
QIR – Specification

Romain Vernoux

January 6, 2017

Contents

1 Notations 2

2 Architecture 3

3 QIR data model, expressions and operators 4
3.1 QIR data model . 4
3.2 QIR operators . 4
3.3 QIR expressions . 5

4 Translation to QIR 7

5 QIR evaluation 8
5.1 Reduction rules . 8
5.2 A measure for “good” output plans . 9
5.3 An exhaustive reduction strategy . 12
5.4 A heuristic-based reduction strategy . 13
5.5 Concrete examples . 27

5.5.1 Example of code factorization: analytics queries 27
5.5.2 Example of fragment grouping: dynamic queries 29
5.5.3 Example of incompatibility: caching . 30

6 Source capabilities 32

7 Translation to native queries 32

8 Evaluation of Truffle nodes in the database 32

9 Query evaluation in the database 32

10 Returning result to the host language 32

1

1 Notations

Trees In this document, we will use a parenthesis notation to denote trees. This way, the
tree leaves are just represented by their name and a tree rooted at a node N with n children
S1, . . . , Sn is denoted by N(r1, . . . , rn) where ri is the representation of the subtree rooted at
node Si, recursively. For instance, if a tree T is composed of a node N which has two children
P and Q such that Q has one child R, we will write T as N(P,Q(R)).

Contexts Contexts are trees in which some subtrees have been removed and replaced by
“holes”. A hole is denoted by []. For instance a context C can be obtained by removing the
subtree rooted at Q in T and will be denoted by N(P, []). A substitution corresponds to filling
a hole with a subtree. If a context C contains one hole, C[S] corresponds to the tree C where
the hole has been replaced by the tree S. For instance, if C = N(P, []) then T = C[Q(R)].
This definition generalizes to contexts with n holes using the C[S1, . . . , Sn] notation to denote
the n holes subtitutions. Notice that the n holes are ordered using a prefix (depth-first, left-
to-right) traversal of the tree, which corresponds to the left-to-right order while reading the
tree notation we use in this document. For instance, if C = N([], Q([])) then T = C[P,R].

2

2 Architecture

④ Query evaluation

Native queries Truffle

③ Translation to native queries

QIR Truffle

① Translation to QIR

Host language
Query language

Capabilities DSL

② QIR evaluation

Figure 1: Architecture

The QIR workflow works as follows:

1. Queries specified in the host language syntax (possibly augmented with a special syntax
for queries) are mapped to QIR constructs if possible, and kept as Truffle node black
boxes otherwise. This translation phase also maps the data model of the host language
to the QIR data model. The QIR constructs will be described in Section 3 and the
translation mechanism from host language to QIR in Section 4.

2. QIR constructs are rewritten and partially evaluated within the QIR framework, using a
description of the capabilities of the target database. The evaluation of QIR expressions
will be described in Section 5 and the mechanism that exposes the capabilities of the
database in Section 6.

3. The supported QIR operators and expressions are translated into the database native
language, whereas expressions that are not supported and black box Truffle nodes are
delegated to the Truffle runtime in the database. This translation phase also maps
the QIR data model to the database data model. The translation of supported QIR
constructs to native queries will be described in Section 7 and the mechanism that
distributes Truffle nodes in Section 8.

4. The generated queries and the Truffle nodes are evaluated inside the database and the
result is returned to the host language. This backward translation maps database native
data to the data model of the host language. The evaluation of queries in the database
will be described in Section 9 and the backward translation mechanism in Section 10.

3

3 QIR data model, expressions and operators

3.1 QIR data model

The QIR data model is independent of the data models of the host language and the database.
Data objects are called values. The following grammar describes their syntax (for future use
in this document) and hierarchy.

〈Value〉 ::= 〈Number〉
| 〈String〉
| 〈Bool〉

〈Number〉 ::= 〈Java double〉

〈String〉 ::= 〈Java string〉

〈Bool〉 ::= 〈Java boolean〉

3.2 QIR operators

Operators represent computation on database tables. They are designed to be close to op-
erators of the relational algebra, in order to facilitate rewritings and translation to database
native languages. Each operator has children expressions (in parentheses) and configuration
expressions (in subscript). Children provide the input tables of the operator whereas param-
eters describe the computation on each table elements. Again, this is similar to the relational
algebra.

〈Operator〉 ::= Scan〈Expr〉()

| Select〈Expr〉(〈Expr〉)

| Project〈Expr〉(〈Expr〉)

| Sort〈Expr〉(〈Expr〉)

| Limit〈Expr〉(〈Expr〉)

| Group〈Expr〉,〈Expr〉(〈Expr〉)

| Join〈Expr〉(〈Expr〉, 〈Expr〉)

These operator constructors represent the following database computation:

• Scantable() outputs the (unordered) list of elements in the target table corresponding to
table.

• Selectfilter(input) outputs the list of elements v in the list corresponding to input such
that filter v reduces to true.

• Projectformat(input) outputs the list of elements corresponding to format v, with v
ranging in the list corresponding to input.

4

• Sortcomp(input) outputs the list of elements v in the list corresponding to input ordered
according to comp v ascending.

• Limitlimit(input) outputs the limit first elements of the list corresponding to input.

• Groupeq,agg(input) outputs the list of elements corresponding to agg g for each group
g in the partition of the elements v in the list corresponding to input, according to eq v.

• Joinfilter(input1, input2) outputs the join of the elements v1 in the list corresponding
to input1 and the elements v2 in the list corresponding to input2, such that filter v1 v2
reduces to true.

3.3 QIR expressions

QIR expressions form a small, pure language distinct from operators. They perform small
computation on values. The following grammar describes their syntax (for future use in this
document) and hierarchy.

〈Expression〉 ::= 〈Variable〉
| 〈Lambda〉
| 〈Application〉
| 〈Constant〉
| 〈TruffleNode〉
| 〈DataRef 〉
| 〈ValueConstr〉
| 〈ValueDestr〉
| 〈ValueFun〉
| 〈Operator〉
| 〈BuiltinFun〉

〈Lambda〉 ::= ‘λ’ 〈Variable〉 ‘.’ 〈Expression〉

〈Application〉 ::= 〈Expression〉 〈Expression〉

〈Constant〉 ::= 〈Value〉

〈ValueConstr〉 ::= 〈ListConstr〉
| 〈TupleConstr〉

〈ListConstr〉 ::= ‘nil’
| ‘cons’ 〈Expression〉 〈Expression〉

〈TupleConstr〉 ::= ‘tnil’
| ‘tcons’ 〈String〉 〈Expression〉 〈Expression〉

〈ValueDestr〉 ::= 〈ListDestr〉
| 〈TupleDestr〉

〈ListDestr〉 ::= ‘destr’ 〈Expression〉 〈Expression〉 〈Expression〉

5

〈TupleDestr〉 ::= ‘tdestr’ 〈Expression〉 〈String〉

〈ValueFun〉 ::= ‘-’ 〈Expression〉
| 〈Expression〉 ‘and’ 〈Expression〉
| ‘if’ 〈Expression〉 ‘then’ 〈Expression〉 ‘else’ 〈Expression〉
| . . .

〈BuiltinFun〉 ::= ‘avg’ 〈Expression〉
| ‘sum’ 〈Expression〉
| . . .

Lambda-abstractions (resp. applications, constants) represent functions (resp. function
applications, constants) of the host language.
The constructor for lists takes an expression for the head and an expression for the tail. Tables
are represented by lists, since the output of queries might be ordered.
Tuples are constructed as a list of mappings: the constructor for tuples takes a string for
the mapping name, an expression for the mapping value and an expression for the tail of the
mapping list. Notice that this definition creates an order between key-value pairs in the tuples
and allows duplicate keys (this is an arbitrary design choice).
The list destructor has three arguments: the list to destruct, the term to return when the list
is a nil and a function with two arguments λh.λt.M to handle lists with a head and a tail.
The tuple destructor has two arguments: the tuple to destruct and the attribute name of the
value to return.
Finally, built-in functions represent common database functions (such as aggregation) for eas-
ier recognition and translation into native languages.
The formal definition of expression reduction will be given in Section 5.1.

In this document, we will sometimes use the syntactic sugar let x = M inN for (λx. N)M
but the let . . . in constructor is not part of the expression language. Similarly, we will some-
times use the notation t.attr for tdestr t "attr", not x for if x then false else true and
let rec x = M in N as a shortcut for a fixpoint combinator.

6

4 Translation to QIR

TODO (Romain)

7

5 QIR evaluation

5.1 Reduction rules

Definition 1. Variable substitution in QIR expressions (cf. Section 3.3) is defined similarly
as in the pure lambda-calculus. The substitution of a variable x in e1 by an expression e2 is
denoted e1{e2/x}.

Definition 2. The reduction rules for QIR expressions consist in the β-reduction rule aug-
mented with the δ-reduction rules for destructors and ρ-reduction rules for primitive types.

• (λx. e1) e2 →β e1{e2/x}.

• destr nil enil econs →δ enil

• destr (cons ehead etail) enil econs →δ econs ehead etail

• tdestr (tcons "name1" eval1 etail) "name1"→δ eval1

• tdestr (tcons "name1" eval1 etail) "name2"→δ tdestr etail "name2"

• if true then e1 else e2 →ρ e1

• if false then e1 else e2 →ρ e2

• true and e1 →ρ true

• false and e1 →ρ e1

• . . .

In this document, we will use the notation → for the relation →β ∪ →δ ∪ →ρ and talk
about redex for β-redexes, δ-redexes and ρ-redexes indifferently.

Reduction strategies will be given in Sections 5.3 and 5.4.

Theorem 1. QIR with the above reduction rules has the Church-Rosser property (i.e. is
confluent).

Proof. Encoding (i) integer (resp. boolean, string) values and functions in the lambda-calculus
(Church encoding), (ii) operators, built-in functions, Truffle nodes, Data references, nil, cons,
tnil and tcons with constructors and (iii) destr and tdestr with (linear) pattern-matching,
QIR can be transposed in a confluent lambda-calculus with patterns[3] for which the β, δ and
ρ reduction rules are compatible.

As we will see in the following sections, this is an important property, since it allows
us to apply any reduction strategy without breaking the semantics of the input expression.
Consequently, extending QIR with non-confluent constructs (e.g. side-effects) would require
significant work.

8

Theorem 2. QIR with the above reduction rules verifies the Standardization theorem, that is,
if an expression e has a normal form, it can be obtained from e by reducing successively its
left-outermost redex.

Proof. With the same encoding as in the proof of Theorem 1, QIR can be transposed in a
lambda-calculus with patterns[2] in which the Standardization theorem holds and for which
the β, δ and ρ reduction rules are compatible.

5.2 A measure for “good” output plans

Traditional databases use a tree of relational algebra operators (plan) to represent compu-
tation. Optimizations consist in commuting operators in the plan or applying local tree
rewritings. The plan evaluation usually corresponds to (a variation of) a bottom-up evalua-
tion of each operator, where a particular implementation is chosen for each operator for best
performance.

For a same computation, such database engines benefit from working on a large, single plan
instead of multiple small plans, since more optimizations become available and more statis-
tics can be gathered to pick the best implementation for each operator. Moreover, there is no
need to materialize and transfer intermediate results if all the computation is done in one plan.

Given an input QIR expression, the goal of the QIR evaluation module is to partially
evaluate and rewrite it in order to (i) make its translation to the native database easier and
(ii) create opportunities for database optimizations by grouping database computation in a
small number of large queries, as much as possible.

As we will see later in this section, applying classical reduction strategies (e.g. call-by-
value, call-by-name, lazy evaluation, etc.) until a normal form is reached does not satisfy
the above requirements, since contracting some redexes might scatter parts of a same query.
Instead, we will characterize the shape of the expressions we want to obtain as output of this
module with a measure, then investigate reduction strategies that produce "good" expressions
according to this measure.

Definition 3. Supported operators are operators that are supported by the database, according
to the mechanism described in Section 6.

Definition 4. Supported expressions are expressions that are supported inside operator con-
figurations (cf. Section 3.2) by the database, according to the same mechanism.

Definition 5. Compatible operators are supported operators with supported expressions as
configuration. Conversely, any other expression is called incompatible.

Note that the compatibility of an operator is independent from the compatibility of its
children.

Definition 6. Let e be an expression. We say that a context F in e is a fragment if e =
C[t(t1, . . . , ti−1, F [e1, . . . , en], ti+1, . . . , tj)] or e = F [e1, . . . , en], where:

• C is a one-hole context made of arbitrary expressions

9

C

F

e1 en… …

t

Figure 2: A fragment F

• t is an incompatible j-ary expression

• t1, . . . , ti−1, ti+1, . . . , tj and F are the j children of t

• F is an n-hole context made of compatible operators only

• e1, . . . , en all have an incompatible head expression

This definition is illustrated in Figure 2.

Definition 7. Let e be an expression. We define Op (e) as the number of operators in e
(counting recursively in each subexpression), Comp (e) as the number of compatible operators
in e (counting recursively in each subexpression) and Frag (e) as the number of fragments in
e.

Definition 8. Let e be an expression. We define the measure for good output expressions as
the pair M(e) = (Op (e) − Comp (e) ,Frag (e)). Moreover, expressions are ordered using the
lexicographical order on this measure.

That is, a reduction e →∗ e′ is a good reduction if one of the two following conditions is
met:

• Op (e′)− Comp (e′) < Op (e)− Comp (e)

• Op (e′)− Comp (e′) = Op (e)− Comp (e) and Frag (e′) < Frag (e)

The intuition about this measure is as follows:

• When a reduction transforms an incompatible operator into a compatible operator, the
measure Op (e)− Comp (e) decreases. For instance, in Example 1, Op (e)− Comp (e) =
2 − 1 = 1 (since f is a variable, it is not supported by the database) and Op (e′) −
Comp (e′) = 2− 2 = 0.

10

• When a reduction inlines operators as children of other operators, Op (e) − Comp (e)
stays the same (since no operator is created nor modified) and Frag (e) decreases. For
instance, in Examples 2 and 3, Op (e) − Comp (e) = Op (e′) − Comp (e′) = 2 − 2 = 0,
Frag (e) = 2 and Frag (e′) = 1.

• In the infinite recursion of Example 4, unfolding one step of recursion does not change
the measure, which hints that the plan is not getting better.

• This intuition generalizes well to binary operators, for which a reduction can duplicate
operators (e.g. Example 5). If all duplicated operators are compatible, Op (e)−Comp (e)
stays the same (all the additional operators are compatible) therefore it is a good re-
duction if the number of fragments decreases. In this situation, the database will get
a bigger plan in which it can perform optimizations (such as caching). Conversely, if
a duplicated operator is incompatible, Op (e) − Comp (e) increases, meaning that the
reduction should not happen. In this situation, this operator should in fact be evaluated
once in memory and its result cached to be reused multiple times during the expression
evaluation. For instance, in Example 5, if C is supported, Op (e)−Comp (e) = 3−3 = 0,
Op (e′)−Comp (e′) = 5−5 = 0, Frag (e) = 2 and Frag (e′) = 1, and if C is not supported,
Op (e)− Comp (e) = 3− 2 = 1, Op (e′)− Comp (e′) = 5− 3 = 2.

Example 1

let f = λx. x < 2 in
Selectλt. f(t.id)(ScanX) →∗ Selectλt. t.id<2(ScanX)

Example 2

let x = ScanX in
Selectλt. t.id<2(x) →∗ Selectλt. t.id<2(ScanX)

Example 3

let f = λx. Selectλt. t.id<2(x) in
f(ScanX)

→∗ Selectλt. t.id<2(ScanX)

Example 4

let rec f = λx. Selectλt. t.id<2(f(x)) in
f(ScanX)

→∗
let rec f = λx. Selectλt. t.id<2(f(x)) in
Selectλt. t.id<2(f(ScanX))

Example 5

let x = SelectC(ScanX) in
Joinλt1.λt2. t1.id=t2.name(x, x)

→∗
Joinλt1.λt2. t1.id=t2.name(SelectC(ScanX),
SelectC(ScanX))

Lemma 1. The measure M defined above induces a well-founded order on expressions.

11

Proof. The order induced by M is a lexicographical order on the natural order of positive
integers, which is well-founded, and the lexicographical order preserves well-foundness.

5.3 An exhaustive reduction strategy

Given the measure M described in Section 5.2 and an expression e, the question is now to
find a reduced term e′ such that e →∗ e′ and M(e′) is minimal. We will first consider an
exhaustive strategy.

Definition 9. Let e be an expression. We denote by Rdxs (e) the set of redexes in e, and for
r ∈ Rdxs (e), we write e→r e

′ to state that e′ can be obtained from e in one reduction step by
contracting r.

Definition 10. Let e be an expression. We recursively define Red0 (e) as the singleton {e}
and ∀n > 0,Redn (e) = {e′′ | e′ ∈ Redn−1 (e) , r ∈ Rdxs (e′) , e′ →r e

′′}. We write Reds (e) to
denote

⋃
n∈N Redn (e). Finally we define MinReds (e) as the set argmine′∈Reds(e)M(e′).

Notice that for some expressions e (e.g. expressions containing recursions), Reds (e) is
infinite, MinReds (e) can be infinite and an algorithm that iteratively constructs the Redn (e)
will not terminate. Conversely, if e is strongly normalizing, Reds (e) and MinReds (e) are finite
and such an algorithm terminates.

Theorem 3. This reduction strategy is exhaustive, i.e. ∀e,∀e′, e→∗ e′ ⇔ e′ ∈ Reds (e).

Proof. (⇐) If e′ ∈ Reds (e) then ∃n ∈ N, e′ ∈ Redn (e). The proof follows an induction on n.
If n = 0 then e = e′ therefore e →∗ e′. For n > 0, we know that ∃e′′ ∈ Redn−1 (e) ,∃r ∈
Rdxs (e′′) , e′′ →r e

′. Thus, e′′ → e′ and by induction hypothesis e→∗ e′′ therefore e→∗ e′.
(⇒) If e →∗ e′ then ∃n ∈ N, e →n e′. The proof follows an induction on n. If n = 0 then
e = e′ therefore e′ ∈ Red0 (e) ⊆ Reds (e). For n > 0, we know that ∃e′′, e →n−1 e′′ → e′.
By induction hypothesis, e′′ ∈ Reds (e) therefore ∃n′ ∈ N, e′′ ∈ Redn′ (e). It follows that
e′ ∈ Redn′+1 (e) ⊆ Reds (e).

Lemma 2. ∀e,MinReds (e) 6= ∅.

Proof. Since e ∈ Red0 (e) ⊆ Reds (e), we know that Reds (e) 6= ∅. Moreover, the order induced
by M is well-founded (Lemma 1) therefore M has a minimum on Reds (e) and MinReds (e) is
non-empty.

Theorem 4. This reduction strategy is optimal, i.e. ∀e,∀e′, e →∗ e′ ⇒ e′ ∈ MinReds (e) ∨
∃e′′ ∈ MinReds (e) ,M(e′′) < M(e′).

Proof. Suppose that e →∗ e′. Using Theorem 3 we know that e′ ∈ Reds (e). Using Lemma
2, we know that MinReds (e) 6= ∅ and we denote by Mmin the measure M of the elements of
MinReds (e). Then, eitherM(e′) = Mmin and e′ ∈ MinReds (e) by definition, orM(e′) > Mmin

and using again Lemma 2 we can find e′′ ∈ MinReds (e) ,M(e′′) < M(e′).

12

5.4 A heuristic-based reduction strategy

The reduction strategy described in Section 5.3 is not realistic in terms of complexity for a
direct implementation, and might not even terminate in some cases. In this section, we will
describe an efficient heuristic corresponding to a partial exploration of the possible reductions
that guarantees termination.

The heuristic-based reduction strategy supposes the existence of an integer constant F
representing the "fuel" that can be used by the reduction. It consists of two main passes.
The first pass tries to reduce redexes that could make operators compatible by assuming that
(i) operators with free variables in their configuration have few chances to be compatible and
(ii) reducing redexes inside operator configurations increases the odds of making an operator
compatible. The second pass tries to decrease the number of fragments by reducing redexes
inside the children expressions of the operators. Both passes guarantee that the measure of
the global expression always decreases after a number of reduction steps bounded by F .

For readability purposes, we will first describe the search space tree explored by the heuris-
tic then define the result of the algorithm as a particular expression in this search space, but
keep in mind that the actual implementation corresponds to a depth-first exploration of the
search space, with decision points and back-tracking.

Definition 11. Similarly to sets and the {x | P} notation for set comprehensions, we use
lists (the mathematical object) and the [x | P] notation for list comprehensions. List compre-
hensions are order-preserving, that is, a list [f(x) | x ∈ L] respects the order of L if L is a
list.

In the following definitions, we will use this notation to build the list of children of a node
in a tree. For instance, 0([x+ 1 | x ∈ [1, 2, 3]]) will stand for the tree 0(2, 3, 4). A node with
an empty children list will be considered to be a leaf.

Definition 12. Let e be an expression. We define its operators contexts OpContexts (e) as the
set of contexts {C[] | e = C[op], op is an operator}.

Definition 13. Let e be an expression and C[] an operator context in OpContexts (e). We
define the configuration free variables ConfigFVars (e, C[]) as the list of variables [v | e =
C[opC′[v](. . .)], v is a free variable in C ′[v]] sorted using a depth-first left-to-right traversal of
C ′[v].

Definition 14. Let e be an expression and C[] an operator context in OpContexts (e). We de-
fine the configuration redexes ConfigRdxs (e, C[]) as the list of redexes [r | e = C[opC′[r](. . .)], r is a redex]
sorted using a depth-first left-to-right traversal of C ′[v].

Definition 15. Let e be an expression and C[] an operator context in OpContexts (e). We de-
fine the children expressions Children (e, C[]) as the list of expressions [ci | e = C[op...(c1, . . . , cn)]].

Definition 16. The following three definitions are mutually recursive and therefore presented
together in this document.
Let e be an expression and e′ a subexpression of e. We define HMakeRedex (e, e′) as

• e′′, such that e→r e
′′, if e′ is already a redex r

13

• HMakeRedex (e, e′′) if e′ = (e′′ e1), e′ = destr(e′′, e1, e2), e′ = tdestr(e′′, s), e′ =
if e′′ then e1 else e2, e′ = e′′ and (true/false) or e′ = (true/false) and e′′ (and
similarily for other ρ-redexes).

• HInlineVar (e, v) if e′ is a variable v

• None otherwise

Let e be an expression and e′ a subexpression of e. We define HContractLam (e, e′) as

• HMakeRedex (e, e′′), such that e = C[e′′], if e = C[e′ e1], e = C[e1 e
′], e = C[destr(e′, e1, e2)],

e = C[destr(e1, e
′, e2)], e = C[destr(e1, e2, e

′)], e = C[tdestr(e′, s)], e = C[if e1 then e′ else e2]
or e = C[if e1 then e2 else e′]

• HContractLam (e, e′′), such that e = C[e′′], if e = C[λv. e′], e = C[cons(e′, e1)], e =
C[cons(e1, e

′)], e = C[tcons(s, e′, e1)] or e = C[tcons(s, e1, e
′)]

• None otherwise

Let e be an expression and v a variable in e. We define the inlining HInlineVar (e, v) as

• None if v is free in e

• HContractLam (e, l), where l is the λ binding v in e, otherwise

HMakeRedex (e, e′) corresponds to (i) contracting e′ if e′ is already a redex and (ii) con-
tracting a necessary redex in order for e′ to become a redex, otherwise. HContractLam (e, e′)
corresponds to (i) contracting the redex containing e′ if e′ is already part of a redex and (ii) con-
tracting a necessary redex in order for e′ to become part of a redex, otherwise. HInlineVar (e, v)
corresponds to contracting a necessary redex in order to eventually substitute v by its defini-
tion.

Consider for instance the expression e given in Example 6. To go towards the inlining of the
variable tl in the configuration of the Scan operator, the heuristic calls HInlineVar (e, tl), which
tries to contract the binding lambda by calling HContractLam (e,λtl. Scanf tl()). This lambda
cannot be contracted before the lambda above it, and therefore HContractLam (e,λhd. λtl. . . .)
is called recursively. Again, this lambda cannot be contracted before the head destr, but this
requires its first child expression to be reduced to a cons. That’s why the heuristic recursively
calls HMakeRedex (e, (λx. x) (cons . . .)), which contracts the argument redex.

Example 6

e = destr ((λx. x) (cons 1 (cons 2 nil)))
false (λhd. λtl. Scanf tl())

→ e′ = destr (cons 1 (cons 2 nil))
false (λhd. λtl. Scanf tl())

Definition 17. Let e be an expression and C[] an operator context in OpContexts (e). We
define the one-step reduction of the operator configuration HOneRedConfig (e, C[]) as

• HInlineVar (e, v) if there is a first (in the list) variable v ∈ ConfigFVars (e, C[]) such that
HInlineVar (e, v) 6= None

14

• e′, such that e→r e
′, if there is a first (in the list) redex r ∈ ConfigRdxs (e, C[])

• None otherwise

This means that for a given operator, the heuristic first tries to find a free variable that can
be inlined, then if there is no such variable, it reduces the configuration using a left-outermost
(call-by-name) reduction strategy, and finally if there is no redex to reduce, it returns None.

Definition 18. Let e be an expression and C[] an operator context in OpContexts (e). Using
the notation e′ for HOneRedConfig (e, C[]), we define HRedConfigφ (e, C[]) as

• e() if φ = 0 or if e′ = None

• e′([HRedConfigF (e′, op) | op ∈ OpContexts (e′)]) if M(e′) < M(e)

• e([HRedConfigφ−1 (e′, op) | op ∈ OpContexts (e′)]) otherwise

HRedConfigφ (e, C[]) corresponds to the recursive exploration of the search space tree for re-
ductions in configurations, with the guarantee that search space subtrees in which the measure
does not decrease have a depth bounded by F .

Definition 19. Let e be an expression. The search space HConfigSSF (e) after the first pass
is defined as e([HRedConfigF (e, op) | op ∈ OpContexts (e)]).

Definition 20. Let e be an expression. The result expression HConfigF (e) of the first pass
is defined as follows. First, the rewrite rule x(s1, . . . , si, x(), si+2, sn)→ x(s1, . . . , si, si+2, sn)
is applied on the search space HConfigSSF (e) as much as possible. Then, the left-most leaf is
chosen.

The rewrite rule corresponds to pruning search space subtrees in HConfigSSF (e) that failed
to reach an expression with smaller measure, whereas taking the left-most leaf corresponds to
a heuristic decision.

Definition 21. Let e be an expression and C[] an operator context in OpContexts (e). We
define the one-step reduction of the operator children HOneRedChild (e, C[]) as

• HMakeRedex (e, c) if there is a first (in the list) child c ∈ Children (e, C[]) such that
HMakeRedex (e, c) 6= None

• None otherwise

This means that for a given operator, the heuristic tries to find a children expression that
can be reduced (using a call-by-name reduction strategy) in order to regroup fragments, and
if there is no such child, it returns None.

Definition 22. Let e be an expression and C[] an operator context in OpContexts (e). Using
the notation e′ for HOneRedChild (e, C[]), we define HRedChildφ (e, C[]) as

• e() if φ = 0 or if e′ = None

• e′([HRedChildF (e′, op) | op ∈ OpContexts (e′)]) if M(e′) < M(e)

• e([HRedChildφ−1 (e′, op) | op ∈ OpContexts (e′)]) otherwise

15

… ……

…

… ……

HConfigSSF

HChildrenSSF

HMinRedF

Figure 3: Relation between HConfigSSF (e), HChildrenSSF (HConfigF (e)) and HMinRedF (e)

HRedChildφ (e, C[]) corresponds to the recursive exploration of the search space tree for
reduction in children, with the guarantee that search space subtrees in which the measure
does not decrease have a depth bounded by F .

Definition 23. Let e be an expression. The search space HChildrenSSF (e) after the second
pass is defined as e([HRedChildF (e, op) | op ∈ OpContexts (e)]).

Definition 24. Let e be an expression. The result expression HChildrenF (e) of the second pass
is defined as follows. First, the rewrite rule x(s1, . . . , si, x(), si+2, sn)→ x(s1, . . . , si, si+2, sn)
is applied on the search space HChildrenSSF (e) as much as possible. Then, the left-most leaf
is chosen.

Similarly to Definition 20, the rewrite rule corresponds to pruning search space subtrees
in HChildrenSSF (e) that failed to reach an expression with smaller measure, whereas taking
the left-most leaf corresponds to a heuristic decision.

Definition 25. Let e be an expression. The result expression HMinRedF (e) of the heuristic
reduction is defined as HChildrenF (HConfigF (e)).

Figure 3 illustrates the construction of the two search spaces (cf. Definitions 19 and 23)
leading to the computation of HMinRedF (e). Dots and stars represent expressions considered
by the heuristic as a possible reduction of their parent expression, but stars correspond to the
special case where the measure of the expression is smaller than the measure of its parent, i.e.
when the heuristic made progress.

We will now continue towards a proof of termination of this heuristic-based reduction
strategy (Theorem 5).

Definition 26. Considering an expression with subexpressions as a tree with subtrees, we
define a traversal of an expression as follows, starting from the head expression:

• for a nullary expression, visit this expression.

• for λx. e1, cons e1 e2 and tcons s e1 e2, visit this expression then traverse the children
from left to right (e1 then e2 . . . then en).

16

false

cons

destr

λhd

1 cons

2 nil

λtl

()

f tl

4 5

6 7

9 10

11

12 13

14

16

3

Scan 15

() 8

λx

x

1

2

Figure 4: Example of expression traversal

• for other n-ary expressions (e.g. (e1 e2), destr e1 e2 e3, etc.), traverse the children
from left to right (e1 then e2 . . . then en), then visit the expression.

We denote by TraversalPos (e, e′) the position of a subexpression e′ in this traversal of e.

TraversalPos (e, .) actually induces a well-founded order on the locations of the subex-
pressions that are arguments of the recursive calls to HInlineVar (., .), HMakeRedex (., .) and
HContractLam (., .) made by the heuristic. It will be used in inductions in some of the follow-
ing proofs.

For example, consider again the expression e from Example 6 and its traversal given in
Figure 4. Remember the chain of recursive calls made by the heuristic (HInlineVar (e, tl), which
calls HContractLam (e,λtl. Scanf tl()), which calls HContractLam (e,λhd. λtl. . . .), which in-
directly calls HMakeRedex (e, (λx. x) (cons . . .)), which finally contracts this redex) and no-
tice that TraversalPos (e, tl) > TraversalPos (e,λtl. Scanf tl()) > TraversalPos (e,λhd. λtl. . . .) >
TraversalPos (e, (λx. x) (cons . . .)).

Lemma 3. For all expression e the following three properties hold.

• For a variable e′ in e, HInlineVar (e, e′) returns None or contracts a redex.

• For a subexpression e′ in e, HMakeRedex (e, e′) returns None or contracts a redex.

• For a subexpression e′ in e, HContractLam (e, e′) returns None or contracts a redex.

Proof. The proof follows an induction on TraversalPos (e, e′).

• If e′ is free in e then HInlineVar (e, e′) returns None. Otherwise, denoting by l the lambda
binding e′, HInlineVar (e, e′) corresponds to HContractLam (e, l), and since TraversalPos (e, l) <
TraversalPos (e, e′), the induction hypothesis yields the result.

• If e′ is a redex, HMakeRedex (e, e′) contracts this redex. If e′ = (e′′ e1), e′ = destr e′′ e1 e2,
e′ = tdestr e′′ s or e′ = if e′′ then e1 else e2 (and similarly for other ρ-redexes),

17

HMakeRedex (e, e′) corresponds to HMakeRedex (e, e′′) and since TraversalPos (e, e′′) <
TraversalPos (e, e′) the induction hypothesis yields the result. If e′ is a variable, HMakeRedex (e, e′)
corresponds to HInlineVar (e, e′) and we proved the result above. Otherwise, HMakeRedex (e, e′)
returns None.

• We denote by e′′ the parent expression of e′. If e′′ = (e′ e1), e′′ = destr e′ e1 e2,
e′′ = tdestr e′ s or e′′ = if e′ then e1 else e2 (and similarly for other ρ-redexes),
HContractLam (e, e′) corresponds to HMakeRedex (e, e′′) which either contracts e′′ and
we are done, or corresponds to HMakeRedex (e, e′) and we proved the result above. If
e′′ = (e1 e

′), e′′ = destr e1 e
′ e2, e′′ = destr e1 e2 e

′, e′′ = if e1 then e′ else e2
or e′′ = if e1 then e2 else e′ (and similarly for other ρ-redexes), HContractLam (e, e′)
corresponds to HMakeRedex (e, e1) and since TraversalPos (e, e1) < TraversalPos (e, e′),
the induction hypothesis yields the result. If e′′ = λx. e′, e′′ = cons e′ e1, e′′ =
cons e1 e′, e′′ = tcons s e′ e1, e′′ = tcons s e1 e′, HContractLam (e, e′) corresponds to
HContractLam (e, e′′) and since TraversalPos (e, e′′) < TraversalPos (e, e′), the induction
hypothesis yields the result. Otherwise, HContractLam (e, e′) returns None.

These three properties not only show that the objects used to describe the heuristic are
well defined, but also mean that correct implementations of HInlineVar (., .), HMakeRedex (., .)
and HContractLam (., .) terminate.

Lemma 4. For all expression e, the search space HConfigSSF (e) (resp. HChildrenSSF (e)) has
bounded size.

Proof. Each recursive call to HRedConfigφ (e, C[]) (resp. HRedChildφ (e, C[])) is well defined
(corollary of Lemma 3) and is such that the pair (M(e), φ) decreases. Using lemma 1 it is easy
to prove that the lexicographical order induced by this pair is also well-founded, therefore the
search space has bounded depth. Moreover, any expression has a bounded number of operators
and operator contexts therefore each node in the search space has a bounded number of
children.

Theorem 5. This reduction strategy always terminates, that is, for an input expression e,
it always considers a finite number of expressions e′ such that e →∗ e′ in order to find
HMinRedF (e).

Proof. Using Lemma 4, this reduction strategy only considers a finite number of expressions
e1 such that e →∗ e1 in order to find HConfigF (e), then using Lemma 4 again, it only
considers a finite number of expressions e2 such that HConfigF (e) →∗ e2 in order to find
HChildrenF (HConfigF (e)) = HMinRedF (e).

We will now continue towards a proof that under some hypotheses this reduction strategy
is complete, that is, it returns an optimal result for a big enough fuel value (Theorem 6).

In the following proofs, we will need a way to observe how subexpressions of an original
expression are affected by a chain of reductions. Borrowing an idea used in [1] to define
residuals, we will attach unique identifiers to all subexpressions of the original expression, and

18

reason on identifiers in the final expression. Definitions 27 and 28 correspond to a formalization
of this concept.

Definition 27. We define the language QIR* as the language of QIR constructs (cf. Section 3)
in which integer identifiers can be attached to each subexpression and reductions are extended
accordingly. Non-exhaustively, this means that

• QIR* operators contain Scane1(), Scanide1(), Selecte1(e2), Selectide1(e2), etc.

• QIR* expressions contain x, xid, λx. e1, λidx. e1, (e1 e2), (e1 e2)
id, true, trueid etc.

• xid{e1/x} = e1, x{e1/x} = e1

• (λidx. e1) e2 → e1{e2/x}, destrid (consid
′
e1 e2) e3 e4 → e4 e1 e2, trueid

′
andid e1 →

true, etc.

where id, id′ are integer identifiers and the ei are QIR* expressions.
Let e be a QIR expression and e1 a subexpression of e. We denote by ?(e) the QIR* expression
in which a unique identifier is attached to each subexpression of e. There is a one-to-one
correspondance between the subexpressions of e and the subexpressions of ?(e), thus we will
also denote by ?sub(e1) the subexpression of ?(e) corresponding to e1.
Let e′ be a QIR* expression and e′1 a subexpression of e′. We denote by ?−1(e′) the QIR
expression in which all identifers are removed from e′. There is a one-to-one correspondance
between the subexpressions of e′ and the subexpressions of ?−1(e′), thus we will also denote by
?−1sub(e′1) the subexpression of ?−1(e′) corresponding to e′1.
Let e′ be a QIR* expression and e′1 a subexpression of e′. We denote by ExprId (e′, e′1) the
identifier of e′1 in e′, if it has one (it is not defined otherwise).

Lemma 5. Let e0 be a QIR expression and e′0 a QIR* expression such that ?−1(e′0) = e0.
Any QIR reduction chain e0 →r1 . . . →rn en can be simulated by the QIR* reduction chain
e′0 →r′1

. . .→r′n e
′
n such that, for all 1 ≤ i ≤ n, ?−1(e′i) = ei and ?−1sub(r′i) = ri.

Proof. The proof follows an induction on n. For n = 0, the result is trivial. For n > 0,
contracting the redex r′1 such that ?−1sub(r′1) = r1 yields a QIR* expression e′1. It is easy to
prove by case analysis on r1 that ?−1(e′1) = e1. By induction hypothesis, the remaining of the
reduction chain e1 →∗ en can be simulated by e′1 →∗ e′n, which means that the entire chain
e0 →∗ en can be simulated by e′0 →∗ e′n.

Definition 28. Let e0 be a QIR expression, e a subexpression of e0 and en a QIR expression
such that e0 →∗ en. Using Lemma 5 and the fact that ?−1(?(e0)) = e0, we know that this QIR
reduction chain can be simulated by a QIR* reduction chain e′0 →∗ e′n starting from e′0 = ?(e0).
This way, we define Occurences (en, e) as the set {?−1sub(e′) | e′ is a subexpression of e′n,ExprId (e′n, e

′) =
ExprId (?(e0) , ?sub(e))}.

For instance, the QIR reduction
(λx. λy. f x x) z z → (λy. f z z) z → f z z
can be simulated by the QIR* reduction
(λ1x. λ2y. f3 x4 x5) z6 z7 → (λ2y. f3 z6 z6) z7 → f3 z6 z6.

One can see, just by looking at identifiers, that the first z variable produced both z vari-
ables of the final expression : it has two occurences in the final expression. The other one

19

disappeared : it has no occurence in the final expression.

The following definitions and proofs will not use QIR* anymore, but only the Occurences (., .)
notation.

Definition 29. Let e be an expression, e′ a subexpression of e and r a redex such that e→r e
′′

and Occurences (e′′, e′) = ∅. Borrowing a concept from [1], we say that r erases e′ if e′ is not
part of the redex r, that is if e′ is a subexpression of an expression e′′ such that one of the
following conditions holds.

• r = (λx. e1) e
′′ and x is not free in e1

• r = destr nil e1 e′′

• r = destr (cons . . .) e′′ e1

• r = tdestr (tcons "name1" e1 e′′) "name1"

• r = tdestr (tcons "name1" e′′ e1) "name2"

• r = if true then e1 else e′′

• r = if false then e′′ else e1

• r = true and e′′ (and similarly for other ρ-redexes)

Definition 30. Let e be an expression, e′ a subexpression of e and r a redex such that e→r e
′′

and Occurences (e′′, e′) = ∅. We say that r consumes e′ if e′ is part of the redex r, that is if
one of the following conditions holds.

• r = e′

• r = (e′ e1)

• r = (λv. e1) e2 and e′ is the variable v free in e1

• r = destr e′ e1 e2

• r = tdestr e′ s

• r = if e′ then e1 else e2

• r = e′ and e1 (and similarly for other ρ-redexes)

Lemma 6. Let e be an expression, e′ a subexpression of e and r a redex in e. If e→r e
′′ and

Occurences (e′′, e′) = ∅, then r either consumes or erases e′.

Proof. By case analysis on r. All cases are similar therefore we will only write the proof for
r = (λx.e1) e2. By hypothesis, there is a context C[] such that e = C[r]. Then we do a case
analysis on the position of e′ in e. We know that e′ cannot be a subexpression of C, otherwise
Occurences (e′′, e′) 6= ∅. For the same reason, we also know that e′ is not a subexpression of
e1 other than the free variable x. If e′ = r, if e′ = λx.e1 or if e′ is the variable x free in
e1, then e is consumed. Otherwise, e′ is a subexpression of e2 and x is not free in e1 (since
Occurences (e′′, e′) = ∅), and in this case e′ is erased.

20

Definition 31. Let e be an expression, e′ a subexpression of e and r a redex in e such that
e→r e

′′, we say that r duplicates e′ if |Occurences (e′′, e′) | > 1.

Definition 32. Let e0 be an expression and e′ a subexpression of e0. We say that e′ cannot
be erased (resp. consumed, duplicated) if there is no reduction chain e0 →r1 . . .→rn en such
that rn erases (resp. consumes, duplicates) an element of Occurences (en−1, e

′).

Lemma 7. Let e be an expression and e′ a subexpression of e. The following three properties
hold.

• If e′ is a variable v and if HInlineVar (e, v) returns None then e′ cannot be consumed.

• If HMakeRedex (e, e′) returns None then e′ cannot be consumed.

• If HContractLam (e, e′) returns None then e′ cannot be consumed.

Proof. The proof follows an induction on TraversalPos (e, e′).

• Suppose that HInlineVar (e, v) returns None. If v is free in e then by definition it can-
not be consumed. Otherwise, denoting by l the lambda binding v, this means that
HContractLam (e, l) returns None. Since TraversalPos (e, l) < TraversalPos (e, v), the in-
duction hypothesis tells that l cannot be consumed and (by definition of the consumption
of a variable) neither can e′.

• Suppose that HMakeRedex (e, e′) returns None. If e′ is a variable, this means that
HInlineVar (e, e′) returns None and we proved the result above. If e′ is a redex, this is ab-
surd (HMakeRedex (e, e′) cannot return None). If e′ = (e′′ e1), e′ = destr e′′ e1 e2, e′ =
tdestr e′′ s or e′ = if e′′ then e1 else e2 (and similarly for other ρ-redexes), this means
that HMakeRedex (e, e′′) returns None and since TraversalPos (e, e′′) < TraversalPos (e, e′)
the induction hypothesis tells that e′′ cannot be consumed and (by definition of the
consumption of the considered expressions for e′) neither can e′. If e′ = λx. e1,
e′ = cons e1 e2, e′ = tcons s e1 e2, e′ = nil, e′ = tnil or if e′ is a constant (in-
teger, boolean, etc.), by looking at all the call sites of HMakeRedex (., .) we know that
the parent of e′ is such that e′ is in an ill-formed term (e.g. destr tnil e1 e2) and
therefore cannot be consumed. The remaining possible expressions for e′ (e.g. Truffle
nodes, Data references, operators, etc.) cannot be consumed in any expression.

• Suppose that HContractLam (e, e′) returns None. We denote by e′′ the parent expression
of e′. If e′′ = (e′ e1), e′′ = destr e′ e1 e2, e′′ = tdestr e′ s or e′′ = if e′ then e1 else e2
(and similarly for other ρ-redexes), this means that HMakeRedex (e, e′′) returns None,
which in turn means that HMakeRedex (e, e′) returns None and we proved the result
above. If e′′ = (e1 e

′), e′′ = destr e1 e′ e2, e′′ = destr e1 e2 e′, e′′ = if e1 then e′ else e2
or e′′ = if e1 then e2 else e′ (and similarly for other ρ-redexes), this means that
HMakeRedex (e, e′′) returns None, which in turn means that HMakeRedex (e, e1) returns
None. Since TraversalPos (e, e1) < TraversalPos (e, e′), the induction hypothesis tells that
e1 cannot be consumed and (by definition of the consumption of the considered expres-
sions for e′′) neither can e′′, which implies that e′ cannot be consumed either. If e′′ =
λx. e′, e′′ = cons e′ e1, e′′ = cons e1 e′, e′′ = tcons s e′ e1, e′′ = tcons s e1 e′, this means
that HContractLam (e, e′′) returns None and since TraversalPos (e, e′′) < TraversalPos (e, e′),
the induction hypothesis tells that e′′ cannot be consumed and (by definition of the con-
sumption of the considered expressions for e′) neither can e′. Similarly to above, the

21

remaining expressions to consider for e′′ either correspond to ill-formed expressions (that
cannot be consumed) or expressions that can never be consumed.

Definition 33. We say that an expression e has the fixed operators property if no operator op
in e can be erased or duplicated.

Remember that the definition of compatible operators (Definitions 3, 4 and 5) depends on
an (arbitrary) external module describing the capabilities of the target database (cf. Section
2). The following definition allows to

Definition 34. We say that a database verifies the stable compatibility property if and only if,
given an expression e, an operator op in {op | C[] ∈ OpContexts (e) , e = C[op]} such that op
is compatible and an expression e′ such that e→∗ e′, each operator op′ ∈ Occurences (op, e′) is
also compatible.

This last definition should hold for a realistic database and an accurate description of its
capabilities. Indeed, it basically says that if an operator is compatible, any reduction either
does not affect the operator or helps the database by simplifying its configuration.

Lemma 8. Let e be an expression with fixed operators and r a redex in e. For a database with
stable compatibility, if e→r e

′ then M(e′) ≤M(e).

Proof. By case analysis on r. All cases are similar therefore we will only write the proof for
r = (λx.e1) e2. By hypothesis, there is a context C[] such that e = C[r]. Since e has fixed
operators, there is a one-to-one correspondance between the operators of e and the operators
of e′. For each operator op in e, denoting by op′ the corresponding operator in e′, the stable
compatibility hypothesis tells us that if op is compatible, then op′ is also compatible. Since
no redex can create operators, this implies that Op (e′)− Comp (e′) ≤ Op (e)− Comp (e). The
only case to treat is when Op (e′)− Comp (e′) = Op (e)− Comp (e). Looking at the definition
of fragments (cf. Definition 6), we see that there is only three ways to increase the number of
fragments in e.

• Duplicate an existing fragment. This cannot happen under the fixed operator hypothesis,
since a fragment contains at least one operator.

• Create a new fragment by making an incompatible operator compatible. This cannot
happen either. Indeed, if r turns an incompatible operator into a compatible one, using
the stable compatibility hypothesis, we know that all other compatible operators in e
are still compatible in e′ which contradicts Op (e′)− Comp (e′) = Op (e)− Comp (e).

• Split an existing fragment into at least two fragments. This again, cannot happen.
Indeed, let F be a fragment in e = C[(λx.e1) e2]. By definition of a fragment, we only
have to consider the following cases:

– if F is a subexpression of e2 or C[], it is intact in e′.

– if F is a subexpression of e1, either x is not free in F and F is not affected by the
reduction or x is in the configuration of some operators of F and (stable compati-
bility) these operators stay compatible after reduction and r cannot split F .

22

– if r is in the fragment, it is necessarily in a configuration of an operator of the
fragment which (stable compatibility) stays compatible after reduction, therefore r
cannot split F .

Lemma 9. Let e be a weakly-normalizing expression with fixed operators. For a database with
stable compatibility, the normal form of e has minimal measure.

Proof. Since e is weakly-normalizing, it has a normal form eN . Suppose, to the contrary, that
there exists e′ such that e →∗ e′ and M(e′) < M(eN). Using Theorem 1 (confluence) and
the fact that eN is normal, we know there is a finite reduction chain e′ →∗ eN and applying
Lemma 8 on each reduction of the chain leads to a contradiction.

Lemma 10. Let e be a weakly-normalizing expression with fixed operators, emin an expression
in MinReds (e) and e′ an expression such that e→∗ e′ and Op (e′)− Comp (e′) = Op (emin)−
Comp (emin). For a database with stable compatibility, an operator is compatible in emin if and
only if it is compatible in e′.

Proof. Using the fixed operator hypothesis, we know that there is a one-to-one correspon-
dance between the operators of e and the operators in any reduced form of e. Therefore,
Comp (e′) = Comp (emin).
Suppose now, to the contrary, that there exists an operator op in e such that Occurences (e′, op) =
{op′}, Occurences (emin, op) = {opmin}, op′ compatible and opmin not compatible. Using The-
orem 1 (confluence), we know there is an expression e′′ such that e′ →∗ e′′ and emin →∗ e′′.
Using the stable compatibility hypothesis, op is compatible in e′′ and all operators compatible
in emin stay compatible in e′′, which contradicts the minimality of the measure of emin.
Similarly, if there is an operator op in e such that Occurences (e′, op) = {op′}, Occurences (emin, op) =
{opmin}, op′ not compatible and opmin compatible, the minimality of emin tells that all op-
erators compatible in e′′ are also compatible in emin and the stable compatibility hypothesis
tells that each operator compatible in e′ are still compatible in e′′, which contradicts the fact
that Comp (e′) = Comp (emin).

Theorem 6. For databases with stable compatibility, this reduction strategy is complete on
strongly-normalizing expressions with fixed operators. That is, for a database with stable com-
patibility, given a strongly-normalizing input expression e with fixed operators, there exists a
fuel value F such that HMinRedF (e) ∈ MinReds (e).

Proof. Remember from Definition 10 that all expressions in MinReds (e) have same (minimal)
measure. Using Lemma 9, we know that the normal form eN of e is in MinReds (e). Let
Mmin be its measure. Consider now eh = HMinRedF (e). Using Theorem 4, we know that
eh ∈ MinReds (e) or M(eh) > Mmin and we want to prove that the latter cannot happen.
Suppose to the contrary that M(eh) > Mmin. Using the definition of M (cf. Definition 8),
this means that one of the two following statements holds.

• Op (eh)− Comp (eh) is greater than the first component of Mmin

• Op (eh)−Comp (eh) is equal to the first component ofMmin and Frag (eh) is greater than
the second component of Mmin

23

We will prove that none of these cases can happen.

• Suppose that Op (eh) − Comp (eh) is greater than the first component of Mmin. Since
e has the fixed operators property, there is a one-to-one correspondance between the
operators of eN and eh. Therefore, we know that Comp (eh) < Comp (eN) and there exists
an operator op in e such that Occurences (eh, op) = {oph}, Occurences (eN , op) = {opN},
opN is compatible and oph is not compatible. Let ch (resp. cN) be the configuration of
oph (resp. opN). The question now is to understand how the first pass of the heuristic-
based algorithm (cf. Definition 20) could fail to make op compatible. Remember Lemma
3 telling that HInlineVar (., .) and HMakeRedex (., .) either contract a redex or return None,
and keep in mind that such reductions maintain a single instance of ch in the reduced
forms of eh (fixed operator hypothesis). Since e is strongly-normalizing, this means that
there is a fuel value F allowing the heuristic to make enough calls to HInlineVar (., .) on
the free variables of ch in order to get to an expression e′h = C ′[opc′h(. . .)] such that (i)
there is no free variable in c′h or (ii) calls to HInlineVar (e′h, .) return None for every free
variable of c′h. Continuing from this point, since e is strongly-normalizing, e′h and c′h are
also strongly normalizing. Thus, Theorem 2 tells that there is a fuel value F allowing
the heuristic to reduce all redexes of c′h and reach a normal form c′′h and an expression
e′′h = C ′[opc′′h(. . .)]. Since we supposed that the heuristic failed to make op compatible,
this means that c′′h is different from cN . Using Theorem 1 (confluence), we know there
is reduction e′′h →∗ eN . Since the redexes contracted in this chain cannot erase nor
duplicate operators (fixed operator hypothesis), the reduction chain can only affect c′′h
in the following ways.

– Substitute free variables in c′′h. This cannot happen: by hypothesis, either (i) there
is no free variable in c′h and therefore in c′′h or (ii) calls to HInlineVar (e′h, .) return
None for every free variable of c′h and using Lemma 7, such a variable cannot be
consumed.

– Reduce redexes located inside c′′h. This cannot happen since c′′h is in normal form.
– Leave c′′h untouched. This leads to a contradiction: c′′h is equal to cN .

Therefore, there is a fuel value such that the heuristic makes op compatible. Now, taking
the maximum of the required values of F to make each operator compatible, there exists
a value of F such that Op (eh)− Comp (eh) is equal to the first component of Mmin.

• Suppose now that Op (eh) − Comp (eh) is equal to the first component of Mmin and
Frag (eh) is greater than the second component of Mmin. Since e has the fixed op-
erators property, there is a one-to-one correspondance between the operators of eN
and eh. Using Lemma 10, we know that there exists an operator op in e such that
Occurences (eh, op) = {oph}, Occurences (eN , op) = {opN}, opN and oph are both com-
patible, opN has a compatible child operator cN and the child expression ch of oph is
incompatible (i.e. not a compatible operator). The question now is to understand how
the second pass of the heuristic-based algorithm (cf. Definition 24) could fail to reduce
ch to a compatible operator. Remember Lemma 3 telling that HMakeRedex (., .) either
contracts a redex or returns None, and keep in mind that such reductions maintain a
single instance of oph in the reduced forms of eh (fixed operator hypothesis). Since
e is strongly-normalizing, this means that there is a fuel value F allowing the heuris-
tic to make enough calls to HMakeRedex (., .) on ch in order to get to an expression

24

e′h = C ′[op...(. . . , c
′
h, . . .)] such that calls to HMakeRedex (c′h, .) returns None. Since we

supposed that the heuristic failed to reduce ch to a compatible operator, this means
that the head of c′h is different from the head of cN (which is a compatible operator).
Using Lemma 7, c′h cannot be consumed, and as the child expression of an operator that
cannot be erased, c′h cannot be erased either. According to Lemma 6 this contradicts
the confluence theorem telling that there is a reduction e′h →∗ eN . Therefore, there is
a fuel value such that the heuristic reduces ch to a compatible operator. Now, taking
the maximum of the required values of F to reduce the children of all operators, there
exists a value of F such that Frag (eh) is equal to the second component of Mmin.

We also conjecture that the result of Theorem 6 still holds for weakly-normalizing expres-
sions.

Conjecture 1. For databases with stable compatibility, this reduction strategy is complete
on weakly-normalizing expressions with fixed operators. That is, for a database with stable
compatibility, given a weakly-normalizing input expression e with fixed operators, there exists
a fuel value F such that HMinRedF (e) ∈ MinReds (e).

None of the remaining hypotheses can be removed.

• Stable compatiblity: consider a database for which the Scan operator is compatible if its
configuration has more than two free variables. Obviously, it would not have the stable
compatibility property, since inlining the definition of these variables could reduce the
number of free variables in the configuration. Take now expression e from Example 7.
Since the heuristic tries to inline variables before reducing redexes in the configurations,
it will never consider expression e′, which is the only element of MinReds (e).

For the next counterexamples, we will suppose a simplistic database capabilities descrip-
tion, for which all operators are compatible as long as there is no free variable in their
configuration (such a database would have the stable compatibility property).

• Normalizing: consider expression e from Example 8. Obviously, it is non-normalizing
because of the Ω = (λx. x x) (λx. x x) in the configuration. Since the heuristic applies a
call-by-name reduction strategy on the configurations once all free variables are inlined,
it will consume all the fuel reducing Ω and never consider e′, which is the only element
of MinReds (e).

• Operators cannot be erased: consider expression e from Example 9. Obviously, the
Scanx() operator can be erased. Since the heuristic only tries to inline variables in the
configurations and reduce them, it will never consider e′, which is the only element of
MinReds (e).

• Operators cannot be duplicated: consider expression e from Example 10. Obviously, the
Scanz operator can be duplicated. The heuristic will try to inline y in the configuration
of the two Join operators, which requires to inline x first. Since this two-step reduc-
tion decreases the measure and because the heuristic chooses the left-most leaf of the
configuration search space, e′ will never be considered although it is the only element of
MinReds (e).

25

Example 7

e = (λt. Scan(λx. x=x) t()) 1 →∗ e′ = (λt. Scanλx. t=t()) 1

Example 8

e = Scan((λx. x x) (λx. x x)) ((λx. 1) y)() →∗ e′ = Scan((λx. x x) (λx. x x)) 1()

Example 9

e = if false then Scanx()
else Scandb.table()

→∗ e′ = Scandb.table()

Example 10

e = (λx. λy. Joinif false then y else true(
Scandb.table(),
Joinif false then y else true(x, x))
) Scanz() false

→∗
e′ = λx. λy. Jointrue(
Scandb.table(),
Jointrue(x, x))
) Scanz() false

Figure 5.4 sums up the situation. In this Venn diagram, E stands for the set of all QIR
expressions, SN for the set of strongly-normalizing QIR expressions, FO for the set of QIR
expression with fixed operators, H for the set of QIR expressions on which the heuristic re-
turns an optimal result and P for the set of QIR expressions for which we proved that the
heuristic returns such a result. As we will discuss in Section 5.5, H is much bigger than P : in
fact the heuristic returns optimal results on all our real-world use cases.

E SN

FO

PH

Figure 5: Architecture

26

5.5 Concrete examples

5.5.1 Example of code factorization: analytics queries

Consider the following analytics query written in SQL and freely inspired by the TPC-H
benchmark.

SELECT
l_returnflag AS return_flag,
l_linestatus AS line_status,
SUM(l_extended_price) AS sum_base_price,
SUM(l_extended_price * (1 - l_discount)) AS sum_disc_price,
SUM(l_extended_price * (1 - l_discount) * (1 + l_tax)) AS sum_charge,
SUM(l_extended_price) * 0.75 AS sum_real_cost,
SUM(l_extended_price) * 0.25 AS sum_margin,
AVG(l_extended_price) AS avg_base_price,
AVG(l_extended_price * (1 - l_discount)) AS avg_disc_price,
AVG(l_extended_price * (1 - l_discount) * (1 + l_tax)) AS avg_charge,
AVG(l_extended_price) * 0.75 AS avg_real_cost,
AVG(l_extended_price) * 0.25 AS avg_margin

FROM
db.lineitem

GROUP BY
l_return_flag, l_linestatus

ORDER BY
l_return_flag, l_linestatus

Notice in particular the many common expressions that are used to compose the aggrega-
tion functions of the query. To factorize code and increase the maintainability of the code, one
would like to define these expressions only once and reuse them throughout the query. This
can be achieved in QIR as follows (note that in QIR, as opposed to SQL’s strange syntax,
aggregations functions belong to the configuration of the Group operator).

/* Constructs the list of projected attributes */
let project_list = λtup.

let real_cost = 0.75 in
let margin = 0.25 in

let return_flag = tdestr tup "l_returnflag" in
let line_status = tdestr tup "l_linestatus" in
let sum_base_price = tdestr tup "sum_base_price" in
let sum_disc_price = tdestr tup "sum_disc_price" in
let sum_charge = tdestr tup "sum_charge" in
let avg_base_price = tdestr tup "avg_base_price" in
let avg_disc_price = tdestr tup "avg_disc_price" in
let avg_charge = tdestr tup "avg_charge" in

tcons "return_flag" return_flag (
tcons "line_status" line_status (

27

tcons "sum_base_price" sum_base_price (
tcons "sum_disc_price" sum_disc_price (
tcons "sum_charge" sum_charge (
tcons "sum_real_cost" (sum_base_price ∗ real_cost) (
tcons "sum_margin" (sum_base_price ∗margin) (
tcons "avg_base_price" avg_base_price (
tcons "avg_disc_price" avg_disc_price (
tcons "avg_charge" avg_charge (
tcons "avg_real_cost" (avg_base_price ∗ real_cost) (
tcons "avg_margin" (avg_base_price ∗margin) (
tnil))))))))))))

in

/* Constructs the list of grouping/sorting attributes */
let group_sort_attr = λtup.

cons (tdestr tup "l_returnflag") (
cons (tdestr tup "l_linestatus") (
tnil))

in

/* Constructs the aggregate functions */
let group_agg = λtup.

let extended_price = tdestr tup "l_extended_price" in
let discount = tdestr tup "l_discount" in
let tax = tdestr tup "l_tax" in
let disc_price = extended_price ∗ (1− discount) in
let charge = disc_price ∗ (1 + tax) in

tcons "sum_base_price" (sum extended_price) (
tcons "sum_disc_price" (sum disc_price) (
tcons "sum_charge" (sum charge) (
tcons "avg_base_price" (avg extended_price) (
tcons "avg_disc_price" (avg disc_price) (
tcons "avg_charge" (avg charge) (
tnil))))))

in

/* Main query */
Projectproject_list(

Sortgroup_sort_attr(
Groupgroup_sort_attr,group_agg(

Scandb.lineitem())))

On this example, the implementation of the exhaustive reduction strategy described in
Section 5.3 does not terminate in reasonable time due to a combinatorial explosion. Indeed,
there are many redexes in the original expression, and the algorithm will, in parallel, reduce

28

each of them then try again all the remaining redexes, etc. Nevertheless, it eventually finds the
reduced expression with minimal measure, i.e the original expression with all definitions and
common expressions inlined. On the other hand, the implementation of the heuristic-based
strategy described in Section 5.4 quickly finds the result for a fuel value F > 10.

5.5.2 Example of fragment grouping: dynamic queries

Consider now a simple website on which users can read small ads from people selling furnitures,
cars, etc. and in particular a page to browse through the offers. This page would consist mainly
in a form with (i) a dropdown menu to optionnally sort the result by date or price, (ii) a set
of checkboxes to filter by category and (iii) an integer field with a default value to specify the
number of results to display on the page.

The corresponding query, fetching the results, would have to be built dynamically depend-
ing on the presence of filters and ordering. The following QIR code is a possible implementation
of this logic, in which we assume that variables is_sorted, sort_attr, cat_list and limit
are provided by the application context and encode the presence of a sorting attribute, the
list of selected categories and the number of results to display.

/* Recursively constructs a list of OR of the selected categories */
let make_cat_filter = λcat_list. λtup.

let rec aux = λfilter. λcat_list.
destr cat_list filter (λhd. λtl. aux ((tdestr tup "category" = hd) or filter) tl)

in
let aux2 = λcat_list.

destr cat_list nil (λhd. λtl. aux (tdestr tup "category" = hd) tl)
in
aux2 cat_list

in

/* Constructs the ordering attributes */
let make_ordering = λattr. λtup.

if attr = "price" then
cons (tdestr tup "price") nil

else if attr = "date" then
cons (tdestr tup "timestamp") nil

else
nil

in

/* Constructs the list of projected attributes */
let project_list = λtup.

tcons "title" (tdestr tup "title") (
tcons "description" (tdestr tup "description") (
tnil))

in

29

/* Base table */
let ads =

Scandb.ads()
in

/* After category filters */
let ads_filtered =

destr cat_list ads (λhd. λtl. Selectmake_cat_filter cat_list(ads))
in

/* After (optional) ordering */
let ads_ordered =

if is_sorted then Sortmake_ordering sort_attr(ads_filtered) else ads_filtered
in

/* Main query */
Projectproject_list(Limitlimit(ads_ordered))

On this example, the implementation of the exhaustive reduction strategy described in
Section 5.3 does not terminate, since one can obtain infinitely many distinct reductions of the
original expression by unfolding the recursive call of aux in make_cat_filter.

Conversely, the implementation of the heuristic-based strategy described in Section 5.4
quickly finds the result expression with minimal measure for a fuel value F > 25. For in-
stance, with cat_list set to nil, is_sorted set to false and limit set to 20 the result
expression is

Projectλt. tcons "title" (tdestr t "title") (tcons "description" (tdestr t "description") tnil)(
Limit20(

Scandb.ads()))

And with cat_list set to cons "housing" (cons "cars" nil), is_sorted set to true,
sort_attr set to date and limit set to 30 the result expression is

Projectλt. tcons "title" (tdestr t "title") (tcons "description" (tdestr t "description") tnil)(
Limit30(

Sortλt. cons (tdestr t "timestamp") nil(
Selectλt. tdestr t "category"="cars" or tdestr t "category"="housing"(

Scandb.ads()))))

5.5.3 Example of incompatibility: caching

Following on the previous example, consider a page on which an admin can detect if an unex-
perienced user has published the same ad twice. Assume that the application context provides
a function unexperienced(user_id) telling if a user is unexperienced and that this function
is too complicated to be inlined inside the configuration of an operator. The following QIR

30

code corresponds to the query used by the page.

/* Constructs the list of projected attributes */
let project_list = λtup.

tcons "user_id" (tdestr tup "user_id") tnil
in

/* Constructs the join condition */
let join_cond = λtup1. λtup2.

(tdestr tup1 "title" = tdestr tup2 "title") and
not (tdestr tup1 "ad_id" = tdestr tup2 "ad_id")

in

/* Unexperienced users */
let ads_from_unex_users =

Selectλtup. unexperienced (tdestr tup "user_id")(
Scandb.ads())

in

/* Main query */
Projectproject_list(

Joinjoin_cond(
ads_from_unex_users,
ads_from_unex_users))

This is one example of situation where reducing a redex (e.g. inlining ads_from_unex_users)
is not beneficial for the database. In this case, both the implementation of the exhaustive strat-
egy described in Section 5.3 and the heuristic-based strategy described in Section 5.4 return
the correct answer, given below.

let ads_from_unex_users =
Selectλtup. unexperienced (tdestr tup "user_id")(

Scandb.ads())
in

Projecttcons "user_id" (tdestr tup "user_id") tnil(
Join(tdestr tup1 "title"=tdestr tup2 "title") and not (tdestr tup1 "ad_id"=tdestr tup2 "ad_id")(

ads_from_unex_users,
ads_from_unex_users))

This corresponds to a computation where the Truffle runtime (cf. Section 2) evaluates
once ads_from_unex_users, stores the result on the database storage then passes the main
query to the database engine.

31

6 Source capabilities

TODO (Julien)

7 Translation to native queries

TODO (Julien)

8 Evaluation of Truffle nodes in the database

TODO (Julien)

9 Query evaluation in the database

TODO (Julien)

10 Returning result to the host language

TODO (Julien)

References

[1] Henk P Barendregt. The Lambda Calculus: Its Syntax and Semantics, revised ed., vol.
103 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
1984.

[2] Delia Kesner, Carlos Lombardi, and Alejandro Ríos. A standardisation proof for algebraic
pattern calculi. arXiv preprint arXiv:1102.3734, 2011.

[3] Jan Willem Klop, Vincent van Oostrom, and Roel C. de Vrijer. Lambda calculus with
patterns. Theor. Comput. Sci., 398(1-3):16–31, 2008.

32

	Notations
	Architecture
	QIR data model, expressions and operators
	QIR data model
	QIR operators
	QIR expressions

	Translation to QIR
	QIR evaluation
	Reduction rules
	A measure for ``good'' output plans
	An exhaustive reduction strategy
	A heuristic-based reduction strategy
	Concrete examples
	Example of code factorization: analytics queries
	Example of fragment grouping: dynamic queries
	Example of incompatibility: caching

	Source capabilities
	Translation to native queries
	Evaluation of Truffle nodes in the database
	Query evaluation in the database
	Returning result to the host language

