
Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Software Engineering
(Tests)

Lina YE

https://www.lri.fr/˜linaye/GL.html
lina.ye@centralesupelec.fr
Sequence 3, 2017-2018

1/61

Software Engineering (Tests) Forward

https://www.lri.fr/~linaye/GL.html

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Plan

1 Introduction

2 Functional/Structural

3 Unit testing: JUnit

4 Mutation Testing

5 Formal Methods

2/612/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Software Testing

3/613/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 0
No difference between testing and debugging
Adopted by many undergraduate CS majors

get their programs to compile
debug the programs with a few inputs

A program’s incorrect behavior (validation) cannot be
distinguished from a mistake within the program
(verification)

Not very useful to develop reliable or safe software

4/614/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 0
No difference between testing and debugging
Adopted by many undergraduate CS majors

get their programs to compile
debug the programs with a few inputs

A program’s incorrect behavior (validation) cannot be
distinguished from a mistake within the program
(verification)

Not very useful to develop reliable or safe software

4/614/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 1
The purpose of testing is to show correctness

Run a collection of tests without finding failures

Cannot demonstrate that
Is it a good software?
Are the set of tests good?

How much testing remains to be done?

No way to quantitatively express or evaluate the tests
done

5/615/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 1
The purpose of testing is to show correctness

Run a collection of tests without finding failures
Cannot demonstrate that

Is it a good software?
Are the set of tests good?

How much testing remains to be done?

No way to quantitatively express or evaluate the tests
done

5/615/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 1
The purpose of testing is to show correctness

Run a collection of tests without finding failures
Cannot demonstrate that

Is it a good software?
Are the set of tests good?

How much testing remains to be done?

No way to quantitatively express or evaluate the tests
done

5/615/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 2
The purpose of testing is to show failures
Create testing professions (test engineers)

Put testers and developers into an adversarial
relationship (not good for team morale)
What to do if no failures are found?

Persistent problems: run a set of tests without failures
Is our software very good?
Is the testing weak?

6/616/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 2
The purpose of testing is to show failures
Create testing professions (test engineers)

Put testers and developers into an adversarial
relationship (not good for team morale)
What to do if no failures are found?

Persistent problems: run a set of tests without failures
Is our software very good?
Is the testing weak?

6/616/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 3: good
The purpose of testing is not to prove anything specific,
but to reduce the risk of using the software

Testing can show the presence of failures but not their
absence.

There is always some risk whenever we use software

Collaborative work (positive): work together to reduce
risk

Level 3→ Level 4 (mental discipline that increases
quality; testers train developers)

7/617/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 3: good
The purpose of testing is not to prove anything specific,
but to reduce the risk of using the software

Testing can show the presence of failures but not their
absence.

There is always some risk whenever we use software

Collaborative work (positive): work together to reduce
risk

Level 3→ Level 4 (mental discipline that increases
quality; testers train developers)

7/617/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Beizer’s Test Philosophy

Level 3: good
The purpose of testing is not to prove anything specific,
but to reduce the risk of using the software

Testing can show the presence of failures but not their
absence.

There is always some risk whenever we use software

Collaborative work (positive): work together to reduce
risk

Level 3→ Level 4 (mental discipline that increases
quality; testers train developers)

7/617/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Criteria for classifying testing

1 Goal of testing:
performance, security, robustness, etc.

2 Testing levels (the cycle V)
Unit test
Integration test
Acceptance test

3 System nature under testing:
Black box: functional testing
White box: structural testing

8/618/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Criteria for classifying testing

1 Goal of testing:
performance, security, robustness, etc.

2 Testing levels (the cycle V)
Unit test
Integration test
Acceptance test

3 System nature under testing:
Black box: functional testing
White box: structural testing

8/618/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Criteria for classifying testing

1 Goal of testing:
performance, security, robustness, etc.

2 Testing levels (the cycle V)
Unit test
Integration test
Acceptance test

3 System nature under testing:
Black box: functional testing
White box: structural testing

8/618/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Black and white box testing

9/619/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Functional testing (black box)

Do not take into account the implementation
Testing is based only on the inputs/outputs
Data coverage

Generate test cases from the specification
Pre-condition: generate inputs
Post-condition: generate outputs

Two common techniques
Random testing: generate arbitrarily inputs
Testing by partitioning input space

10/6110/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Functional testing (black box)

Do not take into account the implementation
Testing is based only on the inputs/outputs
Data coverage

Generate test cases from the specification
Pre-condition: generate inputs
Post-condition: generate outputs

Two common techniques
Random testing: generate arbitrarily inputs
Testing by partitioning input space

10/6110/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Functional testing (black box)

Do not take into account the implementation
Testing is based only on the inputs/outputs
Data coverage

Generate test cases from the specification
Pre-condition: generate inputs
Post-condition: generate outputs

Two common techniques
Random testing: generate arbitrarily inputs
Testing by partitioning input space

10/6110/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Functional testing: example

Example of triangle
input: three integers a, b and c
output: right-angled, isoceles, equilateral, invalid

Lots of test cases required
right-angled triangle, isoceles triangle, equilateral
triangle, invalid
all permutations of two equal sides
all permutations of a+b<c
all permutations of a+b=c
all permutations of a=b and a+b=c
values in MAXINT
non-integer inputs

11/6111/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Functional testing: example

Example of triangle
input: three integers a, b and c
output: right-angled, isoceles, equilateral, invalid

Lots of test cases required
right-angled triangle, isoceles triangle, equilateral
triangle, invalid
all permutations of two equal sides
all permutations of a+b<c
all permutations of a+b=c
all permutations of a=b and a+b=c
values in MAXINT
non-integer inputs

11/6111/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Random testing

Pick possible inputs uniformly by treating all inputs as
equally valuable

But: defects are not distributed uniformly

Assume Roots applies quadratic equation
x = −b±

√
b 2−4ac
2a ,

which fails if b 2 − 4ac = 0 and a = 0

Random sampling is unlikely to choose a=0 and b=0

Many defects are related to specific inputs

Input space partitioning

12/6112/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Input space partitioning

Impossible to test all
an integer of 32-bit as input→ 4,294,967,296 values
one hour on the recent machine
3 integers of 32-bit, (232)3 ≈ 1028 legal inputs:
2.5 billion years with 1012 tests/s

partition input space into equivalent classes
The values in the same equivalent class have the same
behaviors from the specification point of view

Test cases: for each equivalent class
a value of the limit
a value just before the limit
a value in the middle
a value just after the limit (robustness test)

13/6113/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Input space partitioning

Impossible to test all
an integer of 32-bit as input→ 4,294,967,296 values
one hour on the recent machine
3 integers of 32-bit, (232)3 ≈ 1028 legal inputs:
2.5 billion years with 1012 tests/s

partition input space into equivalent classes
The values in the same equivalent class have the same
behaviors from the specification point of view

Test cases: for each equivalent class
a value of the limit
a value just before the limit
a value in the middle
a value just after the limit (robustness test)

13/6113/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Input space partitioning

Impossible to test all
an integer of 32-bit as input→ 4,294,967,296 values
one hour on the recent machine
3 integers of 32-bit, (232)3 ≈ 1028 legal inputs:
2.5 billion years with 1012 tests/s

partition input space into equivalent classes
The values in the same equivalent class have the same
behaviors from the specification point of view

Test cases: for each equivalent class
a value of the limit
a value just before the limit
a value in the middle
a value just after the limit (robustness test)

13/6113/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Partition: examples

Example 1: absolute value
2 equivalent classes: value≤0 and value≥0
9 test cases: MinInt, MinInt+1, -10, -1, 0, 1, 5,
MaxInt-1, MaxInt

Example 2: insert to a list (size is 20)
List level:

empty list or 1 element
full list 19 or 20 elements
list of 10 elements (middle)

Insertion level
just before and after the first element
just before and after the last element
in the middle of the list

14/6114/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Partition: examples

Example 1: absolute value
2 equivalent classes: value≤0 and value≥0
9 test cases: MinInt, MinInt+1, -10, -1, 0, 1, 5,
MaxInt-1, MaxInt

Example 2: insert to a list (size is 20)
List level:

empty list or 1 element
full list 19 or 20 elements
list of 10 elements (middle)

Insertion level
just before and after the first element
just before and after the last element
in the middle of the list

14/6114/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Partition: examples

Example 1: absolute value
2 equivalent classes: value≤0 and value≥0
9 test cases: MinInt, MinInt+1, -10, -1, 0, 1, 5,
MaxInt-1, MaxInt

Example 2: insert to a list (size is 20)
List level:

empty list or 1 element
full list 19 or 20 elements
list of 10 elements (middle)

Insertion level
just before and after the first element
just before and after the last element
in the middle of the list

14/6114/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Structurel testing (white box)

Internal structure of software as criteria to generate test
cases

Coverage criteria
Block/Instruction coverage

each instruction should be covered by at least one test
case

Branch/Decision coverage
each branch should be covered by at least one test case
implies the block coverage

Path coverage
each execution path should be covered by at least one
test case
implies branch coverage

15/6115/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Structurel testing (white box)

Internal structure of software as criteria to generate test
cases
Coverage criteria

Block/Instruction coverage
each instruction should be covered by at least one test
case

Branch/Decision coverage
each branch should be covered by at least one test case
implies the block coverage

Path coverage
each execution path should be covered by at least one
test case
implies branch coverage

15/6115/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Structurel testing: example

Coverage of instruction blocks

2 paths suffice

Coverage of branches

3 paths required

Coverage of paths

3 paths required

16/6116/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Structurel testing: example

Coverage of instruction blocks
2 paths suffice

Coverage of branches
3 paths required

Coverage of paths
3 paths required

16/6116/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Structurel testing: example

Coverage of instruction blocks
2 paths suffice

Coverage of branches
3 paths required

coverage of paths
3 paths?
how many iterations needed?
N?

number of paths 3N

exponential with the number
of iterations

17/6117/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Structurel testing: example

Coverage of instruction blocks
2 paths suffice

Coverage of branches
3 paths required

coverage of paths
3 paths?
how many iterations needed?
N?
number of paths 3N

exponential with the number
of iterations

17/6117/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Really all covered?

18/6118/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Cyclomatic complexity

A source code complexity measurement that determines
the number of linearly independent path (not a sub-path
of another path)

It is calculated by developing a Control Flow Graph of
the code

Lower the Program’s cyclomatic complexity, lower the
risk to modify and easier to understand

Calculate cyclomatic complexity: CC = E - N + 2*P
E = number of edges in the flow graph
N = number of nodes in the flow graph
P = number of nodes that have exit points

19/6119/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Cyclomatic complexity

A source code complexity measurement that determines
the number of linearly independent path (not a sub-path
of another path)

It is calculated by developing a Control Flow Graph of
the code

Lower the Program’s cyclomatic complexity, lower the
risk to modify and easier to understand
Calculate cyclomatic complexity: CC = E - N + 2*P

E = number of edges in the flow graph
N = number of nodes in the flow graph
P = number of nodes that have exit points

19/6119/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Control flow graph

The control structure of a program can be represented
by the control flow graph of the program.
The control flow graph G = (N, E) of a program consists
of a set of nodes N and a set of edge E.

A statement node contains a sequence of statements.
The control must enter from the first statement and exit
from the last statement.
A decision node contains a conditional statement that
creates 2 or more control branches.
A merge node usually does not contain any statement
and is used to represent a program point where multiple
control branches merge.
There is an edge from node n1 to node n2 if the control
may flow from the last statement in n1 to the first
statement in n2.

20/6120/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Control flow graph

The control structure of a program can be represented
by the control flow graph of the program.
The control flow graph G = (N, E) of a program consists
of a set of nodes N and a set of edge E.

A statement node contains a sequence of statements.
The control must enter from the first statement and exit
from the last statement.
A decision node contains a conditional statement that
creates 2 or more control branches.
A merge node usually does not contain any statement
and is used to represent a program point where multiple
control branches merge.

There is an edge from node n1 to node n2 if the control
may flow from the last statement in n1 to the first
statement in n2.

20/6120/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Control flow graph

The control structure of a program can be represented
by the control flow graph of the program.
The control flow graph G = (N, E) of a program consists
of a set of nodes N and a set of edge E.

A statement node contains a sequence of statements.
The control must enter from the first statement and exit
from the last statement.
A decision node contains a conditional statement that
creates 2 or more control branches.
A merge node usually does not contain any statement
and is used to represent a program point where multiple
control branches merge.
There is an edge from node n1 to node n2 if the control
may flow from the last statement in n1 to the first
statement in n2.

20/6120/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Example

IF A == 10 THEN
IF B > C THEN
A = B

ELSE
A = C

ENDIF
ENDIF
Print A
Print B
Print C

E=8; N=7; P=1
CC=E-N+ 2*P =8-7+2=3

21/6121/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Example

IF A == 10 THEN
IF B > C THEN
A = B

ELSE
A = C

ENDIF
ENDIF
Print A
Print B
Print C

E=8; N=7; P=1
CC=E-N+ 2*P =8-7+2=3

21/6121/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Functional vs. structural

The structural approaches can find program errors more
easily (verification)

The functional approaches can find incorrect behaviors
more easily (validation)
They are complemented:

missing functionality defects: functional testing
decision defects: structural testing

22/6122/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

JUnit

JUnit is a unit testing framework designed for the Java
programming

Authors: Erich Gamma, Kent Beck

Objective
If the test cases are easy to be created and executed, then the
developers would be required to do this.

23/6123/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

JUnit

24/6124/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Test Automation

A test script to define:
the actions sent to the System Under Test (SUT)
the responses expected of SUT
the way to determinate whether a test fails or not

Test execution system
read and execute the scripts on the SUT
save test results

25/6125/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

What is a JUnit test

A test script is just a set of Java methods
The idea is to create and use the objects before verifying
whether these objects have the good properties.

Assertions
A package containing the functions that allow the
verification of different properties:

equality between objects
reference identity
reference null/non-null

The assertions are used to determinate the verdict of a
test: Pass or Fail

26/6126/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

A JUnit test case

/* Test of setName() method, class Value */

@Test

public void createAndSetName(){
Value v1=new Value();

v1.setName("Y");

String expected="Y";
String actual=v1.getName();

Assert.assertEquals(expected, actual);
}

27/6127/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

A JUnit test case

/* Test of setName() method, class Value */

@Test

define this method as a test

public void createAndSetName(){
Value v1=new Value();

v1.setName("Y");

String expected="Y";
String actual=v1.getName();

Assert.assertEquals(expected, actual);
}

28/6128/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

A JUnit test case

/* Test of setName() method, class Value */

@Test

public void createAndSetName(){
Value v1=new Value();

v1

confirm that setName saves the name of v1

.setName("Y");

String expected="Y";
String actual=v1.getName();

Assert.assertEquals(expected, actual);
}

29/6129/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

A JUnit test case

/* Test of setName() method, class Value */

@Test

public void createAndSetName(){
Value v1=new Value();

v1.setName("Y");

String expected="Y";
String

verify the name of v1

actual=v1.getName();

Assert.assertEquals(expected, actual);
}

30/6130/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

A JUnit test case

/* Test of setName() method, class Value */

@Test

public void createAndSetName(){
Value v1=new Value();

v1.setName("Y");

String expected="Y";
String actual=v1.getName();

Assert

expected and actual should be the same

.assertEquals(expected, actual);
}

31/6131/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Test verdicts

A verdict is the execution result of one test.

Pass: the test has been correctly executed and the
software has the expected behavior.

Fail: the test has been correctly executed and the
software has the unexpected behavior.
Error: the test has not been correctly executed, which
may due to

unexpected event during the test
the test cannot be initialized correctly

32/6132/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Test verdicts

@Test
public void testErrorVsTestFailure() {

String s =new String("jacob");
s=null;

assertEquals('j', s.charAt(0));
/*above line throws test error as you are trying to
access charAt() method on null reference*/

assertEquals(s, "jacob"));
/*above line throws Test failure as the actual
value null is not equal to "jacob"*/
}

33/6133/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Eclipse interface

34/6134/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Eclipse interface

35/6135/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Eclipse interface

36/6136/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Eclipse

To create a new test class from an existing class: click
right on the class→ New→ JUnit Test Case
To execute the set of tests

use the same arrow for program execution
the test result shown to the left

37/6137/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Organization of JUnit tests

Each method corresponds to a test with its own verdict
(pass, error, fail).
Conventionally, all tests for the same class are collected
in the same test class

naming convention:
Class to be tested: NameClass
Class containing tests: NameClassTest

demo

38/6138/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Execute JUnit tests

There is no graphic interface of JUnit to run the tests, but
an API is available to be used.

Eclipse uses the API of JUnit to provide graphic interface
to run tests.

When a test class is executed, all test methods are
executed.

The order to execute these methods is not predefined.

It is necessary to write the tests whose result is
independent of the execution order.

39/6139/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Execute JUnit tests

There is no graphic interface of JUnit to run the tests, but
an API is available to be used.

Eclipse uses the API of JUnit to provide graphic interface
to run tests.

When a test class is executed, all test methods are
executed.

The order to execute these methods is not predefined.

It is necessary to write the tests whose result is
independent of the execution order.

39/6139/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Assertions

The assertions are defined in the class Assert:
if an assertion is true, then the execution continues
if an assertion is false, then the execution terminates and
the test result is fail
if any other exception is generated, the test result is
error
if no assertion is false in the method, the test result is
pass

All assertion methods are static.

40/6140/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Assertion methods

Test boolean condition (true or false)
assertTrue(condition)
assertFalse(condition)

Test if an object is null or non-null
assertNull(object)
assertNotNull(object)

Test if two objects are identical (i.e., two references to
the same object)

assertSame(expected, actual): true if expected==actual
assertNotSame(expected, actual)

41/6141/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Assertion methods

Test equality between two objects
assertEquals(expected, actual): valid if
expected.equals(actual)

Test equality between two arrays
assertArrayEquals(expected, actual)

The arrays should have the same size
for all correct values of i, test according to the cases:
assertEquals(expected[i], actual[i])
or assertArrayEquals(expected[i], actual[i])

There exists also an assertion that always fails: fail()

42/6142/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

The parameters of assertion
methods

If an assertion method has two parameters, the first is
the expected value and the second is the actual value

This has no impact on the test result but is used to send
the message to users

All assertion methods can have an extra parameter
whose type is String, which is on the first place. This
parameter will be included in the error message if the
assertion fails.

Examples:
fail(message)
assertEquals(message, expected, actual)

43/6143/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Equality assertions

assertEquals(a, b) is based on the method equals() of the
class that is tested

This assertion is to evaluate a.equals(b)
Recall: if the method equals is not defined in the class,
then it is inherited from the parent class Object

If a and b are the primitive types like int, boolean, ..., then
the following behavior is implemented for
assertEquals(a, b):

a and b with the equivalence of their object type:
(Integer, Boolean, ...), and then a.equals(b) is evaluated.

44/6144/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Assertions for non-integer
number

When one compares the non-integer number (double or
float), there is an extra parameter that is necessary:
delta

The assertion evaluate:
Math.abs(expected-actual)≤delta
This is done to avoid the rounding errors

Example:
assertEquals(aDouble, anotherDouble, 0.0001)

45/6145/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Test fixture

The purpose of a test fixture is to ensure that there is a well
known and fixed environment in which tests are run so that
results are repeatable.

The fixtures are composed of
The objects and the resources used for tests
The initialization (setup) and deallocation (teardown) of
these objects and resources.

46/6146/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Setup

The set of tasks effectuated before each test.
Example: create the interesting objects, based on which
one works, open a connection network, etc...

Use the key word @Before before the methods

All methods with this key word will be executed before
each test, but with any possible order.

47/6147/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Teardown

The set of tasks effectuated after each test.
Example: be sure that the resources are liberated, reset
the system in the good state for the following tests

With the key word @after before the methods

All methods with this key word will be executed after
each test, but with any possible order.

The methods are executed even when the test fails

48/6148/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Setup and Teardown: Example

public class OutputTest {
private File output;
@Before

public void createOutputFile () {
output=new file (...);

}
@After

public void deleteOutputFile () {
output.delete();

}
@Test

public void test1WithFile () {
/** code for test case objective */

}
@Test

public void test2WithFile () {
/** code for test case objective */

}
}

49/6149/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Execution order

1 createOutputFile()
2 test1WithFile()
3 deleteOutputFile()
4 createOutputFile()
5 test2WithFile()
6 deleteOutputFile()

Remark: test1WithFile can be executed after
test2WithFile

50/6150/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Once-only Setup

The set of tasks effectuated only one time before the set
of tests

Example: restart a server

With the key word @BeforeClass before the methods

Can be used for a static method

@BeforeClass
public static void anyNameHere () {

/** class setup code here */
}

51/6151/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Once-only Teardown

The set of tasks effectuated only one time after the set
of tests

Example: stop a server

With the key word @AfterClass before the methods

Can be used for a static method

@AfterClass
public static void anyNameHere () {

/** class cleanup code here */
}

52/6152/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Boring test?

53/6153/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

What is mutation testing

Mutation testing involves modifying a program in small
ways.

Such modifications model small defects that may appear
during the development.

Mutation testing is a form of white-box testing.
estimate/improve the efficiency of test suites
find out the problems in the SUT.

54/6154/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Principles

Let Prog be a program and Tests be a set of tests:
Apply the mutations on the program Prog

Each mutant is created by applying one mutation on Prog
A set of mutants Prog1,Prog2, ...,Progn

Run the set of tests Tests on each mutant
We say that Tests kills the mutant Progi if an error is
detected

If Tests kills k mutants on n
The mutation coverage of Tests is calculated by k /n
Tests is considered as perfect when k = n

Mutation testing is totally automatic.

55/6155/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Mutation equivalence
Tests is not perfect when: (k /n) < 1
In practice: some mutants are not different from original
program

Such mutants are called equivalent mutations

int i=2;
if (i>=1) {

return "foo";
}
...

int i=2;
if (i>1) {

return "foo";
}

56/6156/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Mutation equivalence
Tests is not perfect when: (k /n) < 1
In practice: some mutants are not different from original
program

Such mutants are called equivalent mutations

int i=2;
if (i>=1) {

return "foo";
}
...

int i=2;
if (i>1) {

return "foo";
}

56/6156/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Mutation types

Mutation of values: modify the values of constants or of
parameters

Example: the bound for cycles, the initial value, etc.

Mutation of decisions: modify the conditions
Example: replace the comparison > by >= or <.

Mutation of declarations: delete or inverse the order of
code lines.

Example: delete the variable incrementation in a cycle.

57/6157/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Mutation generation

Mutation of source code
The mutations are effectuated by modifying the source
code that is then recompiled.

Mutation of assembly language
The mutations are effectuated by modifying the assembly
code.

Advantage of source code
A great quantity of mutations can be effectuated
The mutations are similar to the errors that may
generated by a programmer
The mutations can easily be understood

Advantage of assembly code
Mutation generation is quicker.

58/6158/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Mutation generation

Mutation of source code
The mutations are effectuated by modifying the source
code that is then recompiled.

Mutation of assembly language
The mutations are effectuated by modifying the assembly
code.

Advantage of source code
A great quantity of mutations can be effectuated
The mutations are similar to the errors that may
generated by a programmer
The mutations can easily be understood

Advantage of assembly code
Mutation generation is quicker.

58/6158/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

PIT: mutation testing for Java

PIT is a system of mutation testing for Java based on the
source code.
Two methods

mutation coverage: measure the efficiency of the tests
line coverage: a coverage of detailed code (line by line)

More information: http://pitest.org/

59/6159/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

PIT

60/6160/61

Software Engineering (Tests) ForwardBack

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Formal methods

Principles
Mathematic proofs are used on the program to
demonstrate that it holds some properties

Difficult to be used

The only method with the guarantee

For some critical applications (e.g., Meteor)

Tool examples
B method

Isabelle, Coq

61/6161/61

Software Engineering (Tests) Back

Software Engineering
(Tests)

Lina YE

Introduction

Functional/Structural

Unit testing: JUnit

Mutation Testing

Formal Methods

Formal methods

Principles
Mathematic proofs are used on the program to
demonstrate that it holds some properties

Difficult to be used

The only method with the guarantee

For some critical applications (e.g., Meteor)

Tool examples
B method

Isabelle, Coq

61/6161/61

Software Engineering (Tests) Back

	Introduction
	Functional/Structural
	Unit testing: JUnit
	Mutation Testing
	Formal Methods

