
Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Software Engineering
(Design Patterns)

Lina YE

https://www.lri.fr/~linaye/GL.html

lina.ye@centralesupelec.fr
Sequence 3, 2017-2018

1/50

Software Engineering (Design Patterns) Forward

https://www.lri.fr/~linaye/GL.html


Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Plan

1 Introduction

2 Creational Patterns

3 Structural Patterns

4 Behavioral Patterns

5 Conclusion

2/502/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Background

Evolution of Program

3/503/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Definition

What is a design pattern
”Each pattern describes a problem which occurs over and
over again in our environment, and then describes the
core of the solution to that problem, in such a way that
you can use this solution a million times over, without
ever doing it the same way twice. [C. Alexander 77]“

”The design patterns are descriptions of communicating
objects and classes that are customized to solve a
general design problem in a particular context.[E. Gamma
97] “

4/504/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Definition

What is a design pattern
”Each pattern describes a problem which occurs over and
over again in our environment, and then describes the
core of the solution to that problem, in such a way that
you can use this solution a million times over, without
ever doing it the same way twice. [C. Alexander 77]“

”The design patterns are descriptions of communicating
objects and classes that are customized to solve a
general design problem in a particular context.[E. Gamma
97] “

4/504/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Definition

Essential elements
Pattern name: describes a design problem, its solutions,
and consequences in a word or two

Problem: describes when to apply the pattern

Solution: describes the elements that make up the design,
their relationship, responsibilities and collaborations

Consequences: the results and trade-offs of applying the
pattern

5/505/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Sources

”A Pattern Language: Towns,
Buildings, Construction”:
Christopher Alexander, Sara
Ishikawa and Murray Silverstein

”Design Patterns, Elements of
Reusable Object-Oriented
Software”: Erich Gamma, Richard
Helm, Ralph Johnson, John
Vlissides

wikipedia: design patterns
6/506/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Categories

Pattern can be divided into three categories with respect to
their purpose.

Creational patterns: the process of object creation

Structural patterns: the composition of classes or
objects

Behavioral patterns: the ways in which classes or objects
interact and distribute responsibility

7/507/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

List

Abstract Factory: provide an interface for creating
families of related or dependent objects without
specifying their concrete classes.

Builder: separate the construction of a complex object
from its representation.

Prototype: specify the kinds of objects to create using a
prototypical instance, and create new objects by copying
this prototype.

Singleton: ensure a class only has one instance, and
provide a global point of access to it.

8/508/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Abstract factory

Problem: create the group of objects without knowing
their exact concrete class

Example: program with a GUI Mac and Windows
(manager the elements of graphic interface)

Solution: the creation of the object is transferred to
another specific class

9/509/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Abstract factory: structure

10/5010/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

User interface toolkit

11/5011/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

public abstract class Button {

public abstract void paint();

}

public class WinButton extends Button {

public void paint(){ ... }

}

public class MacButton extends Button {

public void paint(){ ... }

}

12/5012/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

public abstract class Button {

public abstract void paint();

}

public class WinButton extends Button {

public void paint(){ ... }

}

public class MacButton extends Button {

public void paint(){ ... }

}

12/5012/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

public abstract class ScrollBar {

public abstract void paint();

}

public class WinScrollBar extends ScrollBar {

public void paint(){ ... }

}

public class MacScrollBar extends ScrollBar {

public void paint(){ ... }

}

13/5013/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

public abstract class ScrollBar {

public abstract void paint();

}

public class WinScrollBar extends ScrollBar {

public void paint(){ ... }

}

public class MacScrollBar extends ScrollBar {

public void paint(){ ... }

}

13/5013/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

public abstract class GUIFactory {

public Button createButton();

public ScrollBar createScrollBar();

}

public class WinFactory extends GUIFactory {

public Button createButton(){

return new WinButton();

}

public ScrollBar createScrollBar(){

return new WinScrollBar();

}

}

public class MacFactory extends GUIFactory {

...

}

14/5014/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

public abstract class GUIFactory {

public Button createButton();

public ScrollBar createScrollBar();

}

public class WinFactory extends GUIFactory {

public Button createButton(){

return new WinButton();

}

public ScrollBar createScrollBar(){

return new WinScrollBar();

}

}

public class MacFactory extends GUIFactory {

...

}

14/5014/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

GUIFactory guiFactory;

Button button;

ScrollBar scrollBar;

if (isMac()) {

guiFactory=new MacFactory();

}

if (isWin()) {

guiFactory=new WinFactory();

}

button=guiFactory.createButton();

scrollBar=guiFactory.createScrollBar();

15/5015/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

GUIFactory guiFactory;

Button button;

ScrollBar scrollBar;

if (isMac()) {

guiFactory=new MacFactory();

}

if (isWin()) {

guiFactory=new WinFactory();

}

button=guiFactory.createButton();

scrollBar=guiFactory.createScrollBar();

15/5015/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

GUIFactory guiFactory;

Button button;

ScrollBar scrollBar;

if (isMac()) {

guiFactory=new MacFactory();

}

if (isWin()) {

guiFactory=new WinFactory();

}

button=guiFactory.createButton();

scrollBar=guiFactory.createScrollBar();

15/5015/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Factory code

GUIFactory guiFactory;

Button button;

ScrollBar scrollBar;

if (isMac()) {

guiFactory=new MacFactory();

}

if (isWin()) {

guiFactory=new WinFactory();

}

button=guiFactory.createButton();

scrollBar=guiFactory.createScrollBar();

15/5015/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Abstract Factory

16/5016/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Singleton

17/5017/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Singleton

Problem: guarantee that one class has only one instance;
one unique and global access point to this instance

Example: class represents the configuration of a system;
class manipulates the window of one application

Solution: intercept requests to create new objects;
define a static method that returns the instance

18/5018/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Singleton code

public class Singleton {

private static Singleton instance;

private Singleton() {}

public static Singleton getInstance() {

if (Singleton.instance==null) {

Singleton.instance=new Singleton();

}

return Singleton.instance;

}

}

Singleton s1=Singleton.getInstance();
Singleton s2=Singleton.getInstance();
System.out.println(s1==s2);

19/5019/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

List

Adapter: convert the interface of a class into another
interface clients expect.

Bridge: decouple an abstraction from its implementation
so that the two can vary independently.

Composite: compose objects into tree structures to
represent part-whole hierarchies.

Decorator: attach additional responsibilities to an object
dynamically to extend functionality.

Facade: provide a unified interface to a set of interfaces
in a subsystem.

20/5020/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite
Problem

Represent the set of objects by the tree structure

Let clients treat individual objects and compositions of
objects uniformly.

Example
A draw application (a line and the set of lines should be
treated in the same way)

An arithmetic expression

Solution
an abstract class representing an object or a tree

a child class representing the leafs

a child class representing a node of the tree

21/5021/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite
Problem

Represent the set of objects by the tree structure

Let clients treat individual objects and compositions of
objects uniformly.

Example
A draw application (a line and the set of lines should be
treated in the same way)

An arithmetic expression

Solution
an abstract class representing an object or a tree

a child class representing the leafs

a child class representing a node of the tree

21/5021/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite
Problem

Represent the set of objects by the tree structure

Let clients treat individual objects and compositions of
objects uniformly.

Example
A draw application (a line and the set of lines should be
treated in the same way)

An arithmetic expression

Solution
an abstract class representing an object or a tree

a child class representing the leafs

a child class representing a node of the tree
21/5021/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite: example

22/5022/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite: example

22/5022/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite: example

22/5022/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite: structure

23/5023/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite

Pattern objects
Component: interface for all objects in this pattern
(interface or an abstract class with some methods
common to all objects).

Leaf: the behaviors for the primitive elements. It is the
building block and implements base component.

Composite: consists of leaf or composite elements
(children) and implements the operations by calling those
of its children.

24/5024/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite code

public interface Shape {

public void draw (String fillColor);

}

public class Triangle implements Shape {

public void draw(String fillColor) {

System.out.println("Drawing Triangle

with color"+fillColor);

}

}

public class Circle implements Shape {

public void draw(String fillColor) {

System.out.println("Drawing Circle

with color"+fillColor);

}

}

25/5025/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite code

public interface Shape {

public void draw (String fillColor);

}

public class Triangle implements Shape {

public void draw(String fillColor) {

System.out.println("Drawing Triangle

with color"+fillColor);

}

}

public class Circle implements Shape {

public void draw(String fillColor) {

System.out.println("Drawing Circle

with color"+fillColor);

}

}

25/5025/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite code
public class Drawing implements Shape {

private List<Shape> shapes = new ArrayList<Shape>();

public void draw (String fillColor) {

for(Shape sh : shapes)

sh.draw(fillColor);

}

public void add (Shape s) {

this.shapes.add(s);

}

public void remove (Shape s) {

shapes.remove(s);

}

public void clear () {

shapes.clear();

System.out.println("Clearing all shapes");

}

}

26/5026/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite code
public class Drawing implements Shape {

private List<Shape> shapes = new ArrayList<Shape>();

public void draw (String fillColor) {

for(Shape sh : shapes)

sh.draw(fillColor);

}

public void add (Shape s) {

this.shapes.add(s);

}

public void remove (Shape s) {

shapes.remove(s);

}

public void clear () {

shapes.clear();

System.out.println("Clearing all shapes");

}

}

26/5026/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite code
Shape tri = new Triangle();
Shape tri1 = new Triangle();
Shape cir = new Circle();
Drawing drawing = new Drawing();
drawing.add(tri);
drawing.add(tri1);
drawing.add(cir);
drawing.draw(”Red”);
drawing.clear();
drawing.add(tri);
drawing.add(cir);
drawing.draw(”Green”);

Results
Drawing Triangle with color Red
Drawing Triangle with color Red
Drawing Circle with color Red
Clearing all the shapes from drawing
Drawing Triangle with color Green
Drawing Circle with color Green

27/5027/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite code
Shape tri = new Triangle();
Shape tri1 = new Triangle();
Shape cir = new Circle();
Drawing drawing = new Drawing();
drawing.add(tri);
drawing.add(tri1);
drawing.add(cir);
drawing.draw(”Red”);
drawing.clear();
drawing.add(tri);
drawing.add(cir);
drawing.draw(”Green”);

Results
Drawing Triangle with color Red
Drawing Triangle with color Red
Drawing Circle with color Red
Clearing all the shapes from drawing
Drawing Triangle with color Green
Drawing Circle with color Green

27/5027/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite code
Shape tri = new Triangle();
Shape tri1 = new Triangle();
Shape cir = new Circle();
Drawing drawing = new Drawing();
drawing.add(tri);
drawing.add(tri1);
drawing.add(cir);
drawing.draw(”Red”);
drawing.clear();
drawing.add(tri);
drawing.add(cir);
drawing.draw(”Green”);

Results
Drawing Triangle with color Red
Drawing Triangle with color Red
Drawing Circle with color Red
Clearing all the shapes from drawing
Drawing Triangle with color Green
Drawing Circle with color Green

27/5027/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Composite hierarchy

28/5028/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Facade

Problem
unified interface by defining a higher-level interface that
makes the subsystem easier to use.

Example
recuperate old codes that are hard to be refactored

several complex interfaces

Solution
one high-level class that reuses the useful functionalities

29/5029/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Facade

Problem
unified interface by defining a higher-level interface that
makes the subsystem easier to use.

Example
recuperate old codes that are hard to be refactored

several complex interfaces

Solution
one high-level class that reuses the useful functionalities

29/5029/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Facade

Problem
unified interface by defining a higher-level interface that
makes the subsystem easier to use.

Example
recuperate old codes that are hard to be refactored

several complex interfaces

Solution
one high-level class that reuses the useful functionalities

29/5029/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Facade: goal

30/5030/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Facade: structure

31/5031/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Facade code

class ComplexeA1{

public void actionA11 () { ... }

public void actionA12 () { ... }

}

class ComplexeA2{

public void actionA21 () { ... }

public void actionA22 () { ... }

}

class ComplexeB1 {

public void actionB11 () { ... }

public void actionB12 () { ... }

}

class ComplexeB2 {

public void actionB21 () { ... }

public void actionB22 () { ... }

}

32/5032/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Facade code
class Facade {

complexeA1 a1;

complexeB2 b2;

Facade(){

a1=new ComplexeA1();

b2=new ComplexeB2();

}

void performActionsAB1 () {

a1.actionA11();

b2.actionB22();

}

void performActionsAB2 () {

a1.actionA11();

a1.actionA12();

b2.actionB21();

}

}

Facade facade=new Facade();
facade.performActionAB1();

33/5033/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Facade code
class Facade {

complexeA1 a1;

complexeB2 b2;

Facade(){

a1=new ComplexeA1();

b2=new ComplexeB2();

}

void performActionsAB1 () {

a1.actionA11();

b2.actionB22();

}

void performActionsAB2 () {

a1.actionA11();

a1.actionA12();

b2.actionB21();

}

}

Facade facade=new Facade();
facade.performActionAB1();

33/5033/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

List

Command: an object is used to encapsulate all
information needed to perform an action or trigger an
event at a later time.

Interpreter: define a representation for the grammar of a
given language with an interpreter to interpret sentences
in this language.

Iterator: provide a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation.

34/5034/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

List

Observer: define a one-to-many dependency between
objects so that one object changes state, all its
dependents are notified and updated automatically.

State: allow an object to alter its behavior when its
internal state changes.

Strategy: define a family of algorithms such that they are
interchangeable.

Visitor: separate an algorithm from an object by defining
a new operation without changing the classes of the
elements on which it operates.

35/5035/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Strategy

Problem
Allow different algorithms for the same object

Example
Robots with different behaviors

Different sorting algorithms

Solution
The algorithms are encapsulated by classes.

The class using the algorithm will have an instance of this
class as attribute.

36/5036/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Strategy

Problem
Allow different algorithms for the same object

Example
Robots with different behaviors

Different sorting algorithms

Solution
The algorithms are encapsulated by classes.

The class using the algorithm will have an instance of this
class as attribute.

36/5036/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Strategy

Problem
Allow different algorithms for the same object

Example
Robots with different behaviors

Different sorting algorithms

Solution
The algorithms are encapsulated by classes.

The class using the algorithm will have an instance of this
class as attribute.

36/5036/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Strategy: structure

37/5037/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Strategy code

abstract class SortStrategy {

abstract void sort (List list);

}

class Quick extends SortStrategy {

void sort (List list) { ... }

}

class Merge extends SortStrategy {

void sort (List list) { ... }

}

38/5038/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Strategy code

abstract class SortStrategy {

abstract void sort (List list);

}

class Quick extends SortStrategy {

void sort (List list) { ... }

}

class Merge extends SortStrategy {

void sort (List list) { ... }

}

38/5038/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Strategy code

class List {

private List elements;

private SortStrategy ss;

public void setSort (SortStrategy s) {

this.ss=s;

}

public void sort () {

this.ss.sort(this.elements);

}

}

39/5039/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Strategy code

class List {

private List elements;

private SortStrategy ss;

public void setSort (SortStrategy s) {

this.ss=s;

}

public void sort () {

this.ss.sort(this.elements);

}

}

39/5039/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer

Problem
Allow following the state modification of an object

Example
Graphic interface depending on the application engine.

Model-View-Controller

Solution
The observable is linked to all its observers

The observable should notify all its observers when its
state is changed

Each observer requires the necessary information

40/5040/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer

Problem
Allow following the state modification of an object

Example
Graphic interface depending on the application engine.

Model-View-Controller

Solution
The observable is linked to all its observers

The observable should notify all its observers when its
state is changed

Each observer requires the necessary information

40/5040/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer

Problem
Allow following the state modification of an object

Example
Graphic interface depending on the application engine.

Model-View-Controller

Solution
The observable is linked to all its observers

The observable should notify all its observers when its
state is changed

Each observer requires the necessary information

40/5040/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer: example

41/5041/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer: example

42/5042/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer: structure

43/5043/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer code

class Subject {

private List<Observer> observers;

private int state;

public void setState (int val) {

state=val;

notifyAll();

}

public void attach (Observer ons) {

observers.add(obs);

}

public void notifyAll () {

for (Observer obs: observers)

obs.update();

}

}

44/5044/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer code

class Subject {

private List<Observer> observers;

private int state;

public void setState (int val) {

state=val;

notifyAll();

}

public void attach (Observer ons) {

observers.add(obs);

}

public void notifyAll () {

for (Observer obs: observers)

obs.update();

}

}

44/5044/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer code

abstract class Observer {

protected Subject subject;

public abstract void update();

}

class ConcreteObserver {

public ConcreteObserver(Subject sub) {

this.subject=sub;

this.subject.attach(this);

}

public void update () {

System.out.println("new value: "

+subject.getValue());

}

}

45/5045/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Observer code

abstract class Observer {

protected Subject subject;

public abstract void update();

}

class ConcreteObserver {

public ConcreteObserver(Subject sub) {

this.subject=sub;

this.subject.attach(this);

}

public void update () {

System.out.println("new value: "

+subject.getValue());

}

}

45/5045/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

MVC
Pattern used to implement an user’s interface

Widely adopted in web applications

Separate the elements of an application into three groups

View: output representation of information that allows
the interaction with users

Model: central component that expresses the
application’s behaviors, independent of the user interface

Controller: accepts input and converts it to commands
for the model or view

Simultaneous development with separate parts

Ease of modification

Multiple views or controls for a model

46/5046/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

MVC
Pattern used to implement an user’s interface

Widely adopted in web applications

Separate the elements of an application into three groups

View: output representation of information that allows
the interaction with users

Model: central component that expresses the
application’s behaviors, independent of the user interface

Controller: accepts input and converts it to commands
for the model or view

Simultaneous development with separate parts

Ease of modification

Multiple views or controls for a model

46/5046/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

MVC
Pattern used to implement an user’s interface

Widely adopted in web applications

Separate the elements of an application into three groups

View: output representation of information that allows
the interaction with users

Model: central component that expresses the
application’s behaviors, independent of the user interface

Controller: accepts input and converts it to commands
for the model or view

Simultaneous development with separate parts

Ease of modification

Multiple views or controls for a model
46/5046/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

MVC

47/5047/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

MVC in Java

Packages are used to represent model/view/controller

The elements in each group are represented by classes

48/5048/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Example
Problem

An application to draw geometrical forms with the library
SWING

One possible solution
a view package containing

one window class
one draw surface class
one class to manage mouse events

a model package containing
a form class with its sub-classes like polygon, circle, etc.
an arrangement class (contains an array of forms)
...

a controller package containing
a controller class

49/5049/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Example
Problem

An application to draw geometrical forms with the library
SWING

One possible solution
a view package containing

one window class
one draw surface class
one class to manage mouse events

a model package containing
a form class with its sub-classes like polygon, circle, etc.
an arrangement class (contains an array of forms)
...

a controller package containing
a controller class

49/5049/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Example
Problem

An application to draw geometrical forms with the library
SWING

One possible solution
a view package containing

one window class
one draw surface class
one class to manage mouse events

a model package containing
a form class with its sub-classes like polygon, circle, etc.
an arrangement class (contains an array of forms)
...

a controller package containing
a controller class

49/5049/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Example
Problem

An application to draw geometrical forms with the library
SWING

One possible solution
a view package containing

one window class
one draw surface class
one class to manage mouse events

a model package containing
a form class with its sub-classes like polygon, circle, etc.
an arrangement class (contains an array of forms)
...

a controller package containing
a controller class

49/5049/50

Software Engineering (Design Patterns) ForwardBack



Software Engineering
(Design Patterns)

Lina YE

Introduction

Creational Patterns

Structural Patterns

Behavioral Patterns

Conclusion

Conclusion

Simple and elegant solutions to specific problems

Useful for designing reusable object-oriented software
Several key steps:

1 factor pertinent objects into classes at the right
granularity

2 define class interfaces and inheritance hierarchies
3 establish key relationships among them

50/5050/50

Software Engineering (Design Patterns) Back


	Introduction
	Creational Patterns
	Structural Patterns
	Behavioral Patterns
	Conclusion

