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Abstract— The research community in wireless systems hold
a keen interest in sensor networks issues. Sensor networks are
dense wireless networks where information is gathered by sensor
elements spread out in an interest area. Wireless sensors applica-
tions cover a large field such as surveillance and security, target
tracking, agriculture, health and military purposes. The main
deficiency of sensors is their finite source of energy. Therefore,
an efficient utilization of this energy resource conditions the
network lifetime. In order to enhance the performance of these
networks, some research efforts have focused on the mobility of
a single or multiple sink nodes. The mobility of sinks introduces
a tradeoff between the need for frequent re-routing to optimize
the performance and the minimization of the overhead resulting
from this topology management. In this paper, we propose a new
dynamic approach to extend the lifetime of a sensor network
based on both mobility and multiplicity of sinks. According to
the evolution of the network, in terms of energy dissipation and
distribution, this approach aims to find the optimal position for
all the sinks in order to optimize the lifetime of the network and
move accordingly these sinks in an intelligent manner. Simulation
results show the efficiency of our approach in terms of energy
gain.

Keywords — Wireless sensor networks, power efficiency, mul-
tiple sinks mobility.

I. INTRODUCTION

A sensor network is composed of a large number of wireless
sensors, densely deployed, in the range of a phenomenon
to observe, study and/or monitor. A sensor is an electronic
device which generally gathers three main capabilities: the
ability to measure and collect data relative to the environment
surrounding it, the ability to process these collected data,
and the ability to exchange it with other devices. The other
devices can be sensor nodes or sinks. A sink is a particular
node which collects the information resulting from the sensing
nodes, process them and/or send them to a data concentration
center. Generally, sensor nodes deliver their collected data to
the nearest sink.

The main constraint in sensor networks is their limited
energy supply. Therefore any program running on this device
has to manage carefully the autonomy issue. Indeed, it has
been shown that a wireless communication is one of the more
expensive operations the sensor has to perform. Hence, all
research efforts in this area have focused on energy-aware
solutions so that the lifetime of the network is maximized.

Most proposed routing approaches in sensor networks are
centered on energy minimization by looking for multi-hop
links. In fact, the largely explored multi-hop approach is
based on the observation that the transmission power of a

wireless communication is proportional to distance squared, or
even higher (in the presence of obstacles). Hence, the multi-
hop routing consumes less energy than direct communication.
Although proposed routing protocols are able to dynamically
adapt according to nodes energy, the nodes nearby the sink
serving as last-hop relays observe rapid depletion in their
energy supply. Therefore, to improve the network lifetime
by reducing the total transmission power, the sink is moved
towards the last-hop relays which are the most involved in
packet transmitting. Such an approach has also the advantage
of reducing the average delay observed by data packets.

On the other hand, in a network where not only a single but
multiple sinks are present, the correct placement of the sink
nodes directly affects the lifetime of such a network. Some
research works dealing with the optimal multi-sink positioning
problem have been proposed. However, they have not taken
into account the network evolution, they only try to place,
in an optimal manner, the sinks once and for all. Once the
network is deployed, it remains static.

Our aim in this article is to propose a multiple sinks
relocation solution for network lifetime optimization. In order
to move the sinks towards their optimal positions in an
intelligent manner, we developed an efficient solution based
on a constrained local search strategy.

The paper is organized as follows. In section II, we present
the previous works related to optimal sink positioning and
sink movement in large scale sensor networks. Section III
describes our multi-sinks movement approach for network’s
lifetime optimization. Section IV presents and discusses the
obtained simulation results. Finally, we conclude the paper in
section V.

II. RELATED WORKS
A. Multi-sink optimal positioning

The optimal sink placement issue in a network is an NP-
complete problem [3], [5]. Some works have addressed this
problem and tried to resolve it by different approaches in a
polynomial time (using approximation methods) or not [3],
(4], [5].

In [3], the authors tackled this issue as a flow problem.
Several propositions in the literature have focused on the
flow problem in a network with a single sink and reached
efficient solutions based on energy considerations. The paper
[3] extended the study to the case of a multi-sink network.
To maximize the network lifetime, the authors consider two



questions: how to place the sinks in the network and how
to route the data towards these sinks? Both of these issues
have been formulated using linear programming and resolved
with CPLEX software [3]. The produced linear program allows
to find out among n nodes which would be the p sinks to
reach the maximization of the network lifetime. However, the
authors emphasized that their solution does not resolve the
NP-completeness of the problem and leave for future works
to take charge of this issue by proposing a polynomial time
approximation solution.

In [4], the authors use the clustering principle. They assume
that the number of sinks to place is known prior to the
exploitation phase, and this number represents the number of
clusters in the network. Therefore, the problem is translated
to find an efficient clustering algorithm. Many clustering
algorithms exist in the literature (k-means clustering, self
organizing maps, etc. [4]). Once the clusters formed, sinks
placement becomes simple. The easiest solution is to position
the sink in the center of mass of the cluster nodes. However, if
the routing protocol uses a multi-hop criteria, then it would be
wiser to use power aware distance metrics to take into account
the consumed energy to reach the sink.

In [5], the authors have shown that if the transmission power
and the capacity of nodes are fixed, the maximization of the
network lifetime is comparable to a maximum flow issue. The
used metric to estimate the optimality of the network is the
maximization of the data production rate while guaranteeing
the network subsistence. Even impracticable in several cases,
the authors assumed, in this approach, that a central algorithm
is available to provide information on nodes localization.
Their aim was to develop an analysis tool to be aware of
sinks position effect on the flows in the network and thus
on its lifetime. This Base Station Positioning (BSP) problem,
as called by the authors, remains NP-complete. To find an
approximated solution, the authors have investigated three
approximation algorithms: a greedy algorithm and two local
search algorithms (Random-restart hill-climbing algorithm and
Metropolis -Simulated Annealing- algorithm). It obviously ap-
pears that the sinks position highly affects the efficiency. One
possible solution for sink positioning is to choose the best out
of a linear number of random samples. However, the authors
results show that in many cases the local search provides
better results. In spite of the inability of the local search
algorithm for guaranteeing the solution quality, it seems that
this algorithm solution is close to the optimum. Disregarding
its good solutions, determinism and low complexity, the greedy
algorithm was still below the performance of the local search
method.

In conclusion, the optimal multi-sink positioning problem in
a sensor network has already been addressed in the literature.
However, major propositions as [3], [5], which formulated
this problem as a maximum flow issue, have restricted the
solutions space since the sinks are chosen among the nodes.
This constraint, which chooses p sinks among n nodes, is very
strong and will be released in our paper.

Besides, all these works focused on the initial positioning of
sinks and considered that the network remains static since the
optimal position is discovered. None of these works mentioned

to optimize the network efficiency throughout its lifetime.
None has put forward the idea of combining the optimal
placement and the ability of moving sinks in order to manage,
in real time, the network all over its lifetime. All these
proposals mainly based their solutions on nodes position and
not nodes energy consumption. Even if in [4], it appears that
the authors tried to find the sink placement within a cluster
using an energy-aware algorithm but the clusters pattern is
definitely based on nodes position and not their energy supply.

B. Sink movement

Very few research works have focused on the relocation of
a unique sink in a sensor network [6], [7], [8], [9], [10].

The authors of [7] propose a potential sink moving in
order to reduce power dissipation in the nodes nearby the
sink serving as last-hop relays. The following questions are
addressed:“When?”, “Where”, and “How” to move the sink
without affecting data traffic. Sink repositioning problem is NP
hard in nature, and a heuristic approach is used to resolve it.
The used solution is based on the substitution of the last-hop
nodes serving the sink (substitution operated by the routing
algorithm) and the traffic delivered by these nodes. If the
distance separating a last-hop node with the sink is longer
than a threshold value, then the formula energy transmission
X traffic is evaluated. If the obtained value is greater than a
fixed threshold, the sink estimates the effect of the movement
and performs it if justified.

To improve the network lifetime, the sink is moved towards
the last-hop relays which are the most involved in packet trans-
mitting. To moderate the relocation, a point G is defined as the
equidistant position from these relay nodes in term of distance
X traffic. In order to avoid affecting the less traffic dominating
nodes, the final position of the sink is fixed between its actual
position and the point G. This position is determined using a
dichotomy approach based on an evaluation formula. Finally,
the sink is moved using a straight line movement.

Before achieving the movement, the sink evaluates the gain
of such a reposition. To estimate the quality of a position the
used metric evaluates the whole energy transmitted by the last-
hop relaying nodes. The repositioning is accepted if the energy
gain exceeds a fixed threshold. The threshold computation is
based on the overhead generated by the sink movement. The
obtained simulation results show that the sink repositioning in-
volves a decrease in packet energy consumption, an increase in
the average node lifetime, and a reduction in the transmission
delay.

In [6], [7], [8], [9], [10], all the proposals focus on the
relocation of a single sink in a cluster. The solutions can be
extended to a network including several sinks by organizing it
in clusters. However, we can observe that relocation of each
sink is limited to its cluster and the approaches do not have a
global view of the entire network.

Therefore, since this direction was not explored by now, we
aimed to propose a solution which manages the movement of
several sinks in a more global strategy, without restricting the
sinks in clusters and by taking advantage of the works related
to the optimal multi-sink positioning.



III. OUR APPROACH: MULTI-SINK MOVEMENT

Multi-sink repositioning consists in finding in real-time,
during the network lifetime, the best sinks positions within
the network. Giving the sinks a movement facility allows us
to move the sinks in an intelligent way towards the positions
which optimize the network lifetime. Our approach does not
attempt to optimize the lifetime of each cluster by relocating
each sink in its cluster but tries to view the network as an
entire and sole entity.

The evaluation of a configuration is based on an energy-
aware routing algorithm which was developed in [6], [8].
Since the evaluation is based on the routing algorithm, we are
confident that there is a real correlation between the consumed
power during routing and the evaluation score. Using this
mathematical tool for configuration evaluation, we adopt an
operational research theory approach to find an approximated
solution. Once the optimal sinks positions are determined, the
last step is to complete a smart movement of the sinks. Indeed,
the straight line movement towards the final position can be
very expensive in terms of energy cost.

A. Routing

As in [6], we adopt a centralized approach which allows
to use a source routing methodology (see figure 1). Before
realizing the route discovery, a first phase consists in providing
each link in the network a specific weight. This weight
depends on the energy of the destination node, in order to
relay the information by the nodes having the higher remaining
energy, and the distance between nodes, in order to prefer short
distance transmissions.
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Fig. 1. Routing in a sensor network

Once this weight computed, we obtain a graph on which
Dijkstra algorithm can be applied to find the shortest path
between a sink and each node in the network. However, in
our case the network contains more than one sink. So the aim
now is to find the shortest path towards the nearest sink. We
will proceed by exploring all the shortest paths towards all the
sinks, and we will conserve for routing needs the one leading
to the nearest sink. At this point, it is worth to notice that
a more efficient searching method can be found, nevertheless
our approach has the benefit to easily maintain, for each node,
the n nearest sinks and their corresponding paths, which are
necessary for the configuration evaluation (see section III-E.2).

The algorithm complexity is acceptable since we achieve
p Dijkstra in O(n). The next problem to tackle is how to
compute the weight of the links.

B. Links weight

In [6], the cost function of a link connecting two nodes
and j is defined as the sum of eight metrics balanced with
their respective coefficient. Despite the relevance of all these
metrics, and for simplicity sake, we have chosen the two most
important ones:

o The distance between the nodes 7 and j defines the con-
sumed energy for the communication. Since the required
energy is proportional to distance squared, the weight will
show the same behavior.

e The remaining energy in the destination node j which
advantages the highest energy relaying nodes. The lowest
is the destination node energy and the highest is the link
weight.

The link weight is defined as the following:

1

W (i,j) = CFy x dist(i, j)**P¢F0 + CFy x ————
energy(j)

(D
where,
- W (i, 7) is the weight of a link between nodes ¢ and j

- dist(i, j) is the energy consumed by the communication
between nodes ¢ and j

- energy(j) is the remaining energy in node j

- CFy, CFy, and expCF, are coefficients for equation
balancing.

When a packet arrives to a sink, the energy model is
updated by decreasing the energy of the whole nodes which
contributed to the packet relaying. In our implementation, only
the transmission energy consumption has been considered.

For routing concern, we used the routing protocol defined
in [6]. The routing protocol is divided in several periods. The
major periods are data transferring phases. Regularly, a routing
phase is activated in order to detect if a better configuration
of the sinks is possible and take a potential decision for sinks
movement.

C. A solution evaluation

The evaluation of a configuration have to reveal its effi-
ciency as regards to the network lifetime. A priori, the best
placement will gradually get the sink closer to the nodes that
generate the highest traffic but without moving it too far from
other future data sources so as to lose connectivity with them.
Hence, we define three categories of nodes listed bellow in
priority order:

e 57, set of nodes which are in the sensing state and

transmitting data,

e Sp, set of nodes which are in the sensing state but are

not currently transmitting data,

e N, set of all the other nodes.

The equation comes naturally as follows:
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where

- K (i,7) is the j** nearest sink from node 1,

- TC(i, s) is the transmission cost from node ¢ to sink s. It
is derived from the routing table,

- NPp(i) is the rate of node 4. It represents the number
of generated packets during the last nbc cycles,

- C} and x7 are coefficients for function balance.

Using the appropriate coefficients C}, this equation first
takes into account the sensing nodes which transmit data, on
a data ratio basis, then sensing nodes which currently do not
transmit data, and finally the rest of network nodes.

Using this mathematical tool, we can now qualify a network
configuration. After all, the optimal sinks position is the
configuration which minimizes this cost function.

D. Optimum search

The optimal multi-sinks positioning problem in a network
is NP-complete. The only possibility to be certain about the
optimality of a solution is to perform an exhaustive exploration
of the solutions space. However, the exhaustive exploration is
not conceivable in large scale problems. In our case of study,
we face an infinite space of solutions since a sink position is
defined by a couple of real numbers. Even if we admit such an
approach in an integer numbers space, in a 100 x 100 points
space, we will have 10'? solutions for a 3 sinks placement.

As stated before in section II-A, to overcome this com-
plexity, meta-heuristic approaches are used to derive upper
bounds based on a neighboring exploration. In our work, we
choose the local search Random-restarts hill-climbing algo-
rithm which was previously used in sensor networks context
and where it showed good results.

1) A solution neighborhood and relocations: The aim of the
local search approach is as follows: from an initial solution z,
a finite series of solutions z; is generated with a systematic
change of neighborhood. z;4; is derived from z; such that
for all 4, f(x;) > f(xi11). f is the evaluation function of the
solution. In other terms, only the solutions which enhance the
solution are accepted.

Generally, the neighborhood of a solution is derived by the
mean of an elementary transformation. A transformation is
every operation which allows to change a solution x into a
solution " of S. S denotes the set of solutions.

We defined three levels of transformations to derive the
neighborhood of a solution:

e One sink movement: this transformation consists in
one sink relocation in respect to the initial position.
This movement is performed towards eight directions:
North(N), South(S), East(E), West(W), N-E, N-W, S-
E, S-W. In our experimentations, the extension of the

movement is fixed to 0.1, 0.3, 1, 3 and 10 which leads
to 40 movements for each sink.

o Two sinks movement: this transformation consists in a
two sinks simultaneous movement to widen the neighbor-
hood of a solution and avoid certain deadlock situations.
We limited the transformations to the fourth cardinal
points. We obtain then 16 possible movements for the
couple of sinks. Three movement steps were chosen
for the experimentations (0.3, 3, and 10) leading to 24
movements per sink.

o Three sinks movement: three sinks are relocated simul-
taneously.

To illustrate the relevance of the two sinks movement,
figure 2 shows a theoretical case proved by simulation where
a single sink movement do not lead to a better solution. The
movements are rejected because they degrade the solution.
However, the simultaneous movement of two sinks allows in
this case to get a better solution which will lead to the optimal
solution.
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Fig. 2. a,b): Initial network and associated routing; c,d): one sink movement
and associated routing; e,f): two sinks movement and associated routing

More complex movements can be defined, but this will
require a longer exploration of a larger neighborhood. Hence, a
compromise has to be made between the quality of the solution
and the devoted time to reach it.

However, the local search approach has its limits in the
sense that the obtained optimal solution disregards current
sinks positions. Hence, we can obtain for example a solution
which inverts the positions of two sinks leading to a wasteful
relocation and a calamitous power consumption. To avoid such
situations, we implemented a solution based on both permu-
tations generation and a minimization of the total distance
traveled by the sinks.

E. Sinks movement

Once the optimal sinks positions found, the relocation
problem of each sink to its final position still remains. As
shown in figure 3, a linear movement can lead to costly
configurations. In the illustrated example, even if the sinks
move towards their optimal positions, the movement of the
left sink has impaired the situation. It would have been better
if the left sink has waited that the right sink gets closer to its
optimal position to begin the movement.

In fact, to derive the optimal position the local search
approach does not consider the sink velocity, the distance
to travel, and the dynamics of the network. To perform an
intelligent movement, we propose an approach based on a local
search in a constrained space.
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Fig. 3. Initial and optimal positions, routing and linear movement of sinks

1) constrained local search: The aim of the constrained
local search is to limit the sinks movement while maintaining
their direction to the optimal positions. We define a liberty
space based on the current and the optimal locations of the
sink. The next move will take place in this constrained space.

Let’s d be the liberty distance. We also define G, the point
located at a distance d from the current position of the sink
on the line formed by the current position Cp and the optimal
position of the sink. The liberty space is then defined as the
set of points located at a distance smaller than d from the
point G and the current position (see figure 4). Graphically,
this point is the intersection between two discs with G and
Cp as centers and d as radius.

Liberty spaces

Fig. 4. Liberty spaces delimitation

To find the new target of a sink defined as the constrained
optimum, a local search is activated in the constrained space
using the same principle used to find the optimal position.
All the neighbors of the solution which do not belong to this
restricted space are disregarded. Therefore, the constrained
local search will generate constrained optimums which help
to perform efficient and power-aware movements towards the
optimum position.

However, as illustrated in figure 5, the restriction made
on the sinks movement can result in deadlock configurations
while the optimum solution exists. In our example, once the
first constrained optimal position is reached by the right sink,
the sink is blocked. Using the evaluation function (2) of the
local search algorithm, none of the positions in its constrained
space can enhance the solution. We come to the conclusion
that a new evaluation function has to be defined.

2) New evaluation function: As shown in the previous
example, the lack of the evaluation function is that it considers
only the transmission cost of each node towards its closer
sink. A more efficient evaluation function would consider the
transmission cost between each node and each link using di-
gressive coefficients according to sinks proximity order. Even

(b

Fig. 5. a)Intelligent movement in the constraint space; b) The sink in the
right side is blocked

conceivable, such a function would be substantial to compute.
Therefore, we restrict the number of sinks to the three nearest
sinks from each node, considering that this solution will allow
to get out from most deadlock situations without an excessive
calculation load. In the light of these observations, we defined
the following new evaluation function:

TC(i, K (3, 1)) x N Payo(i)™ x Ci+
Vi € Sl, Z TC(Z, K(Z, 2)) X Clbis+
TC(Za K(Za 3)) X Clter
+
Vi € S, ZTC(Z, K(i, 1)) x Cy
+
Vie N, T3, K(i,1)) x Cs

where Chp;s and Cheer are coefficients corresponding re-
spectively to the second and third nearest sink.

As shown in figure 6, this new formula allows to exit from
the deadlock situation of the previous example. In general,
this new formula allows to derive constrained optimums which
tend to slowly approach the non constrained optimums in an
intelligent manner.

Fig. 6. Intelligent movement in the constraint space using the new evaluation
function

Finally, it is worth to notice that the distance separating
the current position and the next constrained optimum de-
pends on both sink velocity and routing phases frequency. It
is then strongly correlated with the routing protocol. More
specifically, at the beginning of the next routing phase, the
intermediate position would be reached. Both the basic local



search and the constrained search algorithms are activated. If
only few modifications have occurred on the network, we will
find an optimal position very close to the previous one, to
which we will get closer. Conversely, if the network changes,
we will find a new position and we will guarantee a good
reactivity.

Concerning the data management during the sinks relo-
cation, a movement plan is drawn up to avoid packet loss.
Before the sink relocation, the algorithm checks if the last-
hop relays can reach the sink during the movement. If not, we
implemented in our simulations a solution which performs a
complete re-routing. Other solutions are possible [10] such as
the increase of the last-hop relays transmission power or the
designation of new relaying nodes during the movement.

IV. SIMULATION RESULTS
A. Simulation model

The implementation of the sensor network as well as the
solutions we proposed were realized by simulation with Opnet
Modeler 10.0 software. A first series of simulations was
dedicated to validate the model. The aim was to make sure
that the network behaves according to the theoretical model
and operates on some easily verifiable configurations.

In the experiments, the sensor network consists of nodes and
sinks randomly placed in a 100x100 square meter area. Except
for testing specific capabilities of our approach, the sinks
and node positions are determined randomly within the area
boundaries. Each node is assumed to have an initial energy of
5 joules and is considered non-functional if its energy level
reaches 0. We have carried out many experiments with various
numbers of sinks and nodes to evaluate the performance of
our smart movement. The experiments we present in the next
sections are representative of the whole series of tests we
achieved.

B. Performances Metrics

We used the following metrics to evaluate the performance
of our multi-sink repositioning approach and to compare it
with the motionless approach:

o Time for first node to die: This metric gives an indication

of network lifetime.

o Number of delivered packets and lost packets: This metric
gives a good measure of the efficiency of each approach
(with and without sink movement). A good approach will
lost fewer packets.

o Average delay per packet: Defined as the average time a
packet takes from a sensor node to the gateway.

e Average energy consumed per packet: This metric repre-
sents the average energy consumed in transmitting and
receiving a data packet. An approach that minimizes the
energy consumed per packet will, in general, yields better
energy savings.

C. Environment validation

We first verified that the local search algorithm finds a better
configuration than the best configuration of a hundred random

configurations. The results are quite similar to those of the
local search algorithm presented in [5]. Then we verified that
the implemented routing algorithm was energy-aware, i.e. the
routing table changes according to the sensor energy level
and is not only based on the distance between sensors. The
results of an experiment, shown in Figure 7, illustrate this
principle. In this example, when the energy of the node C is
equal to 5 Joules, the routing algorithm chooses C to route
the information from A to the sink. Whereas, the node B is
chosen as relay when the energy of C is 1.5 Joules.
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Fig. 7. Energy, routing cost and energy-aware routing

We have also checked that the optimal location is really
influenced by the throughput. The experiments prove that the
optimal location tends to be closer to the nodes which provide
the most packets, as shown in figure 7.

packets=0 packets=0 packets=5 packets=0
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Fig. 8. Optimal location according to the number of produced packets

Finally, we checked that the optimal location of each sink is
selected so as to minimize the sum of the distances crossed by
the sinks and thus, reduce the delay necessary to reach theses
positions. This was done by testing each possible permutation
of the sinks.

D. Performance results

In this section, we present the main performance results
derived from our simulation model.

1) Moveable sinks versus stationary sinks: First, the two
approaches: with and without sinks movement are compared.
In the experiments, the network consists of 16 randomly
placed nodes in a 100x100 square meter area. At the initial
simulation time, in both approaches, five sinks are placed
at their optimal positions. Then, in one case, the sinks can
move and in the other, they remain static. In this first set of
experiments, data packets generation is performed by groups
of nodes. Each group is composed of up to 5 nodes. The
identity of these groups is changed every thousand seconds.
This relative stability of packet production zones allows the
sinks to get closer to these zones. The results depicted in
figures 9, figure 10 and figure 11 show that our approach
preserves energy and increases the network lifetime. Figure 9
shows that the energy decreases slowly when the sinks are
mobile. Figure 10 shows that we deliver more packets with
less energy.



Figure 11 illustrates all the principles of our approach.
When the sinks move towards the data generating zones, and
since these zones are relatively stable, we observe a decrease
in the consumed energy. The curve decreases when the zones
of production change. The energy spent is then inevitably more
important since the sinks are not in an optimal configuration
anymore.

Others results we obtained, not illustrated here, show that
the packet average delay is largely improved. The shape of
the curve of the average delay per packet is very similar to
that of the average energy consumed per packet presented in
figure 11. This comes from the simple fact that the sinks, while
approaching the transmitting sensors, decrease the distance
separating them from these active sensors, and consequently
decrease the communication delay.

2) Optimal locations versus random locations at the Initial
time: Others experiments, not illustrated here, show that the
effect of the sinks location at the initial simulation time has no
real impact on performance. The longer the simulation time is,
the smaller is the influence. This means that the sinks could be
deployed randomly without really impacting the performance.
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3) Straight line movement versus smart movement: A major
part of our work was dedicated to the smart location of the
sinks by defining a restricted area of freedom to move the
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sink in a progressive way towards its optimal position while
avoiding the unfavorable positions as well as possible. This
test aims at highlighting the profit of our approach. For this
purpose, we took again the same configuration but in one case,
we disabled the smart movement, and in the other, the sinks
move in a straight line towards their optimal position at a
maximum speed. The results, not presented in this paper, show
that the smart repositioning consumes less energy. We also
noticed that with the same energy consumption, the network
with smart movement delivered 8162 messages versus 7516
for the network with straight line movement, this leading to a
non negligible benefit of 8.5%.

4) Limitation of our approach: chaotic data production:
As discussed before, the efficiency of sinks repositioning
within the network is highly dependent on the stability of data
production areas. If these zones change unceasingly, the sinks
may not have enough time to approach their optimal locations.
Then the benefit of our technique is likely to be low. It is
even very likely that the performance would be worse than
for motionless sinks. In this second set of experiments, the
data production zones change more quickly (every hundred
seconds) and are more dispersed. The sinks which have to
move towards the optimal locations will be, when the data
generation areas change, in very unfavorable locations and
thus affect the overall network performance. These tendencies
are illustrated in figure 12. We can note that the network with
moveable sinks is less performing than the one with static
sinks.

Figure 13 depicts the average energy consumed per packet.
Between times 0 and 100 seconds, the sinks approach the op-
timal location which causes a reduction in the average energy
consumed per packet. Then, when the nodes which produce
packets change, the sinks come to be in a very unfavorable
location and the average energy consumed per packet increases
strongly. These results confirm that sinks repositioning can
involve, in some cases, a loss of performance. However, it is
interesting to notice that the optimal location of the sinks also
depends on the coefficients values in the equation used for
configuration evaluation. When tuning these coefficients, we
observed a decrease in the loss of performance. One can for
example make the optimum less sensitive to the heavily loaded
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nodes, by increasing the coefficient C'2. The sinks will then
tend to move towards the highly data generation zones while
keeping a central position in the network. In this scenario, we
notice that the performances are better when the C'2 parameter
is increased.

Finally, we can conclude that the efficiency of our approach
may vary. Generally, the more the data production zones are
stable, the more the efficiency is important. Moreover, in such
a situation, the best performance is obtained when choosing
high values for the coefficients which take into account the
flow in the network. On the other hand, when the zones of
packet production change quickly and especially when their
geographical locations are distant, the performance may be
disastrous. In this case, motionless sinks approach may give
better results. Therefore, a balance has to be found and the
equations and their coefficients have to be adapted to the
scenario.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a new approach for multi-sinks
repositioning in a sensor network. This approach is based on
previous works related to two fields: multiple sinks positioning
and the unique sink relocation. Our approach has the advantage
of considering a global level network view when relocating
the sinks to their optimal positions. The definition of these

optimal positions is achieved by the mean of a local search
algorithm which derives an optimal sinks distribution. The
optimal positions are largely affected by the areas of heavy
traffic and thus are likely subject to continuous variations.
Moving the sinks towards the areas of interest (in terms
of information production), allows to obtain a power saving
provided that a stability of these areas exists. In such a con-
figuration, simulation results show a significative enhancement
in the network lifetime. Conversely, in a configuration where
data production is chaotic or changing fast relatively to sinks
velocity, the performance can be very weak. Finally, in order
to reach good performance of our approach, the equation and
the coefficients of the evaluation function have to be adapted
and tuned according to the chosen scenario.

Our future plan includes extending the approach to allow
for an event mobility-aware method. In other words, since
simulation results show that the performance of our approach
is highly dependant on data generation areas stability, we are
currently studying different mobility profiles of the observed
event. We mainly focus on tracking strategies which we expect
to be very helpful in some sensor applications where the
observed phenomenon motion can be predicted and tracked.
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