Software Engineering !
(ocL)

Lina YE

Software Engineering (OCL)

Object Constraint Language

Lina YE

O
O
CentraleSupélec
https://www.lri.fr/~linaye/GL.html

lina.ye@centralesupelec.fr
Sequence 3, 2017-2018

(1/45)

Software Engineering (OCL) \ 3 Forward \

https://www.lri.fr/~linaye/GL.html

Software Engineering !

(oct) Plan

Lina YE

o Introduction

e Constraints
@ Context and Self
@ Invariant
@ Pre- and Post-condition
@ Constraints on Attributes

e Language
@ Access to characteristics
@ Types
@ Variable
@ Collections
@ OCL function

e Example

(] 2145)

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Software Engineering (

(oct) Motivation

Why OCL

@ Cannot represent all the relevant aspects of a
specification (e.g., class diagram)

Introduction

Constraints

@ Need to describe additional constraints without
ambiguities

Language

@ Formal languages requires a strong mathematical
background

v,

What is OCL

@ Formal language to express constraints, that remains
easy to read and write

o Developed by IBM and standardized by OMG
@ Integrated into the UML standard

Example

- 3/45 J

Software Engineering (OCL) (&eBack | [»Foward |

gl Objet Constraint Language

Lina YE

Introduction

Constraints

o Specify invariants on classes and types in the class model

@ Describe pre- and post-conditions on operations and
methods

Language

@ Describe guards

@ As a navigation language

Example

@ etc.

@ How to represent the constraint that the age of an
employee cannot be smaller than 187

))

Software Engineering (OCL) (&eBack | [»Foward |

gl Objet Constraint Language

Lina YE

Introduction

o Pure specification language: do not have side effet

Constraints

@ evaluation of an OCL expression returns a value

@ this evaluation do not alter the system state and is
instantaneous

Language

Example

—— 212 \

Software Engineering (OCL) (&eBack | [»Foward |

gl Objet Constraint Language

Lina YE

Introduction

o Pure specification language: do not have side effet

Constraints
" @ evaluation of an OCL expression returns a value
@ this evaluation do not alter the system state and is
instantaneous

@ Not a programming language
@ cannot write program logic in OCL

@ cannot invoke processes or activate non-query
operations

Example

—— 212 \

Software Engineering (OCL) (&eBack | [»Foward |

Software Engineering
(ocL)

Lina YE

Introduction

Constraints

Example

Objet Constraint Language

o Pure specification language: do not have side effet
@ evaluation of an OCL expression returns a value
@ this evaluation do not alter the system state and is
instantaneous

@ Not a programming language
@ cannot write program logic in OCL
@ cannot invoke processes or activate non-query
operations
@ Typed language: each expression has a type
@ expression must obey the type conformance rules of
OoCL
@ each classifier defined in a UML model represents a
distinct OCL type
@ includes a set of supplementary predefined types

—— 212

Software Engineering (OCL) [GeoBack | [) Forward

Softwar(eo injineering C (o) ntext

Lina YE

Introduction

Constraints @ Each constraint must be associated to one model element

Context and Self

@ Such an element constitutes the context of the constraint

@ Syntax: keyword context

@ class: nameClass
context Person

Language

Example

@ operation: nameClass::nameOperation(param1:
Typel,...):TypeReturned
context Account::getSolde(): Real

@ attribute: nameClass::nameAtt: TypeAtt
context Person::age : Integer

RS)

Software Engineering (OCL) [GeBack | [«DForward |

Software Engineering /
(oct) Self

Lina YE

@ In an OCL expression, reserved word self is used to
refer to the contextual instance

Context and Self

@ If the context is Person, then self refers to an instance of
Person

@ This keyword can be omitted when the context is clear

example

@ context Person
self.name

@ context Person
name

——)

Software Engineering (OCL) [GeBack | [«DForward |

Software Engineering
(ocL)

Lina YE

Introduction

Constraints

Invariant

Language

Example

Invariant

@ Determine a constraint that should be always true for all
instances of a type

@ Syntax
inv: <logic expression>

example

@ Value of attribute nbEmployees in instances of Company

must be less than or equal to 50
context Company
inv: self.nbEmployees<50

@ The stock price of each company is greater than O

(stockPrice() is a operation defined in the class
Company)

context Company
inv: self.stockPrice()>0

] 2)

Software Engineering (OCL) (&eBack | [»Foward |

Software Engineering i

pe” Pre-condition

Lina YE

@ Constraints associated with an operation or other
behavioral feature

Pre- and Post-condition

@ Constraint assumed to be true before the execution of
the operation

@ Syntax
pre: <logic expression>

example

@ The age of a person who has an income must be older
than or equal to 18 (income() is an operation defined in

the class Person)
context Person:: income(): Integer
pre: self.age>18

))

Software Engineering (OCL) [GeBack | [«DForward |

Software Engineering i

pe” Post-condition

Lina YE

@ Constraints associated with an operation or other
behavioral feature

o Constraint satisfied after the execution of the operation

e @ Keyword result denotes the value returned by the
operation, whose type is the returned type

@ Keyword @pre denotes the attribute value before the
operation

@ Syntax
post: <logic expression>

example

@ The age of a person who has an income cannot be

smaller than 18, and the income must be less than 5000
context Person:: income(): Integer

pre: self.age>18

post: result<5000

])

Software Engineering (OCL) [Gesak | [DFoward |

Software Engineering

(ocy) Init

Lina YE

@ Reserved word init is used to represent the initial value

s on AAEeTte: @ Possibility to precise the initial value of an attribute or an
association end when the object is created

@ Syntax
init: expression

example

@ Attribute isMarried in Person is initialized to false
context Person:: isMarried: Boolean
init: false

———)

Software Engineering (OCL) [GeBack | [«DForward |

Software Engineering i

foct Derive

Lina YE

@ Reserved word derive is used to represent the derived
value

@ Precise how to obtain the derived value of an attribute
based on the value of other attributes, such a constraint
should always be respected

@ Syntax
derive: expression

example

@ The age of one person is obtained by subtracting their

birth date from the current date
context Person:: age: Integer
derive: currentDate-dateOfBirth

PSSR)

Software Engineering (OCL) [GeBack | [«DForward |

Software Engineering

pe Access to characteristics of an
object

Lina YE

@ The access of attributes and operations of an object is
specified by a dot followed by their name

@ Syntax
self.nameAttribute
self.nameOperation(arga, ..., args)

example

@ context Person
self.age
self.income()

—————)

Software Engineering (OCL) [GeBack | [«DForward |

Softwar(eoEang)ineering NQV i got i on

Lina YE

@ From an object, an association is navigated by a dot
followed by the opposite role name

@ Value of expression depends on maximal multiplicity of
the association end
1: value is an object (“.”) or can also be used as a set
containing a single object (“—")
*: value is a set of objects ("—")

@ For optional associations, it is useful to check whether
there is an object or not when navigating the association

—————)

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! Nov i got i O n: exo m ple

Lina YE

employee employer

Person Compan
0 0.~ pany

0.
manager managedCompanies

isUnemployed: Boolean noEmployees:Integer

Access to characteristics

@ context Company
inv: self.manager.isUnemployed=false
inv: self.employee—notEmpty()

————)

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! Nov i got i O n: exo m ple

Lina YE

employee employer
Person o o Company
isUnemployed: Boolean 1 ' 0”, noEmployees:Integer
manager managedCompanies

Access to characteristics

@ context Company
inv: self.manager.isUnemployed=false
inv: self.employee—notEmpty()

@ self.manager is an object of type Person
context Company
inv: self.manager.age> 40

@ self.manager as a set
context Company
inv: self.manager— size()=1

————)

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Software Engineering

P Enumeration: example

Lina YE

Person
- - <<enumeration>>
isMarried: Boolean) Gender
gender: Gender wife
0.1 Male
Access to characteristics Female
husband
0..1

@ context Person
inv: self.wife—notEmpty() implies
self.gender=Gender::Male and
self.husband— notEmpty() implies
self.gender=Gender::Female

S ——)

Software Engineering (OCL) [GeBack | [«DForward |

Softwar(eoEang)ineering L L i st Of Types

Lina YE

Introduction

Predefined types with their operators

Constraints

and Self Types Operators
Boolean and; or; xor; not; implies; if-then-else-endif;...
Integer x4+ —i /; abs(); ...
y Real *; +; —; /i abs(); floor(); ...
anguage
A . String concat(s: String); size(); substring(lower: Integer, upper: Integer);...

Types

4

Example
P1 P2 P1 implies P2
True True True
True | False False
False | True True
False | False True
) e \

Software Engineering (OCL) (&eBack | [»Foward |

-l Operations on Types

Lina YE

@ One person who is married must be more than 18 years
old

@ One person is either male or female but cannot be both

Software Engineering (OCL) \ &= Back \ \ 3 Forward

el Operations on Types

Lina YE

@ One person who is married must be more than 18 years
old

@ One person is either male or female but cannot be both

context Person
inv: self.isMarried implies self.age>18 J

——)

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Software Engineering i

P Operations on Types

Lina YE

@ One person who is married must be more than 18 years
old

@ One person is either male or female but cannot be both

context Person
inv: self.isMarried implies self.age>18

context Person
inv: self.gender=Gender::male xor
self.gender=Gender::female

))

Software Engineering (OCL) [Gesak | [DFoward |

Software Engineering i

e Create a Variable

Lina YE

@ If the same expression is used more than one time

@ For the better readability of the constraint

@ With keywords let...in
let < variable >: TypeVar=< request > in
< expression >

@ With keyword def
def: < variable >: TypeVar=< request >
< expression >

))

Software Engineering (OCL) [GeBack | [«DForward |

Software Engineering (

e Create a Variable

Lina YE
example

@ An unemployed person has no job. Otherwise, he has at
Least one job.

Introduction

Constraints

Language

Variable

@ context Person

Emple inv: let numberJobs: Integer=self.job—>size() in
i isUnemployed then numberJobs=0

else numberJobs > 0

endif

] ™5 \

Software Engineering (OCL) [&= Back

) Forward |

Software Engineering (

e Create a Variable

Lina YE
example

@ An unemployed person has no job. Otherwise, he has at

Introduction

Constraints

d Self

Least one job.

@ The name of one person is the concatenation of first
name and last name

@ context Person

Emple inv: let numberJobs: Integer=self.job—>size() in
i isUnemployed then numberJobs=0

else numberJobs > 0

endif

@ context Person
def: name: String=self.firstName.concat(’ ‘).
concat(lastName)

s)

) Forward |

Software Engineering (OCL) [&= Back

Software Engineering !

e Collection

Lina YE

Conversion of an association to a type within OCL

- roleB B
B 1
Collections A rOIeB B
Set(B) *
- roleB B
OrderedSet(B) * (ordered

Software Engineering (OCL) \ &= Back \ \ 3 Forward

Software Engineering (
(ocL)

Lina YE

Introduction

Constraints

Language

Collections

Example

Operation on Collection

@ For a collection, — is used to apply some operation on it:
name Collection— operation()

@ Recall: the dot is used for the access of a property of an

object

Some examples

@ size(): Integer (return the number of elements in the

collection)

@ includes(object: T): Boolean (return true if object is

included in the collection)

@ excludes(object: T): Boolean (return true if object is not

in the collection)

(PSSP SRS

Software Engineering (OCL) (

Software Engineering (

oS Operation on Collection

Lina YE
Some examples

@ count(object: T): Integer (return the number of object)

Introduction

Constraints

@ isEmpty(): Boolean (return true if the collection is empty)

@ notEmpty(): Boolean (return true if the collection is not
empty)

@ includesAll(c: Collection(T)): Boolean (return true if the
collection contains all elements of c)

Example

@ excludesAll(c: Collection(T)): Boolean (return true if the
collection does not contains any element of c)

@ sum(): T (return the sum of all elements in the collection)

@ union(set: Set(T)): Set(T) (return the union of self with
set)

e ettt)

Software Engineering (OCL) (&eBack | [»Foward |

Software Engineering i

oS Operation on Collection

Lina YE

Some examples

@ any(exp: OclExpression): Type (return any element in
self validating exp)

@ =(set: Set(T)): Boolean (return true if self and set
contain exactly the same elements)

@ including(object: T): Set(T) (return a collection that
contains all elements of self plus object)

Software Engineering (OCL) [Gesak | [DFoward |

=l Operation on Collection

Lina YE

Introduction

Constraints

@ One company has at least one employee

Language

@ context Company
inv: self.employee — size() > 0
inv: self.employee — notEmpty()

Collections

Example

Software Engineering (OCL) [Gesak | [DFoward |

=l Operation on Collection

Lina YE

Introduction

Constraints

@ One company has at least one employee

@ The manager of a company is also an employee

Language

@ context Company
inv: self.employee — size() > 0
inv: self.employee — notEmpty()

Collections

Example

@ context Company
inv: self.employee — includes(self.manager)

Software Engineering (OCL) [GeBack | [«DForward |

Softwar(eoEang)ineering Operotion on Elements

Lina YE

@ collection — operation (expression)

- o collection — operation (v | expression-with-v)

o collection — operation (v: Type | expression-with-v)

The expression is applied on each element of the collection

Software Engineering (OCL) [GeBack | [«DForward |

Software Engineering (
(ocL)

Lina YE

Introduction

Constraints

d Self

Example

Operation on Elements

@ select: generate a sub-collection that contains only the

elements satisfying expression

Each company must have at least one employee that is more

than 50 years old

@ context Company:

inv: self.employee — select(p: Person | p.age> 50) —

notEmpty()

L RS —|

Software Engineering (OCL)

Software Engineering
(ocL)

Lina YE

Introduction

Constraints

Collections

Example

Operation on Elements

@ select: generate a sub-collection that contains only the
elements satisfying expression

@ reject: generate a sub-collection that contains only the
elements that does not satisfy expression

Each company must have at least one employee that is more
than 50 years old

@ context Company:
inv: self.employee — select(p: Person | p.age> 50) —
notEmpty()

@ context Company:
inv: self.employee — reject(p: Person | p.age<= 50)
— notEmpty()

L RS —|)

Software Engineering (OCL) (&eBack | [»Foward |

Software Engineering (
(ocL)

Lina YE

Introduction

Constraints

Language

Collections

Example

Operation on Elements

@ forAll: return true if the expression is true for each
element

Each company must have at least one employee that is more

than 50 years old

@ context Company:
inv: self.employee — not (forAll(p: Person |
p.age<= 50))

Software Engineering (OCL) (&eBack | |

Software Engineering (
(ocL)

Lina YE

Introduction

Constraints

Collections

Example

Operation on Elements

@ forAll: return true if the expression is true for each
element

@ exists: return true if the expression is true for at least
one element

Each company must have at least one employee that is more
than 50 years old

@ context Company:
inv: self.employee — not (forAll(p: Person |
p.age<= 50))

@ context Company:
inv: self.employee — exists(p: Person | p.age> 50)

e ettt el)

Software Engineering (OCL) (&eBack | [»Foward |

Softwar(eoinjineering .. Operotion On Elements

Lina YE

Introduction

. Person
Constraints Organization
« | name: String
o employer ;
name: Strin i
9 0..1 employee age: int
Language 1
guag member| *
= 0..1
Project Team
Collections 1 1

Example

The employer of an employee that participates a team project
is the organisation that possesses this project
@ context Person:

inv: (self.employer—size()=1 and self.team—>size()=1)
implies self.employer=self.team.project.organisation

Software Engineering (OCL) [Gesak | [DFoward |

Softwar(eoEang)ineering . Operotion On Elements

Lina YE

Introduction

Constraints

@ collect: create a new collection, for which each element
is the result of the expression

Language
It is required to obtain the set of birthday dates for all
employees

Collections

@ context Company
self.employee — collect (p: Person | p.birthdayDate)

Example

Shorthand for collect

@ context Company
self.employee.birthdayDate

Software Engineering (OCL) (&eBack | [»Foward |

il |terate Operation

Lina YE

Introduction

Constraints

Q@ iterate: calculate an accumulator whose value is built up
during the iteration of the collection.

Language

@ Collection — iterate (e: Type; acc: Type=initial
expression | expression with e and acc)

Collections

Example The sum of ages of all children for a person

@ context Person
self.children — iterate (p: Person; acc: Integer=0 |
acc=acc+p.age)

Software Engineering (OCL) (&eBack | [»Foward |

Software Engineering
(ocL)

Lina YE

Introduction

Constraints

Example

Re-typing or Casting

@ With o.oclAsType(T2), one re-types an object o of type
T1 into another type T2

@ Let type Super be a super type of type Sub

@ Allows one to use a property of an object defined on a
subtype of the currently known type of the object
context Super
inv: self.oclAsType(Sub).p (accesses the p property
defined in Sub, valid when actual type of self is Sub,
otherwise, invalid)

@ Can be used to access a property of a superclass
context Sub
inv: self.oclAsType(Super).p (accesses the p property
defined in Super)

L S S PRSI PSEP——)

Software Engineering (OCL) (&eBack | [»Foward |

Software Engineering
(ocL)

Lina YE

Introduction

Constraints

Language

OCL function

Example

Other functions

@ ocllsTypeOf(t: Type): return true if the type of self and t
are the same

@ ocllsKindOf(t: Type): return true if t is a direct/indirect
(supertype) type of self

@ ocllsNew: used in a post-condition, return true if the
object has been created during the operation

Example

context Person

inv: self.ocllsTypeOf(Person) —true
inv: self.ocllsTypeOf(Company) —false

Software Engineering (OCL) (&eBack | [»Foward |

Sof’twar(eoEang)ineering / Closs fe otures

Lina YE

Introduction

B raints @ Features of a class, not of its instances

@ Either predefined or user-defined

B @ Predefined: allInstances holds on all types and returns
the set of class instances

@ There are at most 100 persons
context Person
inv: Person.alllnstances() — size() < 100

OCL function

Example

@ A user-defined feature averageAge of class Person
context Person
Person.averageAge=(Person.alllnstances() — collect
(age) — sum()) / (Person.allInstances()— size())

Software Engineering (OCL) (&eBack | [»Foward |

softwaToEang)ineering / Exomple 7]

Lina YE

Hotel Room
address: String floor: int
floorMin: int 1..*| number: int
floorMax: int *® nbBeds: int
price: float
income(): float "
repaint (c: Color)
0..1 * 0.1
B 1.% bosses 0.1
Person . BathRoom
name: String i floor: int. .
age: int clients number: int

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! OCL fOI" exomple,]

Lina YE

A hotel never has a floor 13, because of superstition.

Example

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! OCL fOI" exomple,]

Lina YE

A hotel never has a floor 13, because of superstition.

@ context Room
inv: self.floor <> 13

@ context BathRoom
inv: self.floor <> 13

Example

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

g all OCL for example 1

Lina YE

The number of clients for each room must be smaller or equal
to the number of beds in the rented room. The children under
4 are not “taken into account” in this calculation rule (condition
: maximum of one child under 4 per room).

Example

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

g all OCL for example 1

Lina YE

The number of clients for each room must be smaller or equal
to the number of beds in the rented room. The children under
4 are not “taken into account” in this calculation rule (condition
: maximum of one child under 4 per room).

@ context Room
Example inv: clients—size()<nbBeds or
(clients — size()=nbBeds+1 and clients—exists(p:
Person| p.age<4))

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! OCL fOI" exomple,]

Lina YE

Each floor owns at least one room except for floor 13.

Example

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

g all OCL for example 1

Lina YE

Each floor owns at least one room except for floor 13.

@ context Hotel
inv: Sequence{floorMin, ..., floorMax }—forAlL (f:
Integer | f<>13 implies self.room— select(r:
Example Room|r.floor=f)— notEmpty())

Software Engineering (OCL) [GeBack | |) Forward \

il OCL for example 1

Lina YE

Rooms are on the first to the last floor.

Example

————————— e ———

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! OCL fOI" exomple,]

Lina YE

Rooms are on the first to the last floor.

@ context Hotel
inv: self.room— forAll(r: Room | r.floor< self.floorMax
and r.floor> self.floorMin)

Example

————————— e ———

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! OCL fOI" exomple,]

Lina YE

A room can be repainted when it is not occupied. Once
repainted, the cost of a room is 10% more.

Example

——————————— . ————

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! OCL fOI" exomple,]

Lina YE

A room can be repainted when it is not occupied. Once
repainted, the cost of a room is 10% more.

@ context Room::repaint(c: Color)
pre: clients — isEmpty()
post: price=price@pre*1.1

Example

———————————— e ———

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! OCL fOI" exomple,]

Lina YE

The hotel income is equal to the sum of prices for all rented
rooms.

Example

]

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! OCL fOI" exomple,]

Lina YE

The hotel income is equal to the sum of prices for all rented
rooms.

@ context Hotel::income():Real

post: result=self.room — select(r: Room | r.clients —
notEmpty())— collect(r:Room | r.price) — sum()

Example

]

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Softwar(eoEang)ineering ! Exomple*Z

Lina YE

Employee

supervisor
0..1 |SSN:int

Dependent

dependents|

salary: int

subordinates

*

Example

Software Engineering (OCL)

*

name: String
relationship: String

&eBack \ \) Forward

e . et ————

SOFtwar(eoEang;ineering . OCL for exomple*2

Lina YE

@ The salary of an employee cannot be greater than the
salary of his/her superviser
context Employee
inv: self.supervisor— notEmpty() implies
self.salary < self.supervisor.salary

Example

s ettt

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Software Engineering !

oat OCL for example 2

Lina YE

@ The salary of an employee cannot be greater than the
salary of his/her superviser
context Employee
inv: self.supervisor— notEmpty() implies
self.salary < self.supervisor.salary

Example

@ The condition notEmpty must be tested since the
multiplicity of the role is not mandatory

s ettt

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Software Engineering !

oat OCL for example 2

Lina YE

@ The SSN of employees is an identifier (or a key)
context Employee
inv: Employee.allinstances()—forAll(el, e2 | el <> e2
implies e1.SSN <> e2.SSN)

Example

NSNS,

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

Software Engineering !

oat OCL for example 2

Lina YE

@ The SSN of employees is an identifier (or a key)
context Employee
inv: Employee.allinstances()—forAll(el, e2 | el <> e2
implies e1.SSN <> e2.SSN)

@ The name and relationship of dependents is a partial
identifier: they are unique among all dependents of an
employee
context Employee
inv: self.dependents— notEmpty() implies
self.dependents — forAll(el, e2 | el <> e2 implies
el.name <> e2.name or el.relationship <>
e2.relationship)

Example

NSNS,

Software Engineering (OCL) \ &= Back \ \ 3 Forward \

SOFtwar(eoEang;ineering . OCL for exomple*2

Lina YE

@ An employee cannot supervise him/herself
context Employee
inv: self.subordinates—excludes(self)

Example

Software Engineering (OCL)

&-Back

45/45

	Introduction
	Constraints
	Context and Self
	Invariant
	Pre- and Post-condition
	Constraints on Attributes

	Language
	Access to characteristics
	Types
	Variable
	Collections
	OCL function

	Example

