5

Q
P
0
6

Q
P
0
7

Q
P
0
8

Q
P
0
9

Q
P
1
0

Q
P
1
1

Q
P
1
2

Q
P
1
3

Q
P
2
1

Q
P
2
3

Query

0

5

10

15

20

25

30

35

40

45

50

55

60

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
i
n

s
)

Figure 8.4: Processing time of a query on original (56MB) and pruned documents

Q
M
0
3

Q
M
0
6

Q
M
0
7

Q
M
1
4

Q
M
1
5

Q
M
1
9

Q
P
0
1

Q
P
0
2

Q
P
0
3

Q
P
0
4

Q
P
0
5

Q
P
0
6

Q
P
0
7

Q
P
0
8

Q
P
0
9

Q
P
1
0

Q
P
1
1

Q
P
1
2

Q
P
1
3

Q
P
2
1

Q
P
2
3

Query

0

50

100

150

200

250

300

350

400

M
e
m
o
r
y

(
i
n

M
B
)

Figure 8.5: Memory used to process a query on original (56MB) and pruned docu-
ments

These gains translate in practice into much faster executions and the possibility
to process much larger documents. The improvement can be measured by looking

184 CHAPTER 8. TYPE-BASED XML PROJECTION

at the first and last lines of Table 8.1. The first line reports the size of the largest
document it was possible to process thanks to pruning. This must be compared with
the fact that, for all queries, the largest document that can be processed without
pruning is 68MBytes large. The last line reports how many times the execution on a
pruned document is faster than the execution on the original document. It is impor-
tant to note that, depending on the nature of the query, the gain can be much higher
than the proportion given by the percent of the size of the pruning. For instance, for
queries such as QM14, QP6, and QP21 the size of the pruned document is two-thirds
of the size of the original document, but they can then be processed from three to
four times faster and, as Figure 8.5 shows, using three times less memory than when
processed on the original. The latter is a huge gain when one knows that memory us-
age is one of the main bottlenecks for real life query processing (e.g., in DOM-based
implementations of XPath or XSLT processors).

Quite informative, as well, is the data in the second line of Table 8.1 which reports,
for each query, the size in MB of the maximum pruned document. It is interesting to
see that, while the maximum size for an unpruned document is 68MB, we can process
documents for which the projection has a size of 152MB (on disk). This is due to the
fact that projecting a document not only reduces its size but also its complexity by
reducing the number of types of nodes. This simplification of the document reduces
the amount of extra-information the query engine has to keep for each node and,
consequently, its memory usage. More precisely, the benefit of pruning out some
(types of) nodes is twofold: first, the fan out of the document is reduced and this
may impact memory usage for engines that chase sibling pointers and, second, the
number of element names is reduced, which may reduce memory occupation when
shredding.

These results are a clear-cut improvement over current technology. While we
cannot directly compare processing performances since no implementation of the
other pruning approaches is publicly available, we want to stress two points: (i)
with one exception (QM14) the amount of pruning on common experiments is always
equal or better with our approach than the others and (ii) performing pruning never
is a bottleneck in our case thanks to fact that our solution consists of a single buffer-
less one pass traversal of the input document (on our 512MB machine we were able
to efficiently prune arbitrary large documents, while in case of [MS03] pruning can
end up using as much memory as the execution of the query).

Part IV

Conclusion

185

Chapter 9

Conclusion

9.1 Summary

We have studied in this dissertation a wide range of techniques to define, pre-
cisely type and efficiently implement iterators for XML. A fair amount of our

work consists in the definition of a language of combinators, named filters. This
filters achieve balance between the following conflicting requirements:

Expressivity: filters were designed to enrich a given host language with iterators.
We made very few assumptions on the host language, namely that it provides a prod-
uct constructor, atoms, a type system with subtyping, and a pattern algebra. Many
languages fulfill these requirements: CDuce, XDuce, ML, Haskell,. . . . Despite their
general design, filters allow the programmer to define very precise and specific trans-
formation operators on data-structures, providing a way to arbitrarily iterate on an
input while maintaining the strong and desirable property of termination. The scope
of transformations one can express with filters goes well beyond hard-coded iterators
(à la CDuce) or even Hosoya’s regular expression filters since they can encode, for in-
stance, a non-trivial subset of XPath. We also want to stress out that, since there is
no need for the host language to be XML-oriented, filters can be used to extend a
generic language with XML transformations, or, more generally with generic and/or
precisely typed iterators such as SYB ([LP03, Läm07]) or the work on pattern calculus
by C. Barry Jay ([Jay04]).

Precise typing: despite their great expressive power, filters still enjoy a precise
typing. Indeed, since it was a requirement that filters could encode flattening or
XPath expressions, we had to deal with the fact that the most precise output type
would escape regular languages. We introduced a type-system, based on the abstract
evaluation of a filter on a type rather than on a value. The main property of our type-
system is that it accounts for any valid regular approximation when no better regular
type exists for a given filter (which can occur in the setting of forward typing) and
of course, that it provide type safety to filters through a classical subject-reduction
property and progress.

187

188 CHAPTER 9. CONCLUSION

Type inference: we exhibited a practical typing algorithm for filters, relying on
typing annotations that are in practice very light. In particular, annotations are very
well localised which permits to study their inference separately. We proved that the
algorithm was sound and complete with respect to the type-system. A particular
case of annotation inference has been studied for the case of filter encoding XPath
expressions.

The formal developments have been supported by an implementation of filters
into the CDuce language. Rather than being a consequence of the theoretical formal-
ism, the implementation was developed alongside the theoretical framework, giving
many useful insights on the behaviour of the type-system. Indeed, since our iterators
were designed for XML, the type-system had to keep a foot in the real world, having
to deal with types such as the XHTML or DocBook DTDs or Schemas. The size and
complexity of such types, compared to what is found for instance, in the ML world
were a real obstacle to hand-written examples and whiteboard research. The proto-
type was a precious help to test various examples and ensuring that the work was
going “in the good direction”. Lastly, once the prototype was developed, we used
it to study many design issues related to filters, and more generally to very precise
type-systems. First of all, the problem of code modularity was particularly difficult
since it seemed, at first, contradictory with type annotations and the strict semantics
of filters (which only expects one argument, the value they transform). We provided
two effective solutions to this problem, the first one by designing the language so
that annotations are required only at the place of their application, and the second
one by defining macro filters, which allow the programmer to write generic iterator
filters and parametrize them with local transformations. We also improved the lan-
guage by adding regular expression filters whose syntax is much more user-friendly
than mutually recursive filters and a typed XPath extension, thus adding support for
a well-known paradigm.

We believe that our work has been, with this respect, a good answer to one of
the problem posed by Alain Frisch in the conclusion of his thesis ([Fri04b]): “Give
a way for the CDuce programmer to define precisely typed iterators”. However our
desire to abstract ourselves from CDuce made our work reusable in various context:
XDuce, ML, or, following the approach of [GLPS05] in an object-oriented language
such as C].

From this main axis of research emerged an orthogonal, more practical, work on
XML standards such as XPath and XQuery. Rather than being antagonist, these two
aspects of our work shed some light on one another. The formal work on filters,
their use as a typed compilation target for XPath hinted on how to perform type-
based optimisations to address very practical concern such as memory occupation.
On the other hand, working on – and thus formalizing – the semantics of XPath and
XQuery gave invaluable insight on what features were necessary to an XML language
which desire to stay on edge with the XML standards.

9.2 Future work

There are several possible continuations to our work on filters. We list them here,
following the order of the chapters of this dissertation.

9.2. FUTURE WORK 189

9.2.1 Dynamic semantics, expressivity

While we have carefully designed filters so that they always terminate and so that, in
practice, they allow us to write the desired iterators (list and tree mapping, almost
copying, XPath encoding), little is known on their expressive power. An approach
would be to use a restricted set of expressions: constants, variables and constructors
(thus forbidding function calls in expression filters) and compare such filters to top-
down tree transducers with regular look-ahead (as introduced by Joost Engelfriet in
[Eng77]). Indeed, filters are evaluated top down, and pattern matching precisely
consists in regular tree recognition. However it is unclear how much the ability
of patterns to capture variables and the use of composition enhance the expressive
power of filters. Following the current XML trend, a comparison with MTTs ([EV85])
would be much wanted but seems rather challenging. The use of accumulators in
the latter in particular, makes the writing of functions such as the flattening much
simpler than with filters.

9.2.2 Type-system, approximations

We devised in Chapter 7 an algorithm to automatically infer some type for an XPath
expression. Unfortunately, how to do so in the general case still eludes us. A first
approach could be based on the work of Mark-Jan Nederhof [Ned00], who defines an
algorithm to approximate context-free grammar with regular ones. However, even in
that case, the technique seems very dependent on the syntax of the types, rather than
their semantics and would need further refinements to handle the large and complex
types of XML in a satisfactory way.

9.2.3 Concrete language, compilation

Even if it performed well as a prototype, our implementation is based on a rather
naive compilation of filters. Many things can be done to further enhance the per-
formances of filters. First of all, once a filter is typed, it could automatically be
rewritten to permit a recursive call to traverse a composition (which actually goes
against the restriction on recursive filters and composition). This would allow us
to apply the well-known deforestation techniques, introduced by Philip Wadler in
[Wad90]. It would also provide an efficient execution model, with minimal creation
of intermediary structures while retaining the expressivity of filters. Adapting the
static analysis we made in Chapter 8 to filters, hence determining which part of a
value is visited by a filter, also seems feasible, but tricky in the presence of CDuce
types instead of DTDs. A more interesting approach would be to compile filters to
a streaming language, such as XStream ([FN07]). XStream is a low level functional
language, introduced by Alain Frisch and Keisuke Nakano, compiled with streaming
in mind. Indeed, it allows a programmer to write an XML transformation which will
use as few memory as possible, thus outputing a result as soon as it is ready. This ap-
proach is appealing since it allows one to write any XML transformation in XStream
and do the tedious work of interleaving computations and I/O operations automat-
ically. Since XStream does not have a type system, compiling filters to XStream

190 CHAPTER 9. CONCLUSION

programs would allow the programmer to benefit from both a safe and precise type
system and an efficient (throughput and memory -wise) program.

9.2.4 XPath encoding

The encoding of XPath, based on the determinisation of an automaton may yield
some combinatorial explosion. Since our encoding is very similar to the one found
in [GGM+04], we are affected by the same worst case scenario: for a given path p
the number of states in the final automaton is O(2a(p)) where a(p) is the number
of occurrences of //*//x, for any tag x. However, since in this case the code of the
filter is not required to type it (as we rely on an ad-hoc typing algorithm), we can use
a lazy determinisation process which would, in our setting, consist in a just-in-time
compilation of the resulting filter.

9.2.5 Type projectors

On the side of type-projectors, several aspects of importance can still be developed.
First of all, even if DTDs are widespread and represent a vast majority of typed doc-
ument available, it seems desirable to extend our approach to XML-Schema. While
this does not seem theoretically difficult, special care should be taken so as to han-
dle the so-called local elements. Another aspect is to extend our approach to untyped
documents. This can be done if a set of documents is known beforehand. Indeed,
given a set of documents, it is possible to infer not only a DTD, but as Bex et al. have
shown in [BNST06], a somewhat general DTD which could then be reused for all the
documents in the set. Lastly, the pruning information could also be used in other
contexts, e.g. to optimise disk access in the case of an XML DBMS. Indeed, if we
know in advance which parts of the document are used and which are not, then this
information can be used so as useful parts are clustered in the same area of the disk,
thus reducing the disk access to the document.

9.2.6 To infinity. . . and beyond!

As we have shown, filters seem to be a very valuable language to express transforma-
tions of XML documents and type them, and illustrate, in some sense, how far we can
go with forward typing1. However, if one really wants to achieve exact annotation-
free typing, backward type inference seems the way to go.

Indeed, it provides some valuable insight onto what is actually practical with for-
ward typing. The idea would be to reuse these techniques in the context of MTTs
and backward type inference. Very informally (and as a wild conjecture) it should be
possible to mix forward and backward type inference so as to make backward type
inference more practical. Our encoding of XPath and the CDuce integration would
also benefit to MTT-based approach. In particular, to the best of our knowledge no

1Not that we claim that our approach is the “best” possible forward approach, but it seems more
than likely that any equivalently expressive language has to resort to some types annotations, either
as we did to provide one possible approximation or to use more complex type-systems (non-regular
tree languages, dependant types) for which completely automatic type inference do not exists.

9.2. FUTURE WORK 191

implementation based on MTTs is currently available. If making the typing of MTTs
practical is one goal, another one, perhaps more challenging is to actually design a
full fledged language for XML based on MTTs. This means taking into account—
besides typing which is the main focus of theoretical languages—user friendly syn-
tax and error messages, efficient compilation, and bindings with external languages
to allow one to use system libraries, and so on. Last, but not least, such a language
would need to make use of a great deal of research led by the database community
on e.g. query optimization, persistency, streaming, distributed querying, memory
efficiency. . . . Indeed, as we have seen with the study of type-projectors, typing can
be used to further enhance already known and efficient database techniques.

Creating such a full fledged language is still, one of the most daring challenges
in the field of XML programming.

192 CHAPTER 9. CONCLUSION

Appendix

193

Langage de combinateurs pour XML :
conception, typage, implantation

(résumé étendu)

A.1 Contexte

Depuis l’avènement des réseaux, en particulier de l’internet, est apparu un be-
soin croissant d’échange et de partage des données. Par exemple, nombreux sont les
sites web permettant d’agréger le contenu de plusieurs autres sites. Un site web , ac-
tuellement, n’est plus une collection de pages statiques (au contenu figé) mais plutôt
un ensemble de pages dynamiques, dont le contenu est actualisé en permanence, en
réutilisant des données externes. Un site d’actualités, par exemple, pourra agréger les
nouvelles venant de différents sites d’agences de presses ou de journaux et les pré-
senter de manière unifiée à un utilisateur. Ce même site pourra, à son tour, devenir
une source et voir ses données récupérées, sélectionnées et réorganisées par un site
tiers.

Ce type de sites et plus largement d’applications interconnectées doit son suc-
cès à l’adoption d’un format commun de représentation des données, le format XML
(eXtensible Markup Language). XML est une spécification, standardisée par le w3c
(World Wide Web Consortium) décrivant comment organiser un ensemble de don-
nées sous forme textuelle (voir [XML]). Un exemple, représentant un carnet d’adresses
est donné à la figure A.1. Comme on peut le voir, un tel document est composé de :

– texte brut (tel que 0123456789)
– balises (par exemple <contact group=�Work� > et </addressbook>)
Dans une balise telle que <contact group=�Work�>, <contact> est appelé une

étiquette (label) et group un attribut. De plus, <contact> est une balise ouvrante alors
que </addressbook> est une balise fermante. Le standard ne fixe pas le nom des
étiquettes ou des attributs : c’est à l’utilisateur de définir une sémantique pour les
documents, en définissant les balises, les attributs, leur ordre, . . .

La spécification ([XML]) n’impose en effet que peu de contraintes sur un docu-
ment. Par exemple, elle impose des contraintes de « bas niveau » sur l’encodage des
caractères (XML ayant été conçu pour fonctionner avec des encodages complexes tel
qu’Unicode). Pour ce qui est des contraintes de structures, la seule imposée par la
norme est que le document représente un arbre. Plus précisément :

– Il doit y avoir une balise englobant tout le document (par exemple <addressbook>
. . .</addressbook> dans la figure A.1). Une telle balise est appelée racine du do-

195

<addressbook>

<contact group="Work">

<name>

<first>Giuseppe</first>

<last>Castagna</last>

</name>

<phone>0123456789</phone>

<email>gc@pps.jussieu.fr</email>

</contact>

<contact group="Family">

<name>

<first>Yohanna</first>

<last>Nguyê�n</last>

</name>

<phone>0987654321</phone>

<email>yoh@yoh.org </email>

<address>

<nb>4</nb>

<street>Rue du Yahourt</street>

<zip>75000</zip><city>Paris</city>

</address>

</contact>

</addressbook>

addressbook

contact

group="Work"

name
first Giuseppe

last Castagna

phone 0123456789

email gc@pps.jussieu.fr

contact

group="Family"

name
first Yohanna

last Nguyê�n

phone 9876543210

email
yoh@yoh.org

address
nb 4

street
Rue du

Yahourt
zipcode 75000

city Paris

Fig. A.1 – Un exemple de document XML

cument.
– Une balise ouvrante doit être fermée par une balise fermante correspondante

(ayant la même étiquette, précédée de /). De manière équivalente, on peut dire
que les balises doivent être bien parenthésées.

Cette spécification donne un cadre générique pour structurer des documents,
et sépare ainsi leur sémantique de la représentation textuelle. Il est en effet possible
d’écrire des bibliothèques génériques permettant de parser et afficher des documents
XML sans avoir besoin de connaître la sémantique de ces derniers. Cette particula-
rité à fait d’XML un standard de choix, et les types de fichiers utilisant XML comme
format de représentation de données sont légion. On peut par exemple citer Xhtml
(une version compatible XML d’Html), le format de fichier Svg utilisé pour re-
présenter des images vectorielles, le format OpenDocument, conçu pour stocker des
fichiers d’application bureautique tels que documents mis en forme, feuilles de ta-
bleurs, présentations. XML est aussi un format de choix pour les fichiers de configu-
ration. Un autre cas d’utilisation d’XML est celui des services web. Ces services sont
des applications réseau qui acceptent des requêtes et renvoie les résultats correspon-
dants encapsulés dans un document XML. Par exemple, un site de commerce en ligne
peut fournir un service web permettant d’interroger son catalogue. Cela permet au
service web d’utiliser XML pour publier des résultats complexes, organisés selon une
structure riche mais qui reste cependant aisée d’utilisation pour un client, qui peut
utiliser n’importe quelle bibliothèque XML générique pour lire un tel résultat.

Évidement, il faut pouvoir donner des contraintes sémantiques à un document.
Par exemple, on veut pouvoir préciser quelles étiquettes peuvent apparaître dans un
document, leur ordre, leur imbrication, etc. Il existe plusieurs moyens de décrire

196

de telles contraintes. Des informations supplémentaires telles que spécifiées par des
DTD (Document Type Definition, [DTD06]), un fichier Relax-NG ([Rel]) ou des XML-
Schemas ([XSc]) peuvent être ajoutée à un document XML. On appelle communé-
ment de telles informations, types, schémas ou encore contraintes. Il est possible d’uti-
liser un validateur pour vérifier qu’un document respecte bien les diverses contraintes
qui lui sont associées. La figure A.2 donne un exemple de tel type XML. Plus précisé-
ment, la figure représente une DTD qui spécifie des documents similaires au carnet
d’adresse présenté figure A.1.

<!ELEMENT addressbook (contact*)>

<!ELEMENT contact (name, (phone|email)+,address?)>

<!ATTLIST contact group CDATA #REQUIRED>

<!ELEMENT name (first,last)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT address (nb,street,zip,city)>

<!ELEMENT nb (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT city (#PCDATA)>

Fig. A.2 – Un exemple de type XML (une DTD pour un document addressbook)

Ce type2 consiste en un ensemble de définitions, une pour chaque élément pou-
vant apparaître dans un document de ce type. Les définitions sont représentées par
des expressions régulières. Par exemple, un <addressbook> contient une séquence
possiblement vide de <contact> (dénoté par l’étoile de Kleene « * »). Le contenu d’un
<contact> est d’abord un <nom>, suivit par une séquence non vide (dénotée par le
« + ») de <phone> ou <email> (l’alternance étant dénotée par un « | ») et finalement
un élément <address> optionnel (dénoté par « ? », la mise en séquence étant notée
« , »). CDATA (dans la définition de l’attribut) et #PCDATA sont des fragments de texte
brut.

Le lecteur familier avec la théorie des langages formels peut aisément voir qu’une
DTD n’est autre qu’une grammaire régulière d’arbres. De plus, bien que plus expres-
sifs que les DTDs, les schémas, (XML-Schema ou Relax-NG) sont exprimables par
une grammaire régulière d’arbres. Nous présenterons par la suite un formalisme
équivalent, celui des expressions régulières de types (regular expression types). Vérifier
qu’un arbre (un document) donné est une production d’une grammaire particulière
(d’un type) est aisé. Par exemple, il est montré dans [SV02] que pour une classe de
DTDs, la validation peut se faire en temps linéaire (en la taille du document) et mé-
moire constante. Plus généralement, la validation d’un document par rapport à une

2nous utilisons par la suite les termes types, schémas et contraintes de manière interchangeable.

197

DTD peut être faite en temps linéaire et en espace logarithmique (en la taille du do-
cument; il suffit pour cela de garder une pile égale à la profondeur max du document,
vu comme un arbre).

A.2 Programmer avec XML

S’il est une chose de spécifier des documents XML, c’en est une autre que de
les manipuler. En effet, comme des documents XML sont une manière d’organiser
des données, il est nécessaire de pouvoir interroger le document pour extraire cette
information, transformer l’information pour produire un résultat et finalement publier
(ou présenter) ce résultat.

La manière la plus simple de faire est de considérer un document XML sous ça
forme la plus brute : un fichier texte. Cette technique atteint rapidement ses limites.
En effet XML étant un standard très complexe et verbeux, écrire à la main un parseur
de document se révèle être une tâche ardue. De plus, les contraintes de documents ne
sont pas du tout considérées et a fortiori vérifiée par une telle méthode. Il est douteux
qu’une application sérieuse basée sur XML puisse être écrite de la sorte.

Si l’on se place d’un point de vue plus abstrait, les documents XML ont deux as-
pects —le contenu et le type— que l’on peut retrouver dans un langage de program-
mation. En effet, un langage peut fournir un support syntaxique pour XML (aspect
valeur) et il peut garantir les contraintes du document (aspect typage).

Les différentes combinaisons de ces deux aspects permettent de classer les lan-
gages utilisés pour manipuler des documents XML. Premièrement on trouve les lan-
gages sans support syntaxique ni sémantique particulier. Ce sont les langages géné-
riques, tels que Perl, Python, C,. . . . Ces langages manipulent des documents XML
au moyen de bibliothèques spécialisées qui permettent de parser, manipuler et vali-
der des documents XML. L’intérêt de cette approche réside dans le fait que ces lan-
gages sont largement supportés, disposent de nombreuses bibliothèques nécessaires
à l’écriture de programmes complexes (gestion du réseau, appels systèmes, biblio-
thèques graphiques,. . .). Cependant, l’interface entre le « monde XML » et le langage
lui-même est limitée au stricte minimum. L’écriture de ces programmes est donc
souvent malaisée (pas de support syntaxique) les programmes difficiles à déboguer
(pas de support sémantique; si une erreur se produit du côté XML, elle ne peut pas
être détectée par le compilateur du langage, et produira le plus souvent une erreur à
l’exécution).

Mieux adaptés sont les langages possédant une algèbre de types suffisamment
riche pour pouvoir y encoder des contraintes de document XML. Deux tels exemples
sont Java et OCaml. Cette technique, connue sous le nom de data-mapping consiste à
encoder certaines contraintes XML dans le système de type du langage utilisé. Cela
peut être fait au moyen d’une hiérarchie de classe (voir [JAX] pour un exemple d’im-
plantation en Java) ou par d’autres moyens (par exemple, [Bal06, OCS] encodent des
contraintes XML dans les variants polymorphes d’OCaml). Ces techniques permettent
d’utiliser la logique du compilateur du langage généraliste pour détecter des erreurs
XML. Elles se limitent cependant à la portion des contraintes XML exprimables dans
le système de type du langage considéré.

198

À un niveau encore supérieur, on retrouve les standards du w3c (tels que XPath,
XQuery ou Xslt). Ceux si sont conçus spécialement pour la manipulation de do-
cuments XML. Ils permettent donc d’écrire facilement des transformations XML.
De plus, étant « ciblés XML », ils peuvent être optimisés spécifiquement pour cette
tâche. Ils ne bénéficient cependant pas toujours des systèmes de types permettant de
détecter statiquement la violation de contraintes XML.

La dernière catégorie, dans laquelle se placent les travaux de cette thèse est celle
des langages statiquement typés pour XML.

A.2.1 Langages statiquement typés pour XML

La manière la plus sûre (et selon nous la plus élégante) de programmer avec XML
et de « considérer les types sérieusement ». En effet, dans un système de type XML,
si l’on peut vérifier qu’une transformation (une fonction) a le type t → s, alors on
a la garantie que la transformation renverra toujours un document de type s pour
une entrée valide de type t. Toute validation du document de sortie devient donc
inutile. De plus, une erreur de typage, permet de localiser précisément, au sein du
code source, la ligne incriminée; celle qui viole une des contraintes du type de sortie.

Cette approche a été initiée par Haruo Hosoya ([Hos00, HP01]) et a notamment
consisté en la réalisation du langage XDuce. Dans ces travaux, Hosoya explique que
les DTDs et les divers schémas XML peuvent être représentés par un formalisme plus
abstrait et générique : les expressions régulières de types (regular expression types).
Ces types ne sont qu’une manière de représenter les langages réguliers d’arbres et
possèdent des propriétés importantes de clôtures par opérateurs booléens. De plus,
toutes les propriétés importantes (décision du vide, calcul du complémentaire, ap-
partenance) sont décidables (cf. [CDG+97]).

En XDuce, les documents sont des valeurs de première classe (au même titre que
les entiers, les chaînes de caractères,. . . le sont dans un langage ordinaire). On peut
voir à la figure A.3 un exemple de code XDuce3

La première contribution importante d’Hosoya avec XDuce est la définition de
filtrage par motifs réguliers (regular pattern matching). Ces derniers sont une générali-
sations des motifs que l’on peut retrouver dans plusieurs langages comme OCaml ou
Haskell. Ces opérateurs permettent de sélectionner très précisément une partie de
l’entrée (un document) de manière typée (on connaît le type exact de la sous-partie
extraite). La deuxième contribution majeure est celle du sous-typage sémantique. Cette
relation de sous-typage est particulièrement adaptée à la vérification de contraintes
fines, telles que celle exprimable dans le contexte d’XML (ces deux aspects sont pré-
sentés formellement au chapitre 2).

XDuce a été étendu dans plusieurs directions. La première est due à Benjamin
Pierce et al. avec leur travaux sur XTatic (voir [GLPS05]). Ces travaux consistent
à ajouter au langage objet C] le filtrage par motif de XDuce. Ils ont en particulier
donné lieu a plusieurs travaux connexes sur l’implantation efficace de tels motifs. Il
est cependant nécessaire de remarquer que la fusion entre la relation de sous-typage

3Les syntaxes de XDuce et CDuce étant très proches, nous avons quelque peu modifié l’exemple
pour n’avoir à présenter qu’une seule syntaxe, celle de CDuce qui sera introduite par la suite.

199

type city = <city>[Char*]

type zip = <zip>[Char*]

type street = <street>[Char*]

type number = <nb>[Char*]

type address = <address>[number street zip city]

type email = <email>[Char*]

type first = <first>[Char*]

type last = <last>[Char *]

type name = <name>[first last]

type data = <contact group=String>[name (phone|email)+ address ?]

type addressbook = <addressbook>[data*]

<addressbook>[<contact group="Work">[

<name>[

<first>['Giuseppe']

<last>['Castagna']

]

<phone>['0123456789']

<email>['gc@pps.jussieu.fr']

]

<contact group="Family">[

<name>[

<first>['Yohanna']

<last>['Nguyê�n']

]

<email>['yoh@yoh.org']

<address>[

<nb>['4']

<street>['Rue du Yahourt']

<zip>['75000']

<city>['Paris']

]

]

]

Fig. A.3 – Définitions pour le type addressbook ainsi qu’un exemple de docu-
ment.

sémantique et le sous-typage de C] ne pose pas de problème conceptuel; cette der-
nière étant très pauvre (héritage) et complètement renseignée par le programmeur (la
relation est étendue lorsque le programmeur déclare que telle classe hérite de telle
autre).

Une autre extension importante —dans le cadre de laquelle nous positionnons
nos travaux— est celle du langage CDuce, définit par Alain Frisch dans sa thèse
([Fri04b]). Les contributions de cette thèse sont nombreuses : ajout des types flèche
et enregistrement extensible à XDuce, compilation efficace du filtrage par motifs (cf.
[Fri04a]), mais aussi, de manière plus pragmatique, interface entre CDuce et OCaml,
représentation efficace des types de donnée XML,. . . .

Au vu de tout ces travaux, il est nécessaire de se poser la question : peut on aller

200

plus loin dans le typage d’XML? Ces langages sont-ils suffisants ?

A.2.2 « Y’a pas que le statique et le précis dans la vie »

À l’exception d’XTatic les langages cités précédemment sont fonctionnels. Il n’est
donc pas difficile pour un programmeur OCaml (par exemple) de programmer en
CDuce. Deux aspects manquent cependant :

– le polymorphisme;
– l’inférence de types.

Le problème vient du fait que les systèmes de types polymorphes traditionnels ne
sont pas du tout adaptés à la programmation en XML. Nous illustrons cela à l’aide
de la fonction concat —qui effectue la concaténation de deux séquences— et de son
typage. Dans un système de type à la ml, une telle fonction a généralement le type :

concat : α list→ α list→ α list

où le type α list est définit inductivement4 par :

type α list = (α× α list)|[]
Comme il est d’usage, ce type est quantifié universellement selon la variable de type
« α »5. Ainsi, une telle liste est soit la liste vide, notée « [] », soit une paire for-
mée d’un élément de type α et d’une liste. Dans une expression, cette variable de
type peut être instanciée pour fournir par exemple le type « liste d’entiers » int

list. On remarque que le fait de n’utiliser qu’une variable de type force tous les
éléments de la liste à être du même type, quel qu’il soit. Cela est particulièrement
inadapté à XML, où les séquences peuvent être hétérogènes. Par exemple, le contenu
du type contact défini à la figure A.3 est dénoté par une séquence hétérogène :
[name (phone|email)+ address ?]. Il apparaît donc clairement que le polymor-
phisme à la ml n’est pas suffisant pour représenter aisément des types XML. Bien
sûr, un polymorphisme plus puissant tel que celui du Système F pourrait suffire,
mais il est bien connu que la vérification de types pour ce système est indécidable
([Wel99]).

La situation pour les types CDuce n’est guère meilleure. En effet, en l’absence de
polymorphisme, la fonction concat doit être typée comme :

concat : [Any∗]→ [Any∗]→ [Any∗]
Cette fonction devant pouvoir être appliquée à n’importe quel type de séquences,

il est nécessaire de la typer avec un type suffisamment générique pour englober
toutes les séquences possibles, ou autrement dit, un sur-type de tous les types sé-
quences. En typant la fonction de cette manière, il est possible de l’appliquer à n’im-
porte quelle paire de listes, mais alors, le type du résultat devient très imprécis : on
perd l’information des types d’entrée et on sait uniquement que le résultat est une
liste quelconque.

Le comportement que l’on attendrait du système de type est illustré table A.1.
À la première ligne de cette table, on remarque que la concaténation de deux listes

4Nous utilisons la syntaxe OCaml, similaire à celle de nombreux langages fonctionnels.
5Nous rappelons qu’un tel type se lit : ∀α.(α × α list)|[]. Ce type de quantification est connu

sous le nom de forme prénexe.

201

type de x type de y type de concat x y
[Any∗] [Any∗] [Any∗]
[Int∗] [Char∗] [Int ∗ Char∗]
[Int∗] [Int Bool?] [Int+ Bool?]

.

Tab. A.1 – Types attendus pour la concaténation de deux listes.

doit être une liste quelconque, de type [Any*]. Cependant, la concaténation d’une
liste d’entiers et d’une liste de caractères (ligne 2) doit donner une liste contenant
d’abord des entiers puis des caractères. Finalement (ligne 3), on souhaite conserver
les cardinalités : concaténer une liste d’entier avec une liste comportant au moins un
entier donne une liste contenant au moins un entier, ce qui apparaît dans le type du
résultat sous la forme d’Int+.

Comme nous l’avons expliqué, ce type de polymorphisme est plus puissant que
celui disponible dans les langages disponibles actuellement. En effet, on souhaite
l’opposé du polymorphisme paramétrique (à la ml). On souhaite pouvoir spécialiser le
type d’une transformation en fonction du type d’entrée, alors que le polymorphisme
paramétrique consiste justement à ne pas spécialiser les variables de types. Il ne
peut pas non plus être exprimé par du polymorphisme de sous-typage, car le type
le plus générique est complètement non-informatif ([Any*] de l’exemple précédant).
Enfin, même s’il est similaire au polymorphisme ad-hoc des fonctions surchargées,
ces dernières ne peuvent traiter qu’un nombre fini de cas, spécifiés dans la signature
de la fonction alors que notre typage doit pouvoir mettre en relation un nombre
potentiellement infini de types d’entrée avec des types de sortie bien précis.

Une solution partielle, utilisée dans CDuce est de fournir un opérateur de conca-
ténation ad hoc, noté « @ ». Cet opérateur n’est pas une fonction ni un objet de pre-
mière classe. Il n’a pas de valeur en soi. Cependant, utilisé dans une expression du
style « l1@l2 », il est re-typé, en fonction du type de l1 et l2. Ceci est possible parce
que la sémantique de l’opérateur est connue : il effectue la concaténation de ses deux
arguments. Le typage consiste donc à concaténer les deux types séquences corres-
pondants, obtenant ainsi un typage exact de l’expression. Ce typage est identique
à celui illustré dans la table A.1. Ceci est l’une des idées directrice de nos travaux :
l’opérateur est évalué sur les types de ses arguments pour calculer un type de sortie
précis. Dit autrement, nous effectuons une exécution abstraite de l’opérateur sur son
type d’entrée.

Cette solution est déjà mise en œuvre dans de nombreux langages XML typés :
XDuce propose l’opérateur map pour itérer une transformation sur des listes, CDuce
propose les opérateurs @ (concaténation), transform (itération sur une séquence) et
xtransform (itération sur un document XML) et XTatic propose foreach et iterate
à des fins similaires. Tous ces opérateurs sont typés précisément (au sens ou le type
de sortie est calculé à partir du type d’entrée) et permettent d’exprimer certaines opé-
rations de base sur les documents XML. Cependant, pour des transformations plus

202

complexes (par exemple supprimer d’un document Xhtml tous les éléments obso-
lètes) ces opérateurs ne sont plus suffisants. Les choix du programmeur à ce niveau
sont alors limités. Il peut demander gentiment aux mainteneurs du langage de rajou-
ter l’opérateur dont il a besoin, ce que les mainteneurs refuseront de faire6. Le pro-
grammeur peut aussi écrire lui-même les fonctions effectuant les transformations
qu’il désire, mais il devra alors fournir lui même le type de sortie. Prenons l’exemple
(en CDuce) d’une fonction retirant tous les liens hypertextes (balises <a>) d’un docu-
ment Xhtml. Comme nous l’avons dit précédemment, cette fonction ne peut être
écrite au moyen d’un simple opérateur. Le programmeur écrit donc une fonction f
effectuant la transformation. Comme CDuce ne possède pas d’inférence de types, le
programmeur doit annoter sa fonction par le type d’entrée et le type de sortie. Le
type d’entrée est simple, c’est le type Xhtml des documents du même nom. Ce type
étant courant, on peut supposer qu’il est prédéfini dans la bibliothèque standard de
CDuce. À l’inverse, le type de sortie est bien plus fastidieux à écrire. Il s’agit en effet
du type Xhtml dans lequel toutes les occurrences de la balise <a> ont été suppri-
mées. Sachant que le type Xhtml (et les types XML en général) est très verbeux
(plusieurs dizaines de tags différents) cette opération est malaisées et propice à l’in-
troduction d’erreurs. Le programmeur peut aussi choisir de donner à sa fonction le
type de sortie Xhtml qui est un sur-type du type exact. C’est un type valide (un do-
cument Xhtml sans lien est bien un document Xhtml). Cependant ce n’est pas un
type assez précis, le type de sortie ne reflétant pas le fait que le document de sortie ne
contient pas de lien. Nos travaux de thèse se proposent de répondre à cette probléma-
tique : écrire des transformations complexes typées précisément et automatiquement
par le compilateur.

A.2.3 Une solution

L’une des solutions possible à ce problème, qui est celle que nous développons
dans cette thèse, est de définir un langage restreint de combinateurs, suffisamment
expressifs pour écrire des transformations complexes de documents XML mais suf-
fisamment simples pour pouvoir être typés précisément. Plus exactement, nous pro-
posons d’ajouter à un langage « hôte » préexistant (tel que Ml, CDuce, . . .) un sous
langage de manipulation de document XML. Cette technique a été explorée par Ha-
ruo Hosoya par l’ajout « d’expressions régulières de filtres » (regular expression fil-
ters, [Hos04]) à XDuce. Dans cette approche, le langage de combinateurs est para-
métré par les expressions et les motifs du langage hôte (dans le cas d’Hosoya, les
expressions et les motifs de XDuce). Cela permet au programmeur d’itérer une ex-
pression XDuce de manière particulièrement précise sur un document d’entrée, de
capturer des sous-parties du document à l’aide de motifs et de les réutiliser pour
produire un résultat.

Cette solution semble naturelle. En effet, il n’est pas rare d’étendre le noyau d’un

6En effet, ajouter un tel opérateur touche toutes les parties du langages : la syntaxe (l’ajout de
nouveaux mots-clés qui peut rendre invalide du code existant), le typage (l’ajout d’une règle de typage
spécifique à cet opérateur n’est souvent pas triviale), et enfin la compilation (rajouter de nouvelles
constructions dans le langage peut casser certains invariants nécessaires à l’optimisation du code).
Maintenir un tel code devient rapidement un cauchemar.

203

langage avec un sous langage, moins expressif mais ayant de meilleures propriétés de
typage, d’optimisation, On peut citer par exemple le cas d’OCaml et de son sys-
tème de modules, de CDuce et de son extension Cql (qui consiste en l’ajout d’une
primitive select from where à CDuce), ou encore de C++ et de son langage de tem-
plates. Dans le problème qui nous concerne, la solution n’est cependant pas triviale,
et demande de remplir un certain nombre de critères :

1. Le langage de combinateurs doit pouvoir appeler n’importe quelle expression
du langage hôte. La conception du langage de combinateurs doit donc être
indépendante du langage hôte choisi.

2. Le sous-langage doit être statiquement typé. Cela a deux conséquences impor-
tantes sur le système de types. Il doit (i) être capable de donner un type à toute
expression de combinateurs —c’est à dire donner un ensemble d’expressions
pour lesquelles l’évaluation n’échoue pas— et (ii) être capable de déduire un
type de sortie précis pour chaque type d’entrée correspondant, et ce en éva-
luant l’itérateur sur le type de l’entrée.

3. Une conséquence de (ii) du point précédant est que le langage doit permettre
de définir uniquement des itérateurs qui terminent lorsqu’ils sont appliqués à
des types potentiellement infinis (l’infinitude d’un type peut par exemple être
liée au fait que ce dernier soit récursif ou qu’il contienne des opérateurs de
répétitions, telle que l’étoile de Kleene). En effet, il faut que la phase de typage
termine, et donc il faut garantir que l’évaluation d’un itérateur sur un type
termine toujours.

4. Le pouvoir expressif des combinateurs doit être suffisant pour exprimer des
transformations XML courantes : concaténation, map, exploration d’arbres, ex-
pressions XPath, et ainsi de suite.

5. Le langage introduit ne doit pas compromettre les propriétés de modularité et
réutilisation de code déjà présente dans le langage hôte.

Il y a évidement un conflit entre les points 3 et 4 : pouvoir expressif et terminaison
sont deux aspects contradictoires, il faut donc trouver un équilibre entre ces deux
points. En effet entre le fait de pouvoir simplement itérer un document dans l’ordre
et écrire une transformation quelconque (donc avoir un langage de combinateurs
Türing-complet), il existe un grand nombre de classes de transformations possibles.
En considérant que des itérateurs de type map (qui traversent un document dans
l’ordre, appliquant une transformation locale à chaque noeud) sont insuffisants pour
travailler avec XML, nous posons, comme pré-requis que le langage de combinateurs
soit capable d’exprimer l’aplatissement d’un arbre XML, c’est à dire donner, à par-
tir d’un document d’entrée, la liste de tout ses noeuds. Il convient de noter que ce
type d’opérations est classique dans le cadre de la programmation XML. Malheureu-
sement, ce pré-requis qui nous semble minimal nous interdit à tout jamais d’espérer
avoir une inférence de type exacte pour nos transformations. En effet, une propriété
bien connue des langages d’arbres réguliers est que leur image par homomorphisme
n’est pas régulière (voir à ce sujet [CDG+97]). Par exemple. considérons le type récur-
sif suivant :

type T = [] | [<a>[] T []]

204

Ce type est l’union (dénotée par |) du singleton [] ou d’une liste de trois éléments,
<a>[] en premier, [] en dernier et une liste de type T en deuxième position. Bien
que ce type soit régulier, son image exacte par la transformation d’aplatissement
n’est pas régulière car c’est l’ensemble S = {[<a>[]n []n]|n ≥ 0}. Un autre point
important est qu’en général il n’existe pas de meilleure approximation régulière pour
de tels ensembles. Par exemple l’ensemble de valeurs précédant peut être approximé
par la suite de Si définie ci-après, où Si+i est strictement plus précis (au sens de
l’inclusion) que Si :

type S0 = [<a>[]* []*]

type S1 = [] | [<a>[] []] | [<a>[] <a>[]+ [] []+]
...

type Sn = [] | [<a>[] []]| ...| [<a>[]n<a>[]+ []n[]+]
...

Ces deux points de typage rendent délicate la conception d’un tel langage, typé
précisément et automatiquement.

A.3 État de l’art

Nous ne présentons ici que les différentes approches du problème. Un état de l’art
détaillé se trouve dans la section 1.4 du présent manuscrit.

Dans cette thèse, nous présentons un langage de combinateurs, nommés filtres7.
Les filtres sont suffisamment expressifs pour écrire des transformations complexes
de documents XML tout en gardant une discipline de typage simple. Les filtres sont
intégrés à CDuce, de la même manière que les filtres d’Hosoya sont intégrés à
XDuce. L’intérêt est que le programmeur n’est pas limité à un langage restreint pour
toutes les tâches « non-XML » et peut par exemple bénéficier des fonctions système et
autres facilités fournies par CDuce et plus généralement par un vrai langage de pro-
grammation. Le programmeur peut donc définir ses propres itérateurs polymorphes
et bénéficier d’un typage précis, tout en restant dans le cadre d’un langage (hôte)
complet. Notons que dans toute cette thèse, nous faisons de nombreuses comparai-
sons avec le travail d’Hosoya, qui est le plus proche de notre formalisme.

Afin de mieux présenter nos travaux, nous donnons un aperçu des différents for-
malismes XML utilisés pour concevoir des langages de manipulation modulaires,
précisément typés et expressifs. Les solutions à ce problème que l’on retrouve dans
la littérature peuvent être divisées en quatre catégories.

A.3.1 Système de types polymorphes pour XML

De nombreux travaux entrent dans cette catégorie. Ils consistent en un rappro-
chement d’un système de type à la XDuce avec un système de type à la Ml. Ce rap-
prochement peut être profond : ce sont les travaux de Haruo Hosoya, Giuseppe
Castagna et Alain Frisch, [HFC05] et de Jérôme Vouillon [Vou06] pour un

7appellation empruntée aux «filters» d’Haruo Hosoya.

205

rapprochement avec Ml et de Martin Sulzmann et Kevin Zhuo Ming Lu pour
un rapprochement avec Haskell (cf. [SL06a]). Ces travaux ont en commun une modi-
fication importante des deux disciplines de typage pour faire cohabiter le polymor-
phisme paramétrique avec par exemple le sous-typage sémantique.

Le rapprochement peut aussi être plus superficiel, comme dans le cadre d’OCaml-
Duce (voir [Fri06]), qui juxtapose les deux systèmes de types (XDuce et Ml) dans un
même langage. Une valeur a donc soit un type Ml (et peut donc être polymorphe)
soit un type XDuce (et donc être précisément typée) mais le mélange est interdit.

Ces approches ont en commun qu’elles facilitent l’écriture de code polymorphe
dans un langage XML (ou de manière équivalente qu’elle facilitent l’écriture de trans-
formations XML dans un langage avec polymorphisme) mais ne permettent pas d’écrire
des transformations à la fois polymorphes et précisément typées.

A.3.2 Itérateurs prédéfinis

Comme nous l’avons mentionné précédemment, CDuce, XDuce et Xtatic four-
nissent des itérateurs prédéfinis pour les transformations XML. Les avantages de ces
derniers sont la précision de leur typage ainsi que leur polymorphisme (ils peuvent
être appliqués à n’importe quel type d’entrée compatible et être re-typés précisé-
ment). L’inconvénient majeur est leur expressivité très limitée et le fait qu’ils ne faci-
litent pas la réutilisation du code ainsi que la modularité. En effet, de tels itérateurs
ne peuvent être encapsulés dans une fonction, car il souffriraient alors du typage «
manuel » de celle-ci et doivent être copiés/collés tout au long du code.

A.3.3 Langages d’itérateurs

Notre solution d’intégrer un sous-langage avec un langage hôte (CDuce dans
notre implantation) soulève la question du choix du sous-langage à utiliser. En ef-
fet il existe de nombreux langages restreints, spécialisés pour XML. En premier lieu,
XPath ([XPa]) est le standard pour la navigation dans un arbre XML. Cependant,
XPath n’est qu’un langage de requête et ne permet que d’explorer un document, pas
de le transformer. Il peut être vu comme un équivalent des patterns de XDuce, qui
sont aussi une primitive de navigation dans un document. Un autre langage plus
puissant est XQuery basé sur les primitives FLWR (For Let Where Return). XQuery
fournit des constructions permettant d’extraire des sous-parties d’un document (au
moyen de chemins XPath), d’itérer sur ces sous-parties et de créer de nouvelles va-
leurs en utilisant des sous-arbres capturés pendant l’itération. Ainsi, il semble être
un bon candidat pour un langage de transformation. Cependant, XQuery est aussi
très lié au modèle de donnée d’XML qui spécifie par exemple que chaque noeud d’un
document doit avoir un identifiant unique. XQuery permet aussi (au travers d’XPath)
de naviguer d’un noeud vers les parents de ce dernier, ce qui impose une représen-
tation cyclique du document XML (pointeurs vers le père, la racine du document,
. . .). Ces aspects particuliers ne facilitent pas l’intégration d’XQuery avec un langage
fonctionnel de type XDuce où le modèle de donné est beaucoup plus simple et ne
peut être modifié aisément, en raison notamment des opérateurs de filtrage.

206

A.3.4 Transducteurs d’arbres et inférence de type arrière

Plus éloignée des standards, nous trouvons une littérature très riche sur les com-
binateurs XML, issue de la théorie des transducteurs d’arbres. Le plus grand atout
des formalismes à base de transducteurs d’arbres est leur capacité à être typés exacte-
ment (i.e. sans approximation) au moyen d’une technique dite de typage arrière. Dans
cette approche, étant donné une transformation f (exprimée par un transducteur) et
un type de sortie s, on calcul le plus grand type d’entrée t (au sens de l’inclusion) tel
que :

f (t) ⊆ s

Cela revient, en pratique à calculer l’image inverse de s par f :

t = f−1(s)

La propriété des langages réguliers, que leur image par homomorphisme inverse est
toujours régulière, garantit que le type t ainsi calculé représente exactement l’en-
semble des entrées valides pour f . Cette technique a été appliquée à de nombreux
types de transducteurs : k-peeble transducers, macro-tree transducers,

L’inconvénient majeur de cette technique est sa complexité en temps (une tour
d’exponentielle en la taille de la transformation et du type). Même si cette approche
est inutilisable actuellement en pratique, on peut noter les progrès substantiels de
Helmut Seidl, Thomas Perst et Sebastian Maneth ([MPS07]) ainsi que d’Haruo
Hosoya et Alain Frisch ([FH07]) qui peuvent typer certaine classes de transfor-
mations en temps polynomial et diminuent quelque peu la complexité dans le cadre
général.

A.4 Contributions

Nous présentons ici les principales contributions de cette thèse, correspondant
chacune à un chapitre du présent manuscrit. La première partie est composée d’une
introduction ainsi que de rappels syntaxiques et sémantiques nécessaires aux déve-
loppements formels. La seconde partie donne les définitions formelles du langage de
filtres, leur sémantique, ainsi que leur système de type et un algorithme d’inférence
de type. La troisième partie présente des résultats pratiques d’implantation, ainsi
qu’un encodage d’XPath dans les filtres et une application de la discipline de typage
des filtres à XQuery, en vue de l’exécution efficace de requêtes. La quatrième partie
du manuscrit conclut notre étude et propose une discussion sur les travaux futurs.
Nous présentons ici les deuxième et troisièmes parties, contenant les contributions.

A.4.1 Les filtres et leur sémantique (chapitre 3)

En prenant pour point de départ les motifs de CDuce ([FCB02] eux même étant
une extension des motifs XDuce, [HP01]), nous les généralisons à des combinateurs et
en faisons un langage à part entière, permettant de former des termes calculatoires,
pouvant par exemple itérer un document d’entrée et le transformer. Si l’on pense aux
motifs en termes d’automates d’arbres, alors les filtres ne sont rien d’autre que des

207

transducteurs d’arbres : ils peuvent à la fois reconnaître (itérer) une valeur d’entrée et
la transformer.

Notre calcul permet d’exprimer : les opérations usuelles sur les séquences et
les arbres (renversement, concaténation, aplatissement, map,. . .) mais aussi d’enco-
der un fragment non trivial d’XPath, de même que des transformations Xslt . La
nouveauté est l’introduction d’un opérateur de composition, absent du formalisme
d’Hosoya et rendant nos filtres strictement plus expressifs. Pour donner un aperçu
du calcul, nous présentons le filtre effectuant la concaténation de deux listes :

Exemple A.1
Le filtre de concaténation :

concat = (((x,,,y)))→→→ (x;;; f)
f = `nil→→→ y

||| (((z→→→ z,,, f)))

est équivalent à la fonction OCaml:

let concat (x,y) =

let rec f l = match l with

`nil -> y

| (z,tail) -> (z, aux tail)

in f x

Bien que l’expression du filtre concat semble un peu complexe, il est aisé de
la comprendre en regardant le code de la fonction OCaml concat, équivalent. Les
filtres sont appliqués à une entrée unique. Le premier filtre, (((x,,,y))) →→→ (x;;; f) est un
filtre motif dans lequel le côté gauche de la flèche est un motif CDuce et le côté droit
la continuation du filtre. Dans le cas présent, le motif (((x,,,y))) capture dans x le premier
argument, dans y le deuxième et effectue la continuation dans l’environnement ainsi
augmenté. De la même manière, dans le code OCaml, la fonction f est imbriquée
sous la définition de concat de sorte que x et y sont visibles depuis f. La partie droite
du filtre (la continuation) est une composition, symbolisée par « ; », de deux filtres.
La composition de deux filtres f1; f2 appliquée à une valeur v consiste à calculer
f2(f1(v)). Bien que cette opération semble naturelle, nous verrons par la suite que
c’est d’elle dont est issue toute le pouvoir expressif du langage et par là-même la
complexité du typage. Pour en revenir à notre exemple, les deux filtres composés
sont le filtre expression x (qui est une expression du langage hôte) et le filtre f défini
après concat. La composition consiste ici à calculer f (x) et correspond exactement
à l’appel f x que l’on trouve à la fin du code OCaml.

Le filtre f quand à lui, consiste en l’union (notée « | ») de deux filtres; de manière
similaire aux branches de l’opérateur match with que l’on voit dans le code OCaml.
La première branche de l’union est le cas de base du filtre récursif f . Si la première
liste est vide, alors il retourne le deuxième argument, y. Si l’entrée est une liste (re-
présentée par une paire, à la Lisp), alors l’identité z →→→ z est appliquée au premier

208

élément de la liste et f et récursivement appliqué au reste. Après l’appel à f , la paire
des deux sous-résultats est renvoyée.

Cet exemple simple présente tous les filtres possibles : expressions de base, fil-
trage par motif, déconstruction de paire et reconstruction, union, composition et
régularité (par appels récursifs). Nous montrons dans ce chapitre la propriété fonda-
mentale de terminaison :

Théorème A.1 (Terminaison)
Soit f un filtre bien formé dont tous les sous-filtres expression terminent. Alors l’évaluation
de f (v) termine, pour toute valeur finie v.

A.4.2 Système de type (chapitre 4)

Comme expliqué précédemment, la discipline de typage pour les filtres n’est pas
standard. Plutôt que de typer la définition d’un filtre (comme on le fait avec des fonc-
tions), on les types à l’endroit de leur application, lorsque le type précis de l’entrée
est connu. L’idée est donc d’évaluer le filtre directement sur le type d’entrée pour cal-
culer un type de sortie. Dans certains cas, le type exact peut être calculé. Dans d’autre
cas, le type de sortie exact n’est pas régulier. Plutôt que de choisir une approxima-
tion particulière, nous définissons un système de type qui, étant donné un filtre et
un type d’entrée, infère toutes les dérivations régulières possibles. Plus précisément,
nous définissons des jugements de la forme :

Γ ` f (t) = s

signifiants qu’un filtre f appliqué à une valeur de type t dans un environnement Γ
renvoie une valeur de type s. Pour pouvoir exprimer le fait qu’il y a potentiellement
plusieurs s valides (et pas de meilleur), nous définissons le système de manière à ce
que pour tout s valide, il existe une dérivation de typage. Pour chaque approximation,
il existe donc une façon de typer le filtre de manière à ce que le type de sortie soit
exactement cette approximation. À l’aide de ce système, nous pouvons énoncer une
première propriété fondamentale du système de type, la préservation du typage.

Théorème A.2 (Préservation du typage)
Soient Γ, f , t, s et v tels que :

Γ ` f (t) = s

et v et de type t. Alors, f (v) est une valeur v′ de type s.

Comme le théorème de terminaison nous donne la progression de l’évaluation (un
filtre ne peut pas boucler à l’infini), nous pouvons en déduire la sûreté : un filtre bien
typé appliqué à une valeur du bon type n’échoue jamais.

209

Un autre point important développé dans cette partie est celui de la précision de
ce système et de son comportement vis-à-vis de la relation de sous-typage. Nous don-
nons plusieurs résultats techniques et exemples permettant de cerner la précision du
système. Il est en particulier plus précis que celui d’Hosoya pour les filtres que les
deux formalismes sont à même d’exprimer.

A.4.3 Algorithme d’inférence de type (chapitre 5)

Le système de type développé, bien que précis n’est pas utilisable dans une im-
plantation. En effet, nous avons vu que pour un type d’entrée et un filtre, il peut ad-
mettre une infinité de dérivations valides et qu’il n’y a pas moyen, a priori, d’en choisir
automatiquement une meilleure. Nous résolvons ce problème en ajoutant aux filtres
des annotations de types. L’idée est de décorer le corps du filtre à certains endroits
pour forcer l’algorithme à choisir l’une des approximations possible. Dit autrement,
nous laissons le soin au programmeur d’annoter le filtre, donc de choisir lui même
l’approximation qui lui convient. Le système, ramené à des filtres avec annotations
devient algorithmique et donc utilisable en pratique. Concevoir un système avec des
annotations n’est pas choses aisée. Nous nous attachons notamment à démontrer les
points suivants :

– un filtre n’a pas besoin d’être annoté partout. Nous analysons précisément dans
quel cas un filtre doit être annoté et quel est l’endroit précis où il doit l’être.
Cette analyse fine nous permet d’affirmer qu’en pratique, les annotations ne
sont pas pesantes pour le programmeur et que des filtres complexes peuvent
êtres écrits avec peu ou pas d’annotation.

– Nous montrons bien sûr un théorème de correction de l’algorithme vis-à-vis
du système de type général. Cela nous permet de montrer que l’algorithme est
sûr.

– Nous énonçons aussi un théorème de complétude. La présence d’annotations
rend ce théorème particulièrement important. Il spécifie que si un filtre est
annoté avec des types venant d’une dérivation de typage du système, alors l’al-
gorithme se comportera comme le système. Cela signifie que l’algorithme n’est
qu’une instance particulière du système dont le programmeur aura guidé les
choix, mais aussi que de mauvaises annotations ne permettrons jamais de ty-
per un filtre, et donc que les annotations ne sont que des « aides » et non pas
des opérateurs de cast (transtypage) aveugles.

A.4.4 Langage concret, implantation (chapitre 6)

La motivation de notre calcul formel est de donner un langage concret, utilisable
pour l’écriture de transformations XML. Nous étudions donc (et fournissons une im-
plantation de) l’intégration des filtres avec CDuce. Nous dotons les filtres d’une syn-
taxe concrète afin de rendre leur écriture plus aisée. Le filtre concat présenté précé-
demment devient donc :

210

Exemple A.2
let filter concat =
$ (x,y) -> (�{x} ; (

let filter f =

$ [] -> �{ y }

| ($ z -> �{ z }, f)

in f))

Mis à part les caractères spéciaux $ et ~ utilisés pour désambiguïser les motifs,
les filtres et les expressions, nous introduisons un lieur « let filter »permettant
d’écrire des filtres récursifs.

Bien évidement, l’un des points clés est la spécification des annotations. Nous
ne pouvons, en effet, demander au programmeur de décorer le corps du filtre d’an-
notations de type, comme cela était fait dans le modèle formel. Faire ainsi casserait
invariablement la modularité et la réutilisabilité du code, un filtre annoté se trouvant
« marqué » par des types et donc inutilisable dans un autre contexte. Nous résolvons
se problème en utilisant des annotations tardives. L’idée est d’annoter non pas la dé-
finition mais l’application du filtre, comme cela est illustré à la figure A.4. Nous y
définissons le filtre d’aplatissement, flatten dont on sait qu’il nécessite des anno-
tations. Deux annotations différentes sont données à la fin du code, à l’endroit ou
flatten est appliqué à un argument. De cette manière, aucun type ne vient polluer
la définition du filtre qui peut être utilisé dans plusieurs contextes différents.

Nous étendons aussi le langage avec de nouvelles constructions syntaxiques et sé-
mantiques, exprimables dans l’algèbre de base des filtres mais facilitant l’écriture de
programmes. De telles extensions sont les filtres paramétrés par d’autres filtres (nom-
més macro-filtres), les expressions régulières de filtres (similaires à celle d’Hosoya)
ainsi que d’autres combinateurs utiles : première projection et seconde projection
d’un produit, extraction du tag ou du contenu d’un document XML, Finalement,
nous montrons que les filtres autorisent un modèle d’exécution relativement efficace.

A.4.5 Encodage d’XPath (chapitre 7)

Les expressions XPath étant fortement prisées dans la communauté XML, leur
présence semble indispensable dans un langage pour favoriser l’adoption de ce der-
nier. Nous montrons comment encoder un fragment non trivial d’XPath, comportant
les axes avant ainsi que les prédicats. Bien que le filtre correspondant à un chemin
XPath ait besoin d’annotations, nous montrons comment inférer automatiquement
une approximation suffisante dans le cadre d’XPath. En effet, le fait de connaître la
sémantique du chemin XPath nous permet de déduire l’annotation du type de sortie
et donc d’annoter le filtre en conséquence. On obtient alors des expressions XPath au-
tomatiquement typées. Nous attachons un grand soin à la préservation exacte de la
sémantique d’XPath pour le fragment considéré (ordre de parcours, absence de dou-
blons,. . .). Nous montrons en particulier que plusieurs prédicats peuvent être testés

211

type T = [] | [<a>[] T []]

type S = [<c>[] <d>[]] | [<c>[] S <d>[]]

let filter flatten =

$ [] -> �{ [] }

| $ ([Any*] ,_) -> ((flatten ,flatten);concat)
| ($ x & (Any r[Any*]) ->�{ x } , flatten)

let v1 = (∗ une valeur de type T ∗)
let v2 = (∗ une valeur de type S ∗)
(∗

... autres definitions
∗)

let r1 = apply flatten to v1 where {| flatten = [<a>[]* []*] |}
let r2 = apply flatten to v2 where {| flatten = [<c>[]+ <d>[]+] |}

Fig. A.4 – Un exemple de code CDuce avec des filtres

statiquement, en les encodant sous forme de motifs CDuce.

A.4.6 Élagage statique et typage d’XQuery (chapitre 8)

Cette dernière contribution s’éloigne un peu des filtres et montre comment ap-
pliquer leur discipline de typage à un langage déjà existant, et quels bénéfices en
retirer. L’idée est toujours la même : « appliquer la transformation sur le type d’en-
trée pour en calculer le type de sortie ». Nous appliquons cette technique, à XQuery
et XPath, en utilisant une version plus complexe de l’algorithme d’inférence d’anno-
tations utilisé au chapitre 7. L’idée est de calculer non seulement le type de sortie
d’une requête mais surtout un opérateur de projection. Ce dernier est une informa-
tion statique (au même titre que le type) qui permet de déterminer quels noeuds d’un
document vont être effectivement utilisés par la requête (et quels autres seront sim-
plement ignorés). Cela nous permet d’équiper le moteur d’exécution de requêtes pour
qu’il puisse effectuer un chargement partiel du document en mémoire, ne chargeant
que les parties nécessaires à l’exécution. Ce type d’optimisations est particulièrement
intéressant dans le cadre de moteurs DOM, ces derniers utilisant une représentation
des document XML en mémoire peu optimale. En effet, pour assurer une exécution
efficace, de nombreuses méta-données sont gardées en mémoire avec le document.
Un document dont la taille sur le disque n’est que de 50 Mo pourra donc avoir une
taille de 250 Mo une fois chargé en mémoire et complètement saturer la mémoire
système lors de l’exécution d’une requête. Nous fournissons les outils formels néces-

212

saires à l’analyse des projecteurs ainsi que nos résultats d’implantation qui montrent
des performances nettement supérieures aux travaux existants.

A.5 Conclusion et travaux futurs

Comme nous l’avons décrit dans ce résumé, cette thèse s’attache à l’étude d’un
langage restreint et typé pour XML. Nous définissons un langage appelé langage de
filtres dont nous montrons formellement qu’il a les propriétés souhaitées de préci-
sion, modularité et expressivité. Les résultats formels sont augmentés par une étude
pratique de l’implantation des filtres dans CDuce, ainsi que de l’application des tech-
niques développées aux formalismes standards d’XML (XPath et XQuery).

Le point majeur pour la poursuite des travaux est bien évidement l’étude de l’in-
férence automatique d’annotations dans le cas général. Les travaux sur l’approxi-
mation de langages algébriques de Mark Jan Nederhof ([Ned00]) sont un point
de départ. Utiliser les nombreux résultats obtenus pour la compilation efficace des
transducteurs d’arbres permettrait aussi d’améliorer le modèle d’exécution des filtres.
Une piste intéressante est aussi l’application des techniques de typage arrière. Bien
qu’étant inutilisables en l’état, elles pourraient devenir performantes après un pré-
traitement du filtre par une passe de typage avant, approximative peu coûteuse en
temps. Un autre point demandant une attention particulière est celui de la syntaxe
concrète et en particulier des annotations. En effet, bien que conservant la modula-
rité, notre politique d’annotation reste fragile au regard de plusieurs aspects. Dans
un premier lieu, il faut se préocuper des problèmes de nommages et de portée (nous
avons considéré ici que tous les filtres portaient des noms différents). Un autre pro-
blème est celui de pouvoir annoter un filtre « profondément enfoui » dans le corps
d’un autre (ce qui est actuellement possible mais demande l’introduction de noms
artificiels, poluant le code).

En ce qui concerne les travaux de projection et typage d’XQuery, une extension
naturelle semble être de passer des DTDs à un formalisme plus général, regroup-
pant DTDs, XML-Schemas, Dataguides,. . . . Un travail d’intégration avec un moteur
existant et éprouvé est aussi un point important.

213

214

Bibliography

[CDuce] The CDuce language implementation. http://www.cduce.org.

[AC93] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. on
Programming Languages, 15(4):575–631, 1993.

[Acz77] P. Aczel. Introduction to inductive definitions. In: Barwise, J. (Ed.), Hand-
book of Mathematical Logic, North-Holland Publishing Company, Amsterdam.
pp. 739-782, 1977.

[Bal06] V. Balat. The Ocsigen: Typing Web Interaction with Objective Caml. ACM
Sigplan Workshop on ML, 2006.

[BCCN06] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyễ n. Type-based XML
projection. In VLDB 2006, pages 271–282, 2006.

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-
purpose language. In ICFP ’03, pages 51–63, 2003.

[BCL+05] S. Bressan, B. Catania, Z. Lacroix, Y-G Li, and A. Maddalena. Accelerating
queries by pruning XML documents. Data Knowl. Eng., 54(2):211–240, 2005.

[BCM05] V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm
for XML query processing. In PADL 05, number 3350 in LNCS, pages 235–
252, 2005.

[BNST06] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise dtds
from xml data. In VLDB, pages 115–126, 2006.

[CAS] The Castor project. http://www.castor.org/.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY.

[CDG+97] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available
at: http://www.grappa.univ-lille3.fr/tata, 1997. Release October,
the 1st 2002.

215

http://www.cduce.org
http://www.castor.org/
http://www.grappa.univ-lille3.fr/tata

[CF05] G. Castagna and A. Frisch. A gentle introduction to semantic subtyping.
In Proc. of PPDP ’05 (full version) and ICALP ’05, LNCS n. 3580, (summary),
2005. Joint ICALP-PPDP keynote talk.

[CFF+03] D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML
Query Use Cases. Technical Report 20030822, World Wide Web Consor-
tium, 2003.

[CGMS04] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types for Path Cor-
rectness for XML Queries. In ICFP ’04, 9th ACM Int. Conf. on Functional
Programming, 2004.

[CN08] G. Castagna and K. Nguyễ n. Typed iterators for xml. In PLAN-X, page to
appear, 2008.

[Col04] D. Colazzo. Path Correctness for XML Queries: Characterization and Static Type
Checking. PhD thesis, Dip. di Informatica, Università di Pisa, 2004.

[Cou83] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer
Science, 25:95–169, 1983.

[DAF+03] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. M. Fischer. Path
sharing and predicate evaluation for high-performance xml filtering. ACM
Trans. Database Syst., 28(4):467–516, 2003.

[DFF+04] D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics.
Technical report, World Wide Web Consortium, February 2004. W3C
Working Draft.

[DG05] O. Danvy and M. Goldberg. There and back again. Fundam. Inform.,
66(4):397–413, 2005.

[DOM04] W3C: DOM specifications. http://www.w3.org/TR/2004/

REC-DOM-Level-3-Core-20040407/, 2004.

[DTD06] W3C: DTD specifications. http://www.w3.org/TR/REC-xml/

#dt-doctype, 2006.

[Eng77] J. Engelfriet. Top-down tree transducers with regular look-ahead. Mathe-
matical Systems Theory, 10:289–303, 1977.

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci.,
31(1):71–146, 1985.

[Ext] The extlib library. http://ocaml-lib.sourceforge.net.

[FCB02] A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In LICS ’02,
pages 137–146. IEEE Computer Society Press, 2002.

216

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/REC-xml/#dt-doctype
http://ocaml-lib.sourceforge.net

[FH07] A. Frisch and H. Hosoya. Towards practical typechecking for macro tree
transducers. In DBPL, pages 246–260, 2007.

[FN07] A. Frisch and K. Nakano. Streaming xml transformation using term rewrit-
ing. In PLAN-X, pages 2–13, 2007.

[Fra05] M. Franceschet. XPathMark - An XPath benchmark for XMark generated
data. In XSym 2005, 3rd Int. XML Database Symposium, LNCS n. 3671, 2005.

[Fri04a] A. Frisch. Regular tree language recognition with static information. In
Proc. IFIP Conf. on Theor. Comput. Sci. (TCS). Kleuwer, 2004.

[Fri04b] A. Frisch. Théorie, conception et réalisation d’un langage adapté à XML. PhD
thesis, Université Paris 7 Denis Diderot, 2004.

[Fri06] A. Frisch. OCaml + XDuce. SIGPLAN Not., 41(9):192–200, 2006.

[GGM+04] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing
xml streams with deterministic automata and stream indexes. ACM Trans.
Database Syst., 29(4):752–788, 2004.

[GLP03] V. Gapeyev, M. Levin, and B. Pierce. Recursive subtyping revealed. Journal
of Functional Programming, 12(6):511–548, 2003.

[GLPS05] V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. The Xtatic experience.
In PLAN-X, 2005.

[GP04] V. Gapeyev and B. C. Pierce. Paths into patterns. Technical Report MS-CIS-
04-25, University of Pennsylvania, October 2004.

[Gra03] H. Grall. Deux critères de sécurité pour l’execution de code mobile. PhD thesis,
Ecole Nationale des Ponts et Chaussées, 2003.

[HFC05] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism for XML.
In POPL ’05, pages 50–62, 2005.

[Hos00] H. Hosoya. Regular Expression Types for XML. PhD thesis, University of
Tokyo, 2000.

[Hos04] H. Hosoya. Regular expression filters for XML. In Programming Languages
Technologies for XML (PLAN-X), pages 13–27, 2004.

[HP01] H. Hosoya and B.C. Pierce. Regular expression pattern matching for XML.
In POPL ’01, 2001.

[HVP00] H. Hosoya, J. Vouillon, and B. Pierce. Regular expression types for XML. In
ICFP ’00, volume 35(9) of SIGPLAN Notices, 2000.

[IHW02] Z. G. Ives, A. Y. Halevy, and D. S. Weld. An xml query engine for network-
bound data. VLDB J., 11(4):380–402, 2002.

217

[JAX] The jaxb api. http://java.sun.com/developer/technicalArticles/

WebServices/jaxb/.

[Jay04] C. Barry Jay. The pattern calculus. ACM Trans. Program. Lang. Syst.,
26(6):911–937, 2004.

[Läm07] R. Lämmel. Scrap your boilerplate with XPath-like combinators. In
POPL’07, Proceedings. ACM Press, January 2007.

[Ler06] X. Leroy. Coinductive big-step operational semantics. In European Sympo-
sium on Programming (ESOP 2006), volume 3924 of Lecture Notes in Computer
Science, pages 54–68. Springer, 2006.

[LG07] X. Leroy and H. Grall. Coinductive big-step operational semantics. Infor-
mation and Computation, 2007. Accepted for publication in the special issue
on Structured Operational Semantics, to appear.

[LMM00] D. Lee, M. Mani, and M. Murata. Reasoning about XML Schema Languages
using Formal Language Theory. Technical report, IBM Almaden Research,
2000.

[LP03] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical de-
sign pattern for generic programming. ACM SIGPLAN Notices, 38(3):26–37,
March 2003. Proceedings of the ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI 2003).

[MBPS05] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML Type checking with
macro tree transducers. In ACM PODS, pages 283–294, 2005.

[Mia06] C. Miachon. Langages de requêtes pour XML à base de patterns : conception,
optimisation et implantation. PhD thesis, Université Paris-Sud 11, 2006.

[MMW05] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions
and Operators, 2005. http://www.w3.org/TR/xpath-functions/.

[MPS07] S. Maneth, T. Perst, and H. Seidl. Exact XML type checking in polynomial
time. In ICDT, pages 254–268, 2007.

[MS03] A. Marian and J. Siméon. Projecting XML documents. In VLDB ’03, pages
213–224, 2003.

[MSV03] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J.
Comput. Syst. Sci., 66(1), 2003.

[Ned00] M.-J. Nederhof. Practical experiments with regular approximation of
context-free languages. Computat. Linguistics, 26(1):17–44, 2000.

[OCS] The Ocsigen Project. http://www.ocsigen.org/.

[OMFB02] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward.
In Proc. EDBT Workshop (XMLDM), volume 2490 of LNCS, pages 109–127.
Springer, 2002.

218

http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
http://www.w3.org/TR/xpath-functions/
http://www.ocsigen.org/

[Pie02] B. C. Pierce. Types and programming languages. MIT Press, 2002.

[Rel] OASIS Committee Specification: Relax-NG. http://relaxng.org/

spec-20011203.html.

[SL06a] M. Sulzmann and K. Zhuo Ming Lu. A type-safe embedding of XDuce into
ML. El. Notes Theor. Comp. Sci., 148(2):239–264, 2006.

[SL06b] M. Sulzmann and K. Zhuo Ming Lu. XHaskell. In PLAN-X, 2006.

[SV02] L. Segoufin and V. Vianu. Validating streaming xml documents. In PODS
’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 53–64, New York, NY, USA, 2002.
ACM.

[SWK+02] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.
XMark: A benchmark for XML data management. In VLDB ’02, pages 974–
985, 2002.

[Toz01] A. Tozawa. Towards static type checking for xslt. In DocEng ’01: Proceedings
of the 2001 ACM Symposium on Document engineering, pages 18–27, New York,
NY, USA, 2001. ACM.

[Vou06] J. Vouillon. Polymorphic regular tree types and patterns. In POPL, pages
103–114, 2006.

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theor.
Comput. Sci., 73(2):231–248, 1990.

[Wat94] B. W. Watson. A taxonomy of finite automata construction algorithms.
Technical Report Computing Science Note 93/43, Eindhoven University of
Technology, The Netherlands, May 1994.

[Wel99] J. B. Wells. Typability and type checking in system f are equivalent and
undecidable. Ann. Pure Appl. Logic, 98(1-3):111–156, 1999.

[XML] W3C: XML Version 1.0 (Fourth Edition). http://www.w3.org/TR/

REC-xml/.

[XPa] W3C: XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/

xpath.

[XQu] W3C: XML Query (XQuery). http://www.w3.org/TR/xquery.

[XSc] W3C: XML Schema. http://www.w3.org/XML/Schema.

219

http://relaxng.org/spec-20011203.html
http://relaxng.org/spec-20011203.html
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery
http://www.w3.org/XML/Schema

	Abstract/Résumé
	List of Figures
	List of Tables
	List of Symbols
	I Introduction
	Introduction
	The XML standard
	Programming with XML
	Statically typed languages for XML
	Statically and precisely typed are not enough!

	A solution
	State of the art
	Polymorphic type-systems for XML
	Hard-coded constructs
	Iterator languages
	Tree-transducers, backward type inference

	Contributions
	Filters and their semantics (Chapter 3)
	A type-system for filters (Chapter 4)
	Type inference algorithm (Chapter 5)
	Concrete language (Chapter 6)
	XPath encoding (Chapter 7)
	Static pruning and typing of XQuery (Chapter 8)

	Notations
	Basic notations
	Regular trees
	Symbols
	Trees
	Explicit recursion
	Properties

	Proofs and trees
	Inference systems, derivations
	Induction and coinduction

	CDuce
	Values
	Types
	Patterns

	II Filter calculus
	Filters
	Rationale
	Filter calculus
	Operational semantics
	Examples
	Simple filters
	Alternative, first match policy
	Recursive filters
	Composition

	Termination

	Static semantics
	Type-system
	General presentation
	Typing the composition
	Typing the union

	Properties
	Use of the subsumption
	Subject reduction
	Monotonicity

	Type inference
	Presentation
	Type-inference Algorithm
	Properties
	Termination
	Soundness
	Completeness

	III Implementation
	Concrete language
	Introduction
	Basic syntax
	XML filters
	Recursive filters
	Filter annotations

	Examples
	Pattern-matching
	Map-like filters
	Non local transformations
	Annotations

	Syntactic extensions
	Deletion
	Filter parameters
	Regular expression filters

	Type inference algorithm
	Compilation
	Compilation target
	Tail-recursive list traversal
	Filter specialization
	Evaluation without backtracking

	XPath encoding, approximations
	XPath-like expressions
	XPatht expression, automata
	Filter encoding

	Type annotations
	XPath and XPatht
	Basic features
	Predicates

	Type-based XML projection
	Document pruning
	Notations
	Data Model
	DTDs and validation
	Type projectors

	XPath and XPath
	Simple paths
	Predicates
	Handling XPath predicates

	Static Analysis
	Type inference
	Type-Projection inference
	Adding sibling, preceding and following axes.

	Extension to XQuery
	Experiments

	IV Conclusion
	Conclusion
	Summary
	Future work
	Dynamic semantics, expressivity
	Type-system, approximations
	Concrete language, compilation
	XPath encoding
	Type projectors
	To infinity… and beyond!

	Appendix
	Résumé étendu
	Contexte
	Programmer avec XML
	Langages statiquement typés pour XML
	«Y'a pas que le statique et le précis dans la vie »
	Une solution

	État de l'art
	Système de types polymorphes pour XML
	Itérateurs prédéfinis
	Langages d'itérateurs
	Transducteurs d'arbres et inférence de type arrière

	Contributions
	Les filtres et leur sémantique (chapitre 3)
	Système de type (chapitre 4)
	Algorithme d'inférence de type (chapitre 5)
	Langage concret, implantation (chapitre 6)
	Encodage d'XPath (chapitre 7)
	Élagage statique et typage d'XQuery (chapitre 8)

	Conclusion et travaux futurs

	Bibliography

