Lina YE

Introduction

Constraints

Context and Se

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Software Engineering (OCL) Object Constraint Language

Lina YE

Lina YE

Introduction

Constraints

- Context and Sel
- Invariar
- Pre- and Post-condition
- Constraints on Attributes
- Language
- Access to characteristics
- Types
- Variabl
- Collections
- OCL function
- Example

Plan

Introduction

2 Constraints

- Context and Self
- Invariant
- Pre- and Post-condition
- Constraints on Attributes

3 Language

- Access to characteristics
- Types
- Variable
- Collections
- OCL function

4 Example

Lina YE

Introduction

- Constraints
- Context and Sel
- Invariar
- Pre- and Post-condition
- Constraints on Attributes
- Language
- Access to characteristic
- Types
- Variable
- Collections
- OCL function
- Example

Motivation

Why OCL

- Cannot represent all the relevant aspects of a specification (e.g., class diagram)
- Need to describe additional constraints without ambiguities
- Formal languages requires a strong mathematical background

What is OCL

- Formal language to express constraints, that remains easy to read and write
- Developed by IBM and standardized by OMG
- Integrated into the UML standard

Lina YE

Introduction

- Constraints
- Context and Self
- Invaria
- Pre- and Post-condition
- Constraints on Attributes
- Language
- Access to characteristic
- Types
- Variabl
- Collections
- OCL function
- Example

Objet Constraint Language

Where to use

- Specify invariants on classes and types in the class model
- Describe pre- and post-conditions on operations and methods
- Describe guards
- As a navigation language
- etc.

Example

• How to represent the constraint that the age of an employee cannot be smaller than 18?

Lina YE

Introduction

Constraints

munun

Pre- and Post-condition

Constraints on Attribute

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Objet Constraint Language

• Pure specification language: do not have side effet

- evaluation of an OCL expression returns a value
- this evaluation do not alter the system state and is instantaneous

Lina YE

Introduction

- Constraints
- Context and Sel
- Invarian
- Pre- and Post-condition
- Constraints on Attribute:
- Language
- Access to characteristic
- Types
- Variabl
- Collections
- OCL function

Example

Objet Constraint Language

- Pure specification language: do not have side effet
 - evaluation of an OCL expression returns a value
 - this evaluation do not alter the system state and is instantaneous
- Not a programming language
 - cannot write program logic in OCL
 - cannot invoke processes or activate non-query operations

Lina YE

Introduction

- Constraints
- Context and Sel
- Invarian
- Pre- and Post-condition
- Constraints on Attribute:
- Language
- Access to characteristic
- Types
- Variabl
- Collections
- OCL function
- Example

Objet Constraint Language

- Pure specification language: do not have side effet
 - evaluation of an OCL expression returns a value
 - this evaluation do not alter the system state and is instantaneous
- Not a programming language
 - cannot write program logic in OCL
 - cannot invoke processes or activate non-query operations
- Typed language: each expression has a type
 - expression must obey the type conformance rules of OCL
 - each classifier defined in a UML model represents a distinct OCL type
 - includes a set of supplementary predefined types

Lina YE

Introduction

Constraints

Context and Self

- Invariant Pre- and Post-conditio
- Constraints on Attributes
- Language
- Access to characteristic
- Types
- Variabl
- Collections
- OCL function
- Example

Context

- Each constraint must be associated to one model element
- Such an element constitutes the context of the constraint
- Syntax: keyword context

example

- class: nameClass
 - context Person
- operation: nameClass::nameOperation(param1: Type1,...):TypeReturned context Account::getSolde(): Real

6/45

• attribute: nameClass::nameAtt: TypeAtt context Person::age : Integer

Lina YE

Introduction

Constraints

Context and Self

- Invariant Pre- and Post-condition
- Language
- Access to characteristic
- Types
- Variab
- Collections
- OCL function

Example

- In an OCL expression, reserved word self is used to refer to the contextual instance
- If the context is Person, then self refers to an instance of Person
- This keyword can be omitted when the context is clear

example

Self

- context Person
 - self.name
- context Person
 - name

7/45

Lina YE

Introduction

Constraints

Context and Sel

Invariant

Pre- and Post-condition Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Invariant

- Determine a constraint that should be always true for all instances of a type
- Syntax

inv: <logic expression>

example

- Value of attribute nbEmployees in instances of Company must be less than or equal to 50 context Company inv: self.nbEmployees≤50
- The stock price of each company is greater than 0 (stockPrice() is a operation defined in the class Company) context Company inv: self.stockPrice()>0

Lina YE

Introduction

Constraints

Context and Sel

Invariant

Pre- and Post-condition

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Pre-condition

- Constraints associated with an operation or other behavioral feature
- Constraint assumed to be true before the execution of the operation
- Syntax

pre: <logic expression>

example

 The age of a person who has an income must be older than or equal to 18 (income() is an operation defined in the class Person) context Person:: income(): Integer pre: self.age > 18

9/45

Lina YE

Introduction

Constraints

Context and Sel

Invariant

Pre- and Post-condition

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Post-condition

- Constraints associated with an operation or other behavioral feature
- Constraint satisfied after the execution of the operation
- Keyword result denotes the value returned by the operation, whose type is the returned type
- Keyword @pre denotes the attribute value before the operation
- Syntax

post: <logic expression>

example

 The age of a person who has an income cannot be smaller than 18, and the income must be less than 5000 context Person:: income(): Integer pre: self.age ≥ 18 post: result < 5000

Lina YE

Introduction

Constraints

Context and Sel

Invariant

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Init

- Reserved word init is used to represent the initial value
- Possibility to precise the initial value of an attribute or an association end when the object is created
- Syntax

init: expression

example

 Attribute isMarried in Person is initialized to false context Person:: isMarried: Boolean init: false

Lina YE

Introduction

Constraints

Context and Self

Invariant

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variable

Collections

OCL function

Example

Derive

- Reserved word derive is used to represent the derived value
- Precise how to obtain the derived value of an attribute based on the value of other attributes, such a constraint should always be respected
- Syntax

derive: expression

example

 The age of one person is obtained by subtracting their birth date from the current date context Person:: age: Integer derive: currentDate-dateOfBirth

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Access to characteristics of an object

- The access of attributes and operations of an object is specified by a dot followed by their name
- Syntax

self.nameAttribute
self.nameOperation(arg1,..., argn)

example

- context Person
 - self.age
 - self.income()

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Navigation

- From an object, an association is navigated by a dot followed by the opposite role name
- Value of expression depends on maximal multiplicity of the association end
 - 1: value is an object (".") or can also be used as a set containing a single object (" \rightarrow ")
 - *: value is a set of objects ("ightarrow")
- For optional associations, it is useful to check whether there is an object or not when navigating the association

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attribute:

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Navigation: example

Example

Person isUnemployed: Boolean	employee	employer	Compony		
	0*	0*	Company		
	1	0*	noEmployees:Integer		
	manager	managedCompanies		_	
	-			_	

context Company

inv: self.manager.isUnemployed=false
inv: self.employee→notEmpty()

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attribute:

Language

Access to characteristics

- Types
- Variabl
- Collections
- OCL function

Example

Navigation: example

Example

Domon	employee	employer	Company	
isUnemployed: Boolean	0*	0*	noEmployees:Integer	
···	1	0*	····	
	manager	managedCompanies		

context Company

inv: self.manager.isUnemployed=false
inv: self.employee→notEmpty()

- self.manager is an object of type Person context Company inv: self.manager.age> 40
- self.manager as a set context Company inv: self.manager→ size()=1

Lina YE

ntroduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attribute

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Enumeration: example

16/45

context Person

inv: self.wife→notEmpty() implies
self.gender=Gender::Male and
self.husband→ notEmpty() implies
self.gender=Gender::Female

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attribute:

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

List of Types

Predefined types with their operators

Types	Operators
Boolean	and; or; xor; not; implies; if-then-else-endif;
Integer	*; +; -; /; abs();
Real	*; +; -; /; abs(); floor();
String	<pre>concat(s: String); size(); substring(lower: Integer, upper: Integer);</pre>

Implies

P1	P2	P1 implies P2
True	True	True
True	False	False
False	True	True
False	False	True

17/45

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

Operations on Types

- One person who is married must be more than 18 years old
- One person is either male or female but cannot be both

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Operations on Types

- One person who is married must be more than 18 years old
- One person is either male or female but cannot be both

context Person inv: self.isMarried implies self.age>18

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Operations on Types

- One person who is married must be more than 18 years old
- One person is either male or female but cannot be both

context Person inv: self.isMarried implies self.age>18

context Person inv: self.gender=Gender::male xor self.gender=Gender::female

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variable

Collections

OCL function

Example

Create a Variable

- If the same expression is used more than one time
- For the better readability of the constraint

Syntax

- With keywords let...in
 let < variable >: TypeVar=< request > in
 expression >
- With keyword def def: < variable >: TypeVar=< request > < expression >

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attribute

Language

Access to characteristics

Types

Variable

Collections

OCL function

Example

Create a Variable

example

• An unemployed person has no job. Otherwise, he has at least one job.

context Person
 inv: let numberJobs: Integer=self.job→size() in
 if isUnemployed then numberJobs=0
 else numberJobs > 0
 endif

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attribute:

Language

Access to characteristics

Types

Variable

Collections

OCL function

Example

Create a Variable

example

- An unemployed person has no job. Otherwise, he has at least one job.
- The name of one person is the concatenation of first name and last name
- context Person
 inv: let numberJobs: Integer=self.job→size() in
 if isUnemployed then numberJobs=0
 else numberJobs > 0
 endif
- context Person def: name: String=self.firstName.concat(' '). concat(lastName)

20/45

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Collection

Conversion of an association to a type within OCL

21/45

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Collection

Syntax

- For a collection, → is used to apply some operation on it: nameCollection→ operation()
- Recall: the dot is used for the access of a property of an object

Some examples

- size(): Integer (return the number of elements in the collection)
- includes(object: T): Boolean (return true if object is included in the collection)
- excludes(object: T): Boolean (return true if object is not in the collection)

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Collection

Some examples

- count(object: T): Integer (return the number of object)
- isEmpty(): Boolean (return true if the collection is empty)
- notEmpty(): Boolean (return true if the collection is not empty)
- includesAll(c: Collection(T)): Boolean (return true if the collection contains all elements of c)
- excludesAll(c: Collection(T)): Boolean (return true if the collection does not contains any element of c)
- sum(): T (return the sum of all elements in the collection)
- union(set: Set(T)): Set(T) (return the union of self with set)

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Collection

Some examples

- any(exp: OclExpression): Type (return any element in self validating exp)
- =(set: Set(T)): Boolean (return true if self and set contain exactly the same elements)
- including(object: T): Set(T) (return a collection that contains all elements of self plus object)

Lina YE

Introduction

Constraints

Context and Se

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Collection

• One company has at least one employee

 context Company inv: self.employee → size() > 0 inv: self.employee → notEmpty()

Lina YE

Introduction

Constraints

Context and Se

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Collection

- One company has at least one employee
- The manager of a company is also an employee
- context Company inv: self.employee → size() > 0 inv: self.employee → notEmpty()
- context Company inv: self.employee → includes(self.manager)

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Elements

Syntax

- collection \rightarrow operation (expression)
- collection \rightarrow operation (v | expression-with-v)
- collection \rightarrow operation (v: Type | expression-with-v)

The expression is applied on each element of the collection

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attribute:

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Elements

• select: generate a sub-collection that contains only the elements satisfying expression

Each company must have at least one employee that is more than 50 years old

• context Company: inv: self.employee \rightarrow select(p: Person | p.age> 50) \rightarrow notEmpty()

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Elements

- select: generate a sub-collection that contains only the elements satisfying expression
- reject: generate a sub-collection that contains only the elements that does not satisfy expression

Each company must have at least one employee that is more than 50 years old

- context Company: inv: self.employee \rightarrow select(p: Person | p.age> 50) \rightarrow notEmpty()
- context Company: inv: self.employee → reject(p: Person | p.age<= 50) → notEmpty()

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Elements

• forAll: return true if the expression is true for each element

Each company must have at least one employee that is more than 50 years old

 context Company: inv: self.employee → not (forAll(p: Person p.age<= 50))

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Elements

- forAll: return true if the expression is true for each element
- exists: return true if the expression is true for at least one element

Each company must have at least one employee that is more than 50 years old

- context Company: inv: self.employee → not (forAll(p: Person | p.age<= 50))
- context Company: inv: self.employee → exists(p: Person | p.age> 50)

_		
	1.	0.
		Bac

Lina YE

ntroduction

Constraints

Context and Se

Invarian

Pre- and Post-condition

Constraints on Attribute:

Language

Access to characteristic

Types

Variable

Collections

OCL function

Example

Operation on Elements

The employer of an employee that participates a team project is the organisation that possesses this project

ontext Person:

inv: (self.employer→size()=1 and self.team→size()=1)
implies self.employer=self.team.project.organisation

Software Engineering (OCL)

Sack

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Operation on Elements

• collect: create a new collection, for which each element is the result of the expression

It is required to obtain the set of birthday dates for all employees

context Company

self.employee \rightarrow collect (p: Person | p.birthdayDate)

Shorthand for collect

 context Company self.employee.birthdayDate

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variabl

Collections

OCL function

Example

Iterate Operation

- iterate: calculate an accumulator whose value is built up during the iteration of the collection.
- Collection → iterate (e: Type; acc: Type=initial expression | expression with e and acc)

The sum of ages of all children for a person

context Person

self.children \rightarrow iterate (p: Person; acc: Integer=0

acc=acc+p.age)

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Re-typing or Casting

- With o.oclAsType(T2), one re-types an object o of type T1 into another type T2
- Let type Super be a super type of type Sub
- Allows one to use a property of an object defined on a subtype of the currently known type of the object context Super inv: self.oclAsType(Sub).p (accesses the p property defined in Sub, valid when actual type of self is Sub, otherwise, invalid)
- Can be used to access a property of a superclass context Sub inv: self.oclAsType(Super).p (accesses the p property

defined in Super)

Software Engineering (OCL)

Sack

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Other functions

- ocllsTypeOf(t: Type): return true if the type of self and t are the same
- ocllsKindOf(t: Type): return true if t is a direct/indirect (supertype) type of self
- ocllsNew: used in a post-condition, return true if the object has been created during the operation

Example context Person inv: self.oclIsTypeOf(Person) --true inv: self.oclIsTypeOf(Company) --false

Software Engineering (OCL)

💊• Back

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Class features

- Features of a class, not of its instances
- Either predefined or user-defined
- Predefined: allInstances holds on all types and returns the set of class instances
- There are at most 100 persons context Person inv: Person.allInstances() → size() < 100
- A user-defined feature averageAge of class Person context Person
 Person.averageAge=(Person.allInstances() → collect (age) → sum()) / (Person.allInstances() → size())

koo	Bac
	Duc

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attribute:

Language

Access to characteristic

Types

Variabl

Collections

OCL function

Example

Example_1

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

A hotel never has a floor 13, because of superstition.

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

A hotel never has a floor 13, because of superstition.

context Room

inv: self.floor <> 13

 context BathRoom inv: self.floor <> 13

Lina YE

Introduction

Constraints

Context and Sel

Invaria

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

The number of clients for each room must be smaller or equal to the number of beds in the rented room. The children under 4 are not "taken into account" in this calculation rule (condition : maximum of one child under 4 per room).

Lina YE

Introduction

Constraints

Context and Sel

Invaria

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

The number of clients for each room must be smaller or equal to the number of beds in the rented room. The children under 4 are not "taken into account" in this calculation rule (condition : maximum of one child under 4 per room).

context Room

inv: clients \rightarrow size() \leq nbBeds or (clients \rightarrow size()=nbBeds+1 and clients \rightarrow exists(p: Person| p.age<4))

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

Each floor owns at least one room except for floor 13.

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

Each floor owns at least one room except for floor 13.

context Hotel

inv: Sequence{floorMin, ..., floorMax} \rightarrow forAll (f: Integer | f<>13 implies self.room \rightarrow select(r: Room|r.floor=f) \rightarrow notEmpty())

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

Rooms are on the first to the last floor.

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

Rooms are on the first to the last floor.

context Hotel

inv: self.room \rightarrow forAll(r: Room | r.floor \leq self.floorMax and r.floor \geq self.floorMin)

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

A room can be repainted when it is not occupied. Once repainted, the cost of a room is 10% more.

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

A room can be repainted when it is not occupied. Once repainted, the cost of a room is 10% more.

 context Room::repaint(c: Color) pre: clients → isEmpty() post: price=price@pre*1.1

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

The hotel income is equal to the sum of prices for all rented rooms.

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_1

The hotel income is equal to the sum of prices for all rented rooms.

• context Hotel::income():Real

post: result=self.room \rightarrow select(r: Room | r.clients \rightarrow notEmpty()) \rightarrow collect(r:Room | r.price) \rightarrow sum()

Software Engineering (OCL) Lina YE	Examp	le_2	
	supervisor 01	Employee SSN: int salary: int 	dependents
Example	L	subordinate	9S

42/45

Dependent

name: String relationship: String

Forward

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variab

Collections

OCL function

Example

OCL for example_2

 The salary of an employee cannot be greater than the salary of his/her superviser context Employee inv: self.supervisor → notEmpty() implies self.salary < self.supervisor.salary

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variab

Collections

OCL function

Example

OCL for example_2

- The salary of an employee cannot be greater than the salary of his/her superviser context Employee inv: self.supervisor → notEmpty() implies self.salary < self.supervisor.salary
- The condition notEmpty must be tested since the multiplicity of the role is not mandatory

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_2

 The SSN of employees is an identifier (or a key) context Employee inv: Employee.allInstances()→forAll(e1, e2 | e1 <> e2 implies e1.SSN <> e2.SSN)

Lina YE

Introduction

Constraints

Context and Sel

Invariar

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristic

Types

Variab

Collections

OCL function

Example

OCL for example_2

 The SSN of employees is an identifier (or a key) context Employee inv: Employee.allInstances()→forAll(e1, e2 | e1 <> e2 implies e1.SSN <> e2.SSN)

• The name and relationship of dependents is a partial identifier: they are unique among all dependents of an employee

context Employee inv: self.dependents \rightarrow notEmpty() implies self.dependents \rightarrow forAll(e1, e2 | e1 <> e2 implies e1.name <> e2.name or e1.relationship <>

e2.relationship)

Software Engineering (OCL)

e Back

Lina YE

Introduction

Constraints

Context and Sel

Invarian

Pre- and Post-condition

Constraints on Attributes

Language

Access to characteristics

Types

Variab

Collections

OCL function

Example

OCL for example_2

 An employee cannot supervise him/herself context Employee inv: self.subordinates→excludes(self)